Theranostics 2015; 5(3):227-239. doi:10.7150/thno.10185 This issue Cite

Research Paper

52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1)

Christina M. Lewis*1, Stephen A. Graves*1, Reinier Hernandez1, Hector F. Valdovinos1, Todd E. Barnhart1, Weibo Cai1,2,3, Mary E. Meyerand1,2,4, Robert J. Nickles1, Masatoshi Suzuki5 ✉

1. Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA;
2. Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA;
3. Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA;
4. Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA;
5. Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA.
* Authors contributed equally to this work.

Citation:
Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, Meyerand ME, Nickles RJ, Suzuki M. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics 2015; 5(3):227-239. doi:10.7150/thno.10185. https://www.thno.org/v05p0227.htm
Other styles

File import instruction

Abstract

Graphic abstract

There is a growing demand for long-term in vivo stem cell imaging for assessing cell therapy techniques and guiding therapeutic decisions. This work develops the production of 52Mn and establishes proof of concept for the use of divalent metal transporter 1 (DMT1) as a positron emission tomography (PET) and magnetic resonance imaging (MRI) reporter gene for stem cell tracking in the rat brain. 52Mn was produced via proton irradiation of a natural chromium target. In a comparison of two 52Mn separation methods, solvent-solvent extraction was preferred over ion exchange chromatography because of reduced chromium impurities and higher 52Mn recovery. In vitro uptake of Mn-based PET and MRI contrast agents (52Mn2+ and Mn2+, respectively) was enhanced in DMT1 over-expressing human neural progenitor cells (hNPC-DMT1) compared to wild-type control cells (hNPC-WT). After cell transplantation in the rat striatum, increased uptake of Mn-based contrast agents in grafted hNPC-DMT1 was detected in in vivo manganese-enhanced MRI (MEMRI) and ex vivo PET and autoradiography. These initial studies indicate that this approach holds promise for dual-modality PET/MR tracking of transplanted stem cells in the central nervous system and prompt further investigation into the clinical applicability of this technique.

Keywords: Positron emission tomography (PET), manganese-enhanced magnetic resonance imaging (MEMRI), multimodality imaging, manganese-52 (52Mn), cell tracking, reporter gene.


Citation styles

APA
Lewis, C.M., Graves, S.A., Hernandez, R., Valdovinos, H.F., Barnhart, T.E., Cai, W., Meyerand, M.E., Nickles, R.J., Suzuki, M. (2015). 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics, 5(3), 227-239. https://doi.org/10.7150/thno.10185.

ACS
Lewis, C.M.; Graves, S.A.; Hernandez, R.; Valdovinos, H.F.; Barnhart, T.E.; Cai, W.; Meyerand, M.E.; Nickles, R.J.; Suzuki, M. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics 2015, 5 (3), 227-239. DOI: 10.7150/thno.10185.

NLM
Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, Meyerand ME, Nickles RJ, Suzuki M. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics 2015; 5(3):227-239. doi:10.7150/thno.10185. https://www.thno.org/v05p0227.htm

CSE
Lewis CM, Graves SA, Hernandez R, Valdovinos HF, Barnhart TE, Cai W, Meyerand ME, Nickles RJ, Suzuki M. 2015. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics. 5(3):227-239.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image