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Abstract 

Rationale: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy. The metastasis and poor prognosis of 
ESCC are closely associated with tumor microenvironment (TME) heterogeneity, which is driven by epithelial-mesenchymal 
transition (EMT). Clinically, how to diagnose and target EMT progression remains a key challenge for ESCC.  
Methods: Integration of pathological images and bulk RNA sequencing profiles identified a high-risk subtype exhibiting EMT 
enrichment and immunosuppression. Single-cell and spatial transcriptomics revealed EMT macrostates and their spatial 
distribution. The role of CACNA1C in programming malignant phenotype was tested in vitro. A pathological image-based deep 
learning model successfully predicted the spatial expression distribution of CACNA1C, indicating possible clinical utility. 
Results: EMT progression comprised three macrostates: the early state (high epithelial and metastatic potential), the stable state 
(hybrid E/M phenotype and high stemness), and the late state (high mesenchymal and invasive propensity). ITGA3 and ITGB4 
antagonistically regulate malignant phenotype in the early state. Notably, suppression of CACNA1C induced transdifferentiation 
from stable/late-state cells to normal epithelium-like cells.  
Conclusions: This study provides novel insights into the EMT mechanism in ESCC, proposes an intervention strategy, and 
emphasizes the promising clinical application of pathological images in EMT assessment. 

Keywords: esophageal squamous carcinoma, epithelial mesenchymal transition, histopathology, bulk sequencing, single-cell sequencing, spatial transcriptomes, 
deep learning 

Introduction 
Esophageal cancer is the seventh leading cause 

of cancer-related death worldwide [1]. Esophageal 
squamous cell carcinoma (ESCC) accounts for 
approximately 90% of esophageal cancer cases, and 
more than 70% of ESCC cases are locally advanced at 

the time of diagnosis [2]. ESCC is characterized by 
aggressive submucosal spread and lymphatic 
metastasis, and significantly poorer survival 
outcomes are observed in patients with metastatic 
disease [3]. While surgical resection is the 
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fundamental treatment for ESCC [4], emerging 
therapeutic targets and molecular classifications 
derived from multiomics technologies have been 
increasingly proposed to guide personalized therapy 
[5]. Understanding the ESCC tumor 
microenvironment (TME) is essential for overcoming 
treatment resistance, refining subtype-specific 
treatment strategies, and improving patient outcomes. 

The degree of epithelial-to-mesenchymal 
transition (EMT) has been reported to be a predictor 
of tumor invasion and lymph node metastasis [6, 7]. 
EMT is a cellular process in which polarized epithelial 
cells undergo extensive molecular reprogramming 
and phenotypic transition [8]. EMT occurs not only 
during embryonic development, tissue regeneration, 
and wound healing but also in tumors [9], which 
leads to a reduction in adhesion between cells and an 
increase in the ability to migrate, thus initiating the 
transformation from a benign tumor to an invasive 
tumor. Recent studies have shown that EMT 
encompasses a continuum of phenotypes, with 
multiple mixed states driving the transition from a 
complete epithelial phenotype to a complete 
mesenchymal phenotype [10, 11]. Elucidation of EMT 
differentiation trajectories is crucial for understanding 
ESCC invasiveness and metastasis and had significant 
potential to inform targeted therapies and improve 
patient survival; however, the specific EMT 
intermediate states and their functions remain 
incompletely defined. 

Tumor morphology and architecture reflect 
biologically relevant subtypes, and integrating spatial 
pathology with genomic data enables deeper insights 
into the TME and biomarker development [12]. For 
example, Wang et al. and Yoo et al. performed 
unsupervised clustering on quantitative features 
characterizing the cell nuclei and the spatial 
relationships between cancer cells and lymphocytes to 
develop histological subtypes in liver cancer and 
colorectal cancer, respectively [13, 14]. Zhao et al. 
further incorporated stromal cell features and 
identified clinically relevant subtypes of breast cancer 
[15]. Recent deep learning advances have enabled 
cost-effective, reliable biological stratification directly 
from histopathological images in both clinical 
workflows and retrospective cohorts, revealing novel 
insights into tumor heterogeneity [16, 17]. The 
integration of pathogenomics and deep learning for 
multimodal biomarker discovery enables the charac-
terization of tumor heterogeneity and clarification of 
previously unexplored genomic mechanisms in ESCC 
histological subtypes, advancing both oncology 
research and clinical decision-making. 

In this study, we identified two pathological 
subtypes of ESCC with prognostic differences. We 

performed integrated analysis of genomics data for 
paired samples to comprehensively characterize the 
molecular dynamics and TME landscapes underlying 
individual subtypes, identified EMT as a critical 
determinant of prognosis, and mined therapeutic 
targets and functional ligand-receptor pairs for the 
high-risk subtype. In addition, we constructed 
ESCC-specific EMT trajectories and identified three 
macrostates with distinct functions. We found that 
ITGA3 and ITGB4 are functionally mutually exclusive 
and that CACNA1C is a promising trans- 
differentiation target for EMT. Finally, we developed 
a deep learning model to predict the expression and 
spatial distribution of CACNA1C. In conclusion, our 
study reveals the widespread impact of EMT on ESCC 
invasion, metastasis, prognosis, and treatment. 

Methods 
Multi-center data collection 

This study has been approved by the 
institutional review boards at each hospital and 
informed consent was waived due to retrospective 
nature. This retrospective study involved a discovery 
cohort (Affiliated Tumor Hospital of Xinjiang Medical 
University, XJ, n = 125), as well as a validation cohort 
(Guangdong Provincial People’s Hospital, GDPH, n = 
78). Eligible participants met the following criteria: (i) 
a confirmed pathological diagnosis of ESCC; (ii) 
receipt of primary curative-intent surgical resection; 
and (iii) availability of comprehensive histological 
data. Patients were excluded if they had: (i) 
undergone any preoperative anti-cancer treatment; 
(ii) a prior history of malignancy or coexisting cancers; 
or (iii) missing or incomplete clinical, imaging, or 
pathological records. The overall survival (OS) as the 
primary endpoint, defined as the time interval from 
surgical resection to death from any cause. The 
minimum follow-up period was 36 months after 
surgery. We collected clinicopathologic characteristics 
from medical records and assessed followed-up 
information by pathology/imaging reports or 
telephone follow-up. Baseline characteristics were 
collected, including age, gender, tumor location, 
stage, T stage, N stage, and adjuvant therapy record. 
Statistical comparisons across cohorts were calculated 
by Chi-squared test (Table S1).  

