Theranostics 2017; 7(10):2620-2633. doi:10.7150/thno.18096

Research Paper

A High-Affinity Repebody for Molecular Imaging of EGFR-Expressing Malignant Tumors

Misun Yun1*, Dong-Yeon Kim1*, Joong-jae Lee2,3*, Hyeon-Sik Kim1, Hyung-Seok Kim4, Ayoung Pyo1, Yiseul Ryu2, Tae-Yoon Kim2, Jin Hai Zheng1,5, Su Woong Yoo1, Hoon Hyun6, Gyungseok Oh7, Jaeho Jeong8, Myeongju Moon9, Jung-Hyun Min10, Seong Young Kwon1, Jung Young Kim11, Euiheon Chung7, Yeongjin Hong8, Wansik Lee12✉, Hak-Sung Kim2✉, Jung-Joon Min1,5,8✉

1. Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
2. Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
3. Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
4. Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
5. Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Republic of Korea
6. Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
7. School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
8. Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
9. Department of Radiology, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
10. Department of Biology, Kyung Hee University College of Science, Seoul, Republic of Korea
11. Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
12. Department of Gastroenterology, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
* These authors contributed equally to this research.

Abstract

The accurate detection of disease-related biomarkers is crucial for the early diagnosis and management of disease in personalized medicine. Here, we present a molecular imaging of human epidermal growth factor receptor (EGFR)-expressing malignant tumors using an EGFR-specific repebody composed of leucine-rich repeat (LRR) modules. The repebody was labeled with either a fluorescent dye or radioisotope, and used for imaging of EGFR-expressing malignant tumors using an optical method and positron emission tomography. Our approach enabled visualization of the status of EGFR expression, allowing quantitative evaluation in whole tumors, which correlated well with the EGFR expression levels in mouse or patients-derived colon cancers. The present approach can be effectively used for the accurate detection of EGFR-expressing cancers, assisting in the development of a tool for detecting other disease biomarkers.

Keywords: Repebody, Epidermal growth factor receptor, Colon cancer, Molecular imaging, PET, Optical imaging.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Yun M, Kim DY, Lee Jj, Kim HS, Kim HS, Pyo A, Ryu Y, Kim TY, Zheng JH, Yoo SW, Hyun H, Oh G, Jeong J, Moon M, Min JH, Kwon SY, Kim JY, Chung E, Hong Y, Lee W, Kim HS, Min JJ. A High-Affinity Repebody for Molecular Imaging of EGFR-Expressing Malignant Tumors. Theranostics 2017; 7(10):2620-2633. doi:10.7150/thno.18096. Available from http://www.thno.org/v07p2620.htm