Theranostics 2012; 2(7):723-733. doi:10.7150/thno.4275

Research Paper

PEGylated Phospholipid Micelle-Encapsulated Near-Infrared PbS Quantum Dots for in vitro and in vivo Bioimaging

Rui Hu1, 2, Wing-Cheung Law2, Guimiao Lin1, Ling Ye3, Jianwei Liu3, Jing Liu3, Jessica L. Reynolds4, Ken-Tye Yong1✉

1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
2. Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200, USA.
3. Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing 100853, China.
4. Division of Allergy, Immunology and Rheumatology, Department of Medicine, State University of New York at Buffalo, Innovation Center, 640 Ellicott Street, Buffalo, NY 14203.


Surface modification and functionalization of bioconjugated quantum dots (QDs) has drawn great attention for the past few years due to their wide applications in biomedical research. In this contribution, we demonstrate the use of PEGylated phospholipid micelles to encapsulate near infrared emitting ultra-small lead sulfide (PbS) QDs for in vitro and in vivo imaging. The cytotoxicity of the micelle-encapsulated QDs formulation was evaluated using MTS assay and histological analysis studies. We have found that upon encapsulating the QDs with phospholipid micelle, the toxicity of the PbS QDs is reduced, from which we envision that the PEGylated phospholipid micelle-encapsulated PbS QDs formulation can be used as theranostics probes for some selected applications in cell imaging and small animals study.

Keywords: Phospholipid, Micelle encapsulation, quantum dots, bioimaging, PEG.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
How to cite this article:
Hu R, Law WC, Lin G, Ye L, Liu J, Liu J, Reynolds JL, Yong KT. PEGylated Phospholipid Micelle-Encapsulated Near-Infrared PbS Quantum Dots for in vitro and in vivo Bioimaging. Theranostics 2012; 2(7):723-733. doi:10.7150/thno.4275. Available from