Public data collection 
 The published clinical specimens here were 

collected from the TCGA Research Network 
(https://portal.gdc.cancer.gov/) and the Gene 
Expression Omnibus (https://www.ncbi.nlm.nih 
.gov/geo/). From the GDC Data Portal, we identified 
esophageal squamous cell carcinoma (ESCC) samples 
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using the following selection criteria: PrimarySite = 
"Esophagus", DiseaseType = "Squamous cell 
neoplasms", SampleType = "Primary Tumor", and 
TreatmentOrTherapy = "No". We further refined our 
selection to include only cases with available 
H&E-stained diagnostic slides from surgical 
specimens. We employed the GDC Data Transfer Tool 
for download of clinical information and 
histopathological slides, while utilizing the 
TCGAbiolinks R package [18] to retrieve single 
nucleotide variation (SNV) data, copy number 
variation (CNV) data, and transcriptomic profiles. 
Additionally, we acquired single-cell RNA 
sequencing data (GSE160269) of ESCC clinical 
specimens from the GEO database. 

 Cell line data were obtained from multiple 
public resources: transcriptomic profiles from the 
Cancer Cell Line Encyclopedia (CCLE) [19] 
(https://sites.broadinstitute.org/ccle/), drug 
response data from the Genomics of Drug Sensitivity 
in Cancer (GDSC) [20] (https://www.cancerrxgene 
.org/), metastatic potential data from MetMap500 [21] 
(https://depmap.org/metmap/), genetic 
perturbation data from the Library of Integrated 
Network-based Cellular Signatures (LINCs) [22] 
(https://lincsproject.org/), and genetic dependency 
data from DepMap [23] 
(https://depmap.org/portal/data_page/). 

H&E-stained section scanning 
 The formalin-fixed and paraffin-embedded 

tissue sections were collected by surgical resection 
and stained with H&E. A representative section of 
each patient was selected by experienced pathologists 
(Z.N. and Q.Z.) blinding of patient outcomes. The 
H&E-stained sections were scanned and digitalized 
using whole-slide scanners at 400×magnification with 
a resolution of 0.25 μm per pixel. All WSIs were 
manually checked for quality control, excluding 
images with blurry areas, and light- or over-stained 
areas.  

Spatial transcriptomic sequencing 
 For 10x Visium v2 experiment, FFPE tissues 

were sectioned (5 μm), and following RNA quality 
assessment, sections underwent deparaffinization, 
H&E staining, and imaging. Probe hybridization 
employed the RTL technique, and ligation products 
were captured on Visium slides via poly(dT) 
sequences. Subsequent library construction included 
mRNA digestion, probe extension for barcode/UMI 
incorporation, alkaline elution, pre-amplification, 
indexing, and cleanup. Final libraries were sequenced 
on an Illumina platform. 

For 10x Visium HD experiment, fresh tissue was 

fixed, paraffin-embedded, and sectioned. After 
deparaffinization, H&E staining, imaging, and 
decrosslinking per the manufacturer's protocol, probe 
hybridization and library construction were 
performed using the Visium HD kit. Libraries were 
sequenced in PE-150 mode on an Illumina platform. 

For Stereo-seq experiment, fresh tissue was 
OCT-embedded, frozen, and cryosectioned (10 μm). 
Sections were adhered to a Stereo-seq poly-T chip, 
then processed for methanol fixation, H&E staining, 
imaging, permeabilization, reverse transcription, and 
cDNA purification according to kit instructions. 
Libraries were prepared and sequenced on a 
DNBSEQ-T7 instrument. 

For 10x Xenium experiment, FFPE sections (5 
μm) were mounted on Xenium slides. After 
histopathological assessment, spatial profiling was 
conducted using the Xenium platform with a 5K gene 
panel. The workflow included deparaffinization, 
probe hybridization, ligation, rolling circle 
amplification. Image fields of view were 
computationally stitched using the DAPI channel to 
reconstruct whole-tissue spatial maps. Cell 
segmentation was performed using a multimodal 
approach integrating nuclear and cytoplasmic signals, 
and detected transcripts were assigned to individual 
cells based on their spatial localization. Following 
completion of imaging, slides were subjected to 
post-run H&E staining and whole-slide scanning. 
H&E images were aligned with Xenium morphology 
images using Xenium Explorer software to enable 
visualization of spatial gene expression within the 
histological context. 

Cell culture and transfection 
Human ESCC cell line TE-8 (Ethephon, 

YCL-0533) was selected because of intrinsic 
CACNA1C expression allowing for knock-down of 
function assay. TE-8 was cultured in RPMI1640 media 
supplemented with 10% FBS and 1% P/S under 5% 
CO2 conditions. Short tandem repeat profiling of the 
cell lines was performed to ensure integrity of cell 
line. 

For knock-down assay, TE-8 was transfected 
with siRNA targeting CACNA1C or control siRNA 
(Hycyte, HX-H-S3-16863). At 48 hours 
post-transfection, RT-qPCR was performed to confirm 
that CACNA1C expression was decreased. 

Cellular invasion assay 
For cell invasion assay, cell lines were plated in a 

24-well plate at 9.0 × 104 cells per well. Invasion was 
evaluated using the Matrigel 24-well Cell Invasion 
Chamber (8 μm, Corning, 354480). After incubation at 
37 °C with 5% CO₂ for 24 h, non-invasion cells on the 
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upper membrane surface were removed by gentle 
scraping with a cotton swab. Membranes were then 
fixed in 4% formaldehyde (15 min, room temperature) 
and stained with 0.1% crystal violet (20 min). Invasive 
cells on the lower membrane surface were visualized 
under bright-field microscopy. Five different 200× 
filed images were taken for each well, and the number 
of invasive cells was counted by ImageJ (National 
Institutes of Health).  

Cellular proliferation and colony formation 
assay 

For cell proliferation assay, cell lines were plated 
in a 96-well plate at 1.0 × 103 cells per well. 
Proliferation was evaluated using the CellTiter-Glo 
Luminescent Cell Viability Assay (Promega, G7570). 
After incubation at 37 °C with 5% CO₂ for 48 h, media 
was replaced to 200 μL of media containing 50% 
CellTiter-Glo reagent. Contents were mixed on an 
orbital shaker for 2 min, and incubated at room 
temperature for 10 min. The intensity of luminescent 
signal was detected by Luminometer. 

For cell colony formation assay, cell lines were 
plated in triplicate in a 6-well culture plates at 1.0 × 
103 cells per well. Seven days after plating, cells were 
fixed and stained with crystal violet. The colony 
accounts were counted by ImageJ (National Institutes 
of Health). 

Pathological feature extraction and analysis 
 The analysis pipeline began by segmenting 

whole-slide images (WSIs) into 4096 * 4096-pixel 
patches representing TME. Each patch was processed 
at 40× magnification using Hovernet [24], a 
pre-trained cell segmentation model on Panuke 
dataset [25], to identify tumor cells, immune cells, and 
stromal cells. Spatial positions of these cell types were 
extracted and used to construct topological graphs via 
minimum spanning trees. From these graphs, we 
derived six distinct cellular interaction subnetworks: 
tumor-tumor (T-T), tumor-lymphocyte (T-I), 
tumor-stroma (T-S), lymphocyte-lymphocyte (I-I), 
lymphocyte-stroma (I-S), and stroma-stroma (S-S). 
Patch-level features were aggregated into WSI-level 
representations using four statistical measures (mean, 
variance, skewness, and kurtosis), generating a final 
pathological feature matrix of 1,008 dimensions per 
WSI. 

To evaluate cross-cohort feature consistency, we 
first applied the ComBat function from the sva R 
package [26] for batch effect correction, followed by 
PCA dimensionality reduction for visualization using 
the first two principal components. Intra-cohort 
heterogeneity was assessed by selecting the top 10 
principal components contributing most to cohort 

variation (determined by the elbow method) and 
performing K-means clustering to stratify cases into 
two pathological subtypes. The clinical relevance of 
these phenotypes was evaluated through 
Kaplan-Meier survival analysis with log-rank tests, 
supplemented by Cox proportional hazards modeling 
to quantify survival impact, using p < 0.05 as the 
significance threshold. 

Bulk transcriptomic feature extraction and 
functional profiling 

 Using the low-risk subtype as reference, we 
identified differentially expressed genes (DEGs) 
between pathological subtypes using the DESeq2 R 
package [27], obtaining log2 fold-change (logFC), 
p-values for each gene. BH method was applied for 
p-value significance correction. We performed gene 
set over representation analysis (ORA) on GO (Gene 
Ontology) terms from MSigDB, using significantly 
upregulated genes as the input gene list, implemented 
using the ClusterProfiler R package [28]. We 
conducted variation and enrichment analyses on gene 
sets from MSigDB, including Hallmark, KEGG, 
Reactome, CGP, and PID collections, implemented 
using the GSVA [29] and clusterProfiler R packages, 
respectively. 

Pathology-pathway association 
We employed regularized generalized linear 

models to investigate associations between 
pathological features and molecular pathways. 
Specifically, the model incorporated 1,008 WSI-level 
pathological features as predictors and pathway 
GSVA scores as response variables, implemented 
using the glmnet R package [30]. Model performance 
was evaluated via prediction accuracy in five-fold 
cross-validation, with lambda (regularization 
parameter) selection optimized through nested 
ten-fold cross-validation within each fold. Finally, we 
assessed model accuracy by computing Spearman's 
rank correlation coefficients between predicted 
pathway scores and actual GSVA scores for each 
pathway. 

Disease-drug-target association 
 We computed drug-disease associations using 

the summarized Reverse Gene Expression Score 
(sRGES) established by Chen et al. [31] To validate the 
association reliability, we correlated sRGES with drug 
AUC values from cell-line experiments. For target 
prioritization, we retrieved protein targets of drugs 
from chEMBL, and performed target enrichment 
analysis on the sRGES-ranked drug list. The 
enrichment score was calculated using the single 
sample gene set enrich analysis (ssGSEA), and its 
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significance was computed by a permutation test. 

Microenvironment deconvolution 
 We performed cell type deconvolution of bulk 

RNA-seq data using both CIBERSORTx [32] 
(estimating 22 cell types) and xCell [33] (estimating 64 
cell types), implemented using the R package 
immunedeconv [32]. Additionally, we inferred 
receptor-ligand interaction activity from bulk 
transcriptomes using the absolute model of 
BulkSignalR R package [34], followed by univariate 
Cox regression to evaluate the prognostic significance 
of each receptor-ligand pair. Corrected p-values were 
calculated with the BH method. 

Single-cell transcriptomic preprocessing 
 We retrieved a ESCC single-cell RNA 

sequencing atlas from GEO and processed it into 
Seurat object using the Seurat R package [35] for 
downstream analysis. Cell subtype marker genes 
were retrieved from corresponding paper. 

 For quality control, we retained cells with ≥200 
features and <10% mitochondrial gene, while 
removing genes expressed in <0.1% of cells along 
with all mitochondrial and ribosomal genes, followed 
by doublet detection and removal using the 
DoubletFinder R package [36]. Count matrices were 
log-normalized (scale factor = 10,000) via the 
NormalizeData function, and the top 2,000 highly 
variable genes (HVGs) were identified using 
FindVariableFeatures function with the vst method. 
HVG expression matrices were then scaled and 
centered using ScaleData. Dimensionality reduction 
was performed via PCA with optimal PC numbers 
determined by the ElbowPlot method, followed by 
batch effect correction using Harmony. These selected 
PCs were subsequently employed for cell clustering, 
constructing sNN graphs (FindNeighbors) followed 
by Louvain algorithm-based clustering (FindClusters) 
and UMAP visualization. 

 For cell annotation, we first assigned major cell 
types based on expression of canonical marker genes. 
Subsequently, using cell subtype markers provided 
by Zhang et al., we computed AUC scores for each 
subtype within major cell categories via the AUCell R 
package [37], ultimately assigning each cell its optimal 
subtype based on maximum AUC values. 

We quantified gene module activity for each cell 
using the AddModuleScore function. Epithelial scores 
were computed as the average expression of canonical 
epithelial markers (KRT14, KRT17, KRT6A, KRT5, 
KRT19, KRT8, KRT16, KRT18, KRT6B, KRT15, KRT6C, 
KRTCAP3, SFN, EPCAM), while mesenchymal scores 
represented the mean expression of established 
mesenchymal markers (VIM, CDH2, FOXC2, SNAI1, 

SNAI2, TWIST1, FN1, ITGB6, MMP2, MMP3, MMP9, 
SOX10, GSC, ZEB1, ZEB2, TWIST2). The 
epithelial-mesenchymal transition (EMT) score was 
derived by subtracting epithelial scores from 
mesenchymal scores. Proliferation scores were 
calculated based on the average expression of S-phase 
and G2M-phase genes from the cc.genes function. 
Additionally, we assessed the differentiation potential 
using the CytoTRACE2 R package [38]. 

Cell trajectory inference 
 Monocle2 R package [39] was used to perform 

cell trajectory inference. Monocle2 generates the 
trajectory using the principal graph algorithm. The 
top 50 highly expressed genes were selected for cell 
ordering. Dimensionality reduction and trajectory 
construction were executed via the reduceDimension 
function, followed by visualization of gene expression 
pattern on pseudo-time axis using the 
plot_genes_in_pseudotime function. 

Definition of EMT macro states 
 Using the mclust R package [40], we modeled 

predicted pseudo-time scores as a mixture of three 
Gaussian distributions, with curve intersection points 
serving as data-driven boundaries to classify EMT 
progression into three distinct states: EMT-early, 
EMT-stable, and EMT-late. 

Inference of metastatic potential and 
survival/functional dependency 

We employed a K-nearest neighbors (KNN) 
approach to project cell line transcriptomic data onto 
single-cell differentiation trajectories. Batch effect 
correction was performed by merging cell line and 
single cell count matrices followed by the ComBat 
normalization from sva R package. Using the get.knn 
function from FNN R package [41], each cell line was 
mapped to its k-nearest single-cell neighbors along 
the trajectory. Through systematic evaluation of 
k-values, we determined k≥50 reliably produced three 
distinct peaks in the pseudo-time density distribution. 
Cell line pseudo-time estimates were derived from 
median values of the 50 nearest single cells, with EMT 
phase assignment based on established pseudo-time 
boundaries, thereby facilitating identification of 
phase-specific metastatic competencies and 
survival-associated genes. 

We extracted the gene knock down profiles 
generated by shRNA interference across 4,371 target 
genes and 20 cell lines from LINCs. However, due to 
the absence of ESCC cell lines, we employed a 
connectivity method to generate simulated 
perturbation profiles. We first generated the disease 
signature using tumor and adjacent normal samples 
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from our bulk RNA-seq cohorts (XJ and TCGA). 
Subsequently, we computed connectivity scores 
between disease signature and each perturbation 
signature using the connectivity map (CMAP) 
method. Finally, for perturbation signatures across 
multiple treatment cell lines, concentrations, and 
times, the signature closest to the median connectivity 
score was selected to assign a unique signature for 
each knock down gene. 

Spatial transcriptomic preprocessing 
We first loaded the feature-barcode matrix and 

corresponding high-resolution tissue image using the 
Load10X_Spatial function. Data normalization was 
performed via SCTransform with retention of the top 
2,000 variable features, followed by PCA 
dimensionality reduction for downstream analyses. 
For quality control, the localOutliers function from the 
SpotSweeper R package [42] was used to identify and 
remove low quality spots: (i) low library size, (ii) few 
detected unique features, or (iii) high mitochondrial 
gene content percentage. 

Inference of copy number alterations 
 To delineate the tumor regions within our 

spatial transcriptomics dataset, we used the STARCH 
Python package [43] designed to infer copy number 
alterations (CNAs). STARCH identifies tumor clones 
(setting K = 2 clones) and non-tumor spots. It confirms 
the identification of normal spots by clustering the 
first principal component into two clusters using 
K-means. Changing the value of K alters the number 
of identified tumor clones, but the number of cells 
labeled as tumor cells remains the same. We then 
annotated tissue regions in conjunction with manual 
annotations from the pathologist (Z.N. and Q.Z.). 

Spot deconvolution 
 We performed cellular deconvolution of spatial 

transcriptomics dataset using the spacexr R package 
[44], which requires both spatial transcriptomic data 
(including gene expression counts and spatial 
coordinates) and reference single-cell RNA 
sequencing data with cell type annotations as input. 
We ran spacexr in doublet mode to predict one or two 
predominant cell types for each spot while 
simultaneously generating a weight matrix 
representing the proportions of all possible cell types. 
We first conducted cell subtype deconvolution across 
all spots, then performing EMT-state-specific 
deconvolution focused on spots containing 
mesenchymal-like epithelial cells. 

Spatial colocalization analysis 
  Using a KNN approach, we first identified 

neighboring spots surrounding each interested spots, 
then expanded concentric circular zones (radius levels 
1-5) outward from the center to define spatially 
graduated neighborhoods. Comparative analysis of 
gene/pathway expressions across these zonal 
partitions revealed distance-dependent patterns: 
increased expression indicated spatial co-localization 
with the interested spots, while decreased expression 
suggested spatial exclusion. 

Development and validation of the deep 
learning model 

 To build sample labels, we categorized 175 
specimens into high, medium, and low CACNA1C 
expression groups through Gaussian mixture 
modeling. The corresponding H&E-stained 
whole-slide images were randomly divided into 
training and test sets while maintaining a 4:1 ratio, 
with reproducibility ensured by setting the random 
seed to 42. Model evaluation employed five-fold 
cross-validation, where performance metrics were 
averaged across all test folds. 

 For digital pathology image management, we 
established a standardized preprocessing workflow 
beginning with background correction using 
combined Gaussian filtering and OTSU, followed by 
tissue segmentation into non-overlapping 256×256 
patches at 40×magnification. Image normalization 
was subsequently performed using Reinhard method 
with Z-score standardization of RGB channels to 
ensure intensity consistency. 

Our analytical framework incorporated four 
attention-based multiple instance learning (AMIL) 
architectures [45] (Attention_mil, Clam_sb, Clam_mb, 
TransMIL), with feature extraction initialized using 
CTransPath pretrained weights [46]. The models were 
trained for 32 epochs using cross-entropy loss 
function and Adam optimizer with an initial learning 
rate of 1×10⁻⁴, with the best-performing model from 
cross-validation selected for subsequent analysis. 

To investigate the clinical relevance of model 
attention patterns, we extracted patch-level features 
from the optimal AMIL model's average pooling layer 
and conducted unsupervised clustering analysis 
using the Seurat package. Computational efficiency 
was maintained by subsampling 200 representative 
patches per specimen for dimensional reduction and 
cluster visualization. 

Results  
Pathological image analysis reveals an 
EMT-driven prognostic subtype 

Clinically relevant cell types, distributions, and 
interactions in pathological images were 
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characterized by deep learning-based cell 
segmentation and spatial mapping. Following strict 
inclusion criteria (see Methods), we retrospectively 
obtained 254 H&E-stained whole slide images (WSIs) 
of primary surgical resection specimens from 254 
ESCC patients across three cohorts (XJ = 125, GDPH = 
78, TCGA = 50) along with their clinical information 
(Figure 1A). The WSIs were segmented into 
4096×4096 patches at 40x magnification. For each 
patch, cell segmentation was performed to identify 
tumor cells (T), immune cells (I), and other stromal 
cells (S), and a local cell interaction map was 
constructed using the minimum spanning tree (Figure 
2A). Edges longer than 50 pixels were discarded, and 
up to five edges were constructed per cell (denoted 
from v1 to v5). We quantified the distribution of edge 
length using six statistical methods (minimal, 
maximum, mean, variance, skewness, and kurtosis), 
generating a multiparameter phenotypic descriptor 
for each patch. These patch-level descriptors were 
further aggregated into WSI-level features using four 
statistical measures (mean, variance, skewness, and 
kurtosis) for subsequent sample-level analysis. 

To investigate the clinical relevance of 
pathological features, we assessed their associations 
with overall survival (OS) in the XJ cohort via a 
univariate Cox regression model (Figure 2B, Table S2). 
Five types of cell interaction features (I-I, I-S, S-S, T-I, 
and T-S) were proven to be independent prognostic 
factors for ESCC. By combining feature interaction 
and aggregation types, we performed enrichment 
analysis and noted that immune cell features (I-I_sd, 
I-S_kurtosis, and I-S_sd) correlated with favorable 
survival, whereas stromal cell features (S-S_sd, 
T-S_kurtosis) correlated with poorer outcomes 
(Figure S1A-B) and had the greatest variability across 
samples (S-S_skewness, T-S_skewness) (Figure S1C, 
Table S3). Correlation analysis revealed strong 
associations between the same feature type and weak 
associations across different types (Figure 2C), and 
the T-S features demonstrated the strongest 
independence. Previous studies have shown that the 
interplay between cancer-associated fibroblasts 
(CAFs) and epithelial cells can promote malignant 
transformation and contribute to the formation of an 
immunosuppressive TME in ESCC [47, 48]. The 65 
significant prognostic features were then used to 
construct a LASSO-Cox regression proportional 
hazards model to obtain a continuous risk score. This 
model significantly stratified patients into two risk 
groups: the XJ cohort (HR = 2.75, 95% CI = [1.70, 4.45], 
log-rank p < 0.0001), the TCGA cohort (HR = 2.55, 95% 
CI = [1.07, 6.10], log-rank p = 0.022), and the GDPH 

cohort (HR = 2.21, 95% CI = [1.05, 4.65], log-rank p = 
0.039) (Figure S1D-F). To analyze the biological basis 
of stratification, we calculated the correlation between 
the risk scores and the gene set variance analysis 
(GSVA) scores of the hallmark collection. The top 5 
pathways were the coagulation cascade, KRAS 
upregulation, apoptosis, angiogenesis, and 
epithelial-mesenchymal transition (Figure S1G), 
which play important roles in the development of 
ESCC [49-53]. 

To further explore the associations of 
pathological features with clinical prognosis and 
biological molecules, we merged the XJ and TCGA 
cohorts (n = 175) with the corresponding bulk-seq 
profiles. After unsupervised clustering (see Methods), 
we identified two pathological subtypes with 
significant overall survival differences (HR = 2.66, 
95% CI = [1.75, 4.044], log-rank p = 0.0065) (Figure 
2D-E). Mirroring our findings from the univariate Cox 
regression, subtype 1 exhibited elevated stromal cell 
features and short survival times, whereas subtype 2 
presented increased immune cell features and 
prolonged survival (Figure 2F-G). Differential 
expression analysis from bulk RNA-seq revealed 754 
significantly overexpressed genes in subtype 1 and 
1,035 in subtype 2 (|Log2FC| ≥ 1, p ≤ 0.05) (Figure 
3A). Overrepresentation analysis (ORA) of Gene 
Ontology terms revealed that cell adhesion, collagen 
formation, epithelial cell proliferation, and 
differentiation were specifically upregulated in 
subtype 1, whereas leukocyte immunity, T-cell 
differentiation and regulation were upregulated in 
subtype 2 (Figure S2A). Moreover, gene set 
enrichment analysis (GSEA) of hallmark samples 
revealed that subtype 1 was enriched in the EMT and 
hypoxia pathways in addition to the common P53 and 
TGF-β pathways, and subtype 2 was enriched in the 
immune response pathway (Figure 3B). 
Deconvolution analysis also revealed that the 
fractions of keratinocytes and immunosuppressive 
M2 macrophages were increased in subtype 1, 
whereas those of B cells and T cells were increased in 
subtype 2 (Figure S2E-F). Whole-exome sequencing 
(WES) analysis revealed 5 significant somatic 
mutations (Fisher’s exact test p < 0.05) (Figure S2C), 
including TTN (p = 0.033, 95% CI = [1.00, 23.22]), 
PKHD1L1 (p = 0.020, 95% CI = [0.04, 0.94]), EHBP1 (p = 
0.015, 95% CI = [0.001, 0.81]), LRRC56 (p = 0.015, 95% 
CI = [0.06, 0.81]), and ZNF429 (p = 0.0043, 95% CI = [0, 
0.47]). However, the tumor mutation burden (TMB) 
and fraction of genome altered (FGA) metrics were 
not significantly different between the subtypes 
(Figure S2D). 
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Figure 1. Schematic workflow of this study. (A) The hematoxylin & eosin (H&E)-stained whole-section images (WSIs) of esophageal squamous cell carcinoma (ESCC) used 
in this study are part of routine clinical practice. We used a cell segmentation model to extract pathohistological features from each WSI. Unsupervised clustering revealed 
pathological subtypes with prognostic value. Bulk-seq data elucidated the molecular dynamics and tumor microenvironment (TME) landscapes of each subtype, allowing us to 
screen functional ligand-receptor pairs and therapeutic targets in combination with publicly available data. EMT, epithelial-to-mesenchymal transition. (B) Reconstruction and 
validation of ESCC-specific EMT trajectories. Using single-cell pseudotime analysis, we delineated three macro-EMT states. We combined cell line experimental data to identify 
core molecules that play central roles in EMT progression and validated their spatial colocalization via spatial transcriptome data. (C) Building a deep learning pathology model 
for predicting the expression and distribution of molecular targets. We elucidated its interpretability by unsupervised clustering of and matching the predictive attention heatmaps 
with in situ spatial transcriptome data. 
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Figure 2. Pathological analysis reveals prognostic phenotypes in esophageal squamous cell carcinoma (ESCC). (A) Local nuclear graph visualization of the tumor 
cells, immune cells, stroma cells and edges among them. (B) Significant univariable associations of pathological features with overall survival in the XJ cohort. (C) Heatmap of 
correlations between significant prognostic features in the XJ cohort. (D) Workflow of unsupervised clustering. (E) Principal component visualization of the unsupervised 
clustering result from the merged dataset. (F) Kaplan-Meier analysis of the pathological subtypes. (G) Top 50 contributing pathological features in the principal component analysis 
(PCA). 
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Figure 3. Tumor microenvironment (TME) and therapeutic characteristics in ESCC prognostic risk stratification. (A) Volcano plot of differentially expressed 
genes between pathological subtypes, highlighting the top 20 upregulated and downregulated genes. (B) GSEA of hallmark gene sets. (C) Spearman correlation between the drug 
response AUC and sRGES in the high-risk subtype representative cell line EFO27. (D) Core receptor-ligand pairs. (E) Heatmap of correlation z score between the predicted 
pathway scores and GSVA scores. (F-G) UMAP visualization of major cell types and subtypes identified in the Zhang_2021 dataset. (H) Heatmap depicting the cellular subtype 
localization of core receptor-ligand pairs. (I) Expression heatmap of MES-specific receptors and their corresponding ligands. (J) Expression of MES-specific targets across epithelial 
cell subtypes. 
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We hypothesized that EMT primarily 
contributes to the stratification of pathological 
subtypes. To demonstrate this, we utilized a 
regularized generalized linear model to learn the 
associations of pathological features with three types 
of molecular pathways summarized manually by 
Jiang et al. [54]. This analysis revealed that the G2M 
checkpoint pathway in the proliferation type and the 
EMT pathway in the migration/immune type were 
more consistent between cohorts than were pathways 
in the metabolism type (Figure 3C) (Table S4). Overall, 
these results indicated that epithelial cells exhibiting 
high proliferation and differentiation potential, an 
immunosuppressive TME and enrichment of EMT 
signatures were characteristic of subtype 1, whereas 
subtype 2 was related to an immune-activated 
phenotype and favorable clinical outcomes, and EMT 
primarily drove the prognostic stratification of 
pathological subtypes. 

Vulnerability and dependency across 
pathological subtypes 

For the EMT-enriched & high-risk subtype 1, we 
next sought to identify potential therapeutic agents 
and targets using a computational approach. The 
disease signature was defined as a list of differentially 
expressed genes (DEGs) between tumor and 
peritumoral samples of subtype 1. By combining drug 
perturbation transcriptome profiles of cancer cell lines 
[31], we screened drugs that can inhibit upregulated 
genes, stimulate downregulated genes, and 
eventually reverse the gene expression pattern of the 
disease signature. We acquired a ranked list 
consisting of 12,443 small-molecule compounds 
(Table S5). The VEGF-receptor-2-kinase-inhibitor-IV 
hit was the top-ranked compound with a known 
mechanism of action [55, 56]. In addition, we used the 
transcriptome profiles to select a cancer cell line most 
related to subtype 1 and then leveraged the published 
drug sensitivity data of the representative cell line for 
in silico validation (see Methods). The summarized 
reverse gene expression scores (sRGES) were 
significantly positively correlated with the drug 
efficiency AUCs (Table S6), which increased the 
confidence of the ranked drug list (Figure 3D). 
Therefore, we performed enrichment analysis to 
identify targets whose corresponding drugs were 
significantly enriched at the top of the prediction. In 
total, 25 genes were identified as potential targets 
(NES > 0, p ≤ 0.05) (Table S7). Among these genes, the 
high expression of CACNA1C, which encodes an 
alpha-1 subunit of a voltage-dependent calcium 
channel, has been proven to be associated with poor 
differentiation of ESCC [57]. Moreover, high 
expression of its corresponding long-chain noncoding 

RNA CACNA1C-AS2 inhibits the proliferation, 
migration, and invasion of esophageal cancer [58]. 
These findings highlight CACNA1C as a potential 
therapeutic target in ESCC subtype 1. 

Considering that the pathological features were 
derived from a cell-cell interplay map, we next 
investigated ligand-receptor interactions at the 
molecular level. On the basis of the manually curated 
ligand-receptor interaction database [59], we 
identified 824 pairs in our dataset, with 381 
upregulated in subtype 1 and 441 upregulated in 
subtype 2 (Table S8). Univariate Cox regression 
revealed a set of 109 pairs significantly associated 
with OS, with 97 classified as unfavorable prognostic 
factors and 12 as favorable prognostic factors. 
Opposite trends for the hazard ratios (negative vs. 
positive values) were observed for epidermal growth 
factor receptors (EGFRs) and fibroblast growth factor 
receptors (FGFRs), indicating their antagonistic 
functions (Figure S2G). A summary of the 
pair-associated pathways revealed that the 
upregulated pairs in subtype 1 were involved mainly 
in collagen formation and planar cell polarity, which 
are also independent unfavorable factors (Figure 
2H-I). This analysis enabled us to identify a set of 85 
pairs (defined as core pairs, including 42 ligands and 
32 receptors) that were positively correlated with the 
LASSO-Cox risk score, upregulated in subtype 1, and 
unfavorable factors in terms of prognosis (Figure 3E). 

The bulk-seq data includes data on 
transcriptional programs from a variety of cell types, 
which could introduce noise signals to our analysis. 
Therefore, we next validated candidate therapeutic 
targets and functional ligand-receptor pairs at 
single-cell resolution (Figure 1B). We incorporated an 
ESCC single-cell atlas from the Zhang_2021 dataset 
[60], including 208,659 cells from 64 donors with a 
total of 128 samples (64 tumors and 64 peritumoral 
samples). This atlas is represented by 8 major cell 
types and 51 cell subtypes (Figure 3F-G) (Figure S2J). 
At the major cell type level, the expression of core 
pairs was universally upregulated in epithelial cells 
(Table S8), highlighting their close interactions (Figure 
S2K). When the signals were refined to the cell 
subtype level, both the incoming and outgoing signals 
were dominated by mesenchyme-like epithelial cells 
(MESs) (Figure 3H) (Figure S2L). Among the core 
pairs pertaining to epithelial cells (Figure 3I), 
LAMA3/LAMB3/LAMC2-ITGA3/ITGB4 were 
significantly enriched in MESs, indicating their 
autocrine regulation. In addition, we detected 
high-frequency interactions between CAFs and MESs: 
CAF4 and CAF2 could interact with ITGA3+MES 
through FN1 and PLAU, respectively, and 
LAMB1+CAF4 could interact with both ITGA3+MES 
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and ITGB4+MES. Although many genes were not 
detected, we confirmed that 14 therapeutic candidates 
were specifically upregulated in epithelial cells (Table 
S9). Strikingly, CACNA1C was the only significantly 
highly expressed gene in the MESs (logFC = 2.087, p < 
0.001) (Figure 3J). Overall, we identified CACNA1C as 
a promising therapeutic target for the EMT-enriched 
subtype 1 subtype and revealed widespread autocrine 
interactions and paracrine crosstalk of MESs. 

Reconstruction and exploration of EMT 
trajectories 

We focused on 5,986 MESs from the Zhang_2021 
dataset for further analysis. Unsupervised clustering 
resulted in seven clusters (Figure 4A). Both the 
epithelial and mesenchymal programs exhibited 
cluster-specific enrichment (Figure 4B), resulting in a 
gradient distribution of EMT scores across clusters 
(Figure 4C). We inferred the development of MESs by 
computing a diffusion map and ordering them along 
a pseudotime axis. Using cluster 0 (with the highest 
epithelial program) as the origin, trajectory inference 
predicted two main branches: branch 1 developed 
through cluster 2 to cluster 1, and branch 2 moved 
through cluster 3 instead, ending in cluster 4 and 
cluster 5 (Figure 4D). These trajectories demonstrated 
that EMT did not follow monotonic linear progression 
but rather exhibited a stable intermediate state. 

To characterize the dominant states governing 
the continuum of transcriptional activity, we 
segmented the trajectories on the basis of pseudotime 
values using a Gaussian mixture model and identified 
three macro states (Figure 4E): the early state 
(EMT-early), intermediate/residency state 
(EMT-stable), and late state (EMT-late). These states 
were robust to varying pseudotime values, with EMT 
scores progressively increasing across the three states 
(Figure 4F) (Figure S3A). Branch-dependent gene 
analysis revealed regulators governing state 
transitions (Figure 4G). As expected, keratins 
(KRT23/81) and collagens (COL1A1/2, COL3A1, 
COL5A/2, and COL6A3) predominantly shaped 
epithelial and mesenchymal phenotypes during early 
and late states, respectively, and TGFBI served as the 
phenotypic stability factor (PSF) for maintaining the 
EMT-stable state. We noted that chemokines (CCL21, 
CXCL8/14) and human leukocyte antigens 
(HLA-DRB1) were highly expressed across the three 
states, indicating immune system involvement in 
EMT. Notably, cells in the EMT-early state exhibited 
significantly greater proliferative ability, and cells in 
the EMT-stable state exhibited significantly greater 
stemness. In terms of their differentiation potential, 
most MESs maintained lineage-restricted limited 
differentiation potential (Figure 4H). Recent studies 

have demonstrated that cells with hybrid E/M 
phenotypes can either be permanently “locked” in 
one state or dynamically switch states, which is called 
epithelial-mesenchymal plasticity (EMP) [61, 62]. 
These results suggested that the ESCC-specific EMT 
trajectories not only recapitulated classical marker 
genes but also captured widespread phenotypic 
plasticity and crosstalk with the immune system, 
supporting the development of a reliable, 
generalizable EMT model. 

 To investigate how EMT states influence 
metastatic potential, after removing nonbiological 
batch effects between in vitro cell lines and in vivo cell 
models (Figure S3B-C), we projected the corrected 
metastatic-annotated ESCC cell line profiles onto EMT 
trajectories (see Methods). Since only epithelial cells 
were included in the following analysis, confounding 
effects from mesenchymal cells were precluded. Our 
analysis robustly captured three EMT macrostates in 
the cell lines (Figure S3D), with a strong positive 
correlation between pseudotime values and EMT 
scores (Figure S3E). As expected, the nonmetastatic 
group presented relatively lower EMT scores, but the 
weakly metastatic group presented significantly 
higher EMT scores than did the metastatic group did 
(Figure 4H), and we observed a strong negative 
correlation between EMT scores and metastatic 
potential across all ESCC cell lines (Figure S3F). This 
pattern was corroborated by single-cell data, which 
revealed a decrease in metastatic potential with 
increasing EMT (Figure 4H) (Figure S3G). The 
reversal of EMT, a process called 
mesenchymal-epithelial transition (MET), has been 
proven to promote metastatic outgrowth at distant 
sites [63, 64]. These findings underscore the 
importance of homeostasis between epithelial and 
mesenchymal programs and reveal that cells in the 
EMT-early state, which exhibit a predominant 
epithelial program, have enhanced metastatic 
potential. 

ITGA3 and ITGB4 exhibit functional 
antagonism in early EMT 

We identified distinct expression patterns of 
MES-specific receptors associated with different EMT 
states: IGF1R and PLXNA1 were preferentially 
expressed during the EMT-stable state, whereas ITGA3 
and ITGB4 were enriched in the EMT-early state 
(Figure S3H). Intriguingly, ITGA3 depletion 
concurrently suppressed epithelial programs and 
activated mesenchymal programs, whereas ITGB4 
depletion induced the opposite effects (Figure 4J). 
This opposing effect was further evidenced by 
strongly negatively correlated transcriptome profiles 
upon perturbation (Figure S3I), indicating 
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fundamental differences in the downstream 
regulatory consequences. In contrast, IGF1R and 
PLXNA1 knockout did not significantly affect 
transcriptome profiles (Figure S4J). Collectively, these 
findings establish an antagonistic relationship 

between ITGA3 and ITGB4 in the EMT-early state, 
where ITGB4 promotes EMT and ITGA3 drives MET. 
The dynamic balance of these processes determines 
the differentiation fate of cells in the EMT-early state 
(Figure 4L). 

 

 
Figure 4. Reconstruction and exploration of epithelial-to-mesenchymal transition (EMT) trajectories in ESCC. (A) UMAP visualization of MES subclusters 
identified from the Zhang_2021 dataset. (B-C) Expression patterns of phenotype marker genes across MES subclusters. (D) Differentiation trajectories of MESs. (E) Gaussian 
mixture modeling defining three EMT states (left), and relationships between MES subclusters, pseudotime states, and EMT states (right). (F) Landscape of EMT trajectories. (G) 
Heatmap of branch-dependent genes during state transitions. (H) Comparison of proliferative capacity (upper-left) and stemness (upper-right) across EMT states, EMT scores 
across metastatic groups in ESCC cell lines (bottom-left), and metastatic potential across EMT states (bottom-right) via the Wilcoxon signed-rank test. (I) Expression localization 
(upper) and survival dependency (bottom) of CACNA1C during EMT. A lower dependency score means that a gene is more likely to be dependent on a given cell line. (J) Effects 
of gene knockdown on the expression of keratins and collagens. (K) GSEA of genes differentially expressed after CACNA1C knockdown using the Reactome gene sets, highlighting 
the pathways associated with the most significantly up- and downregulated genes. (L) Schematic diagram of CACNA1C-targeting mechanisms. 
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Inhibition of CACN1C reprograms the 
malignant phenotype 

 The phenotypic plasticity of MESs and the 
dynamic nature of epithelial and mesenchymal 
programs during metastasis highlight a possible 
weakness of cell transdifferentiation. As CACN1C was 
identified as a promising therapeutic target for the 
poorly prognostic subtype, we next investigated its 
function in the EMT trajectory. CACNA1C+MESs 
demonstrated a lower expression level in cells in the 
EMT-early state than in those in the EMT-stable/late 
states (Figure 4I). Consistently, projection of corrected 
dependency-annotated ESCC cell line onto EMT 
trajectories revealed that cells in the EMT-stable/late 
states showed significantly greater survival 
dependency than those in the EMT-early state (Figure 
4I). We postulated that the elevated expression of 
CACN1C reflected enrichment of cells in the 
EMT-stable/late state, potentially explaining its 
correlation with the poor differentiation of ESCC. To 
delineate its mechanism, we further analyzed the gene 
knockdown transcriptome profiles of the ESCC cell 
lines. We found that CACNA1C depletion 
concurrently upregulated epithelial programs, 
downregulated mesenchymal programs (Figure 4J), 
and significantly suppressed the cell cycle pathway 
(Figure 4K). Therefore, we hypothesized that 
targeting CACN1C simultaneously inhibits both the 
mesenchymal program and the proliferative program 
in cells in the EMT-stable/late state and initiates their 
transdifferentiation into normal epithelium-like cells 
(Figure 4L). 

 Screening of human ESCC cell line from 
DepMap illustrated the highest basic CACNA1C 
expression and dependency in TE-8, which had 
weakly metastatic potential (Figure 5A). In addition, 
TE-8 showed sensitivity to more than half of 
CACNA1C targeted compounds (Cell viability < 0) 
(Figure 5B). To validate the impact of CACNA1C on 
the malignant phenotype, we performed in vitro gene 
knock-down and functional assays using TE-8 (Figure 
5C). The mRNA expression of cancer stemness related 
genes, including BMI1, SOX2, KLF4, MYC, OCT4, and 
NANOG were analyzed in paired cell line models 
with or without knock-down. RT-qPCR showed that 
BMI1 and SOX2 were significantly decrease, and KLF4 
was lightly increased compared with controls (Figure 
5D). The activation of BMI1 and SOX2 has been 
reported to be drivers of ESCC [65]. KLF4 is enriched 
in normal esophageal epithelium, and it has been 
shown that its expression is lost in ESCC and 
associated with poor prognosis [66], thus the 
upregulated of KLF4 might indicate the tendency of 
recovery of cell phenotype from malignant to normal. 

In contrast, the expression of other stemness genes, 
including MYC, OCT4, and NANOG, remained largely 
unchanged, which indicated a selective disruption of a 
specific regulatory module of cancer stemness. 
Additionally, the chamber invasion assay (Figure 5E) 
and the colony formation/proliferation assay (Figure 
5F) showed that the CACNA1C enhanced the invasion 
and proliferation process of TE-8. These findings 
collectively highlight the essential role of inhibiting 
CACNA1C in reprogramming ESCC malignant 
phenotype. 

Spatial colocalization of EMT niches 
Given the extensive interactions among MESs, 

we hypothesized that their spatial colocalization 
might establishe EMT niches. We employed 
high-resolution spatial transcriptomic technologies 
including Visium HD for discovery (tumor E0: 
152,517 bins at 16 μm resolution) and Stereo-seq for 
verification (tumors E1 and E2: 130,927 and 106,236 
bins at 20 bin resolution, respectively). Following a 
uniform quality control pipeline (Figure S4A) (Figure 
S5A), we performed spot deconvolution based on 
single-cell data, which generated a spatial map 
consistent with the tissue morphology (Figure 6A). 
Copy number variation (CNV) inference delineated 
the tumor region, tumor-normal epithelium interface, 
and normal/stromal regions. With reference to the 
pathologist-annotated tissue masks, we further 
defined the tumor-stroma interface as a 3-spot-wide 
zone adjacent to the tumor boundary. 

Oxidative phosphorylation-characterized 
epithelial cells (OXDs) and MESs were the 
predominant cell types in the spatial map, and they 
exhibited distinct zonation patterns. OXDs were 
localized in the tumor nest, whereas MESs 
surrounded them in the periphery (Figure 6A). The 
transcriptomic similarity between MESs and OXDs 
was corroborated by single-cell UMAP projection 
(Figure 3I). The application of EMT trajectories to 
spots containing MESs revealed a reliable spatial map 
of EMT states (Figure 6B). Intriguingly, we noted the 
spatial overlap of EMT-stable cells and OXDs. Reactive 
oxygen species (ROS) accumulate during EMT 
initiation and cancer progression [67], and this spatial 
association suggests that OXDs may represent an 
alternative origin distinct from that of EMT-early cells. 
A quantitative comparison