Theranostics 2022; 12(2):734-746. doi:10.7150/thno.66468 This issue Cite

Research Paper

Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools

Yushuo Feng, Ruixue Qin, Lihua Xu, Xiaoqian Ma, Dandan Ding, Shi Li, Lei Chen, Yaqing Liu, Wenjing Sun, Hongmin Chen

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

Citation:
Feng Y, Qin R, Xu L, Ma X, Ding D, Li S, Chen L, Liu Y, Sun W, Chen H. Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools. Theranostics 2022; 12(2):734-746. doi:10.7150/thno.66468. https://www.thno.org/v12p0734.htm
Other styles

File import instruction

Abstract

Graphic abstract

Background: Asymmetric intracellular and extracellular ionic gradients are critical to the survivability of mammalian cells. Given the importance of manganese (Mn2+), calcium (Ca2+), and bicarbonate (HCO3-) ions, any alteration of the ion-content balance could induce a series of cellular responses. HCO3- plays an indispensable role for Mn-mediated Fenton-like reaction, but this is difficult to achieve because bicarbonates are tightly regulated by live cells, and are limited in anticancer efficacy.

Methods: A responsive and biodegradable biomineral, Mn-doped calcium carbonate integrated with dexamethasone phosphate (DEX) (Mn:CaCO3-DEX), was reported to enable synergistic amplification of tumor oxidative stress, reduce inflammation, and induce Ca-overload cell apoptosis by elevating the intracellular and extracellular ionic gradients.

Results: Under the acidic environment in tumor region, the ions (Mn2+, CO32-, Ca2+) were released by the degradation of Mn:CaCO3-DEX and then escalated oxidative stresses by triggering a HCO3--indispensable Mn-based Fenton-like reaction and breaking Ca2+ ion homeostasis to cause oxidative stress in cells and calcification. The released anti-inflammatory and antitumor drug, DEX, could alleviate the inflammatory environment. The investigations in vitro and in vivo demonstrated that the synergistic oncotherapy could effectively inhibit the growth of subcutaneous tumors and orthotopic liver tumors. Notably, normal cells showed greater tolerance of the synergistic influences.

Conclusion: As an ion drug, Mn:CaCO3-DEX is an excellent potential diagnostic agent for precise orthotopic tumor management by the generation in situ of toxic ion and drug pools in the environment of tumor region, with synergistic effects of enhanced chemodynamic therapy, calcification, and anti-inflammation effects.

Keywords: Tumor acidic environment, Internal ions overload, Chemodynamic therapy, Calcification, Anti-inflammatory


Citation styles

APA
Feng, Y., Qin, R., Xu, L., Ma, X., Ding, D., Li, S., Chen, L., Liu, Y., Sun, W., Chen, H. (2022). Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools. Theranostics, 12(2), 734-746. https://doi.org/10.7150/thno.66468.

ACS
Feng, Y.; Qin, R.; Xu, L.; Ma, X.; Ding, D.; Li, S.; Chen, L.; Liu, Y.; Sun, W.; Chen, H. Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools. Theranostics 2022, 12 (2), 734-746. DOI: 10.7150/thno.66468.

NLM
Feng Y, Qin R, Xu L, Ma X, Ding D, Li S, Chen L, Liu Y, Sun W, Chen H. Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools. Theranostics 2022; 12(2):734-746. doi:10.7150/thno.66468. https://www.thno.org/v12p0734.htm

CSE
Feng Y, Qin R, Xu L, Ma X, Ding D, Li S, Chen L, Liu Y, Sun W, Chen H. 2022. Ion drugs for precise orthotopic tumor management by in situ the generation of toxic ion and drug pools. Theranostics. 12(2):734-746.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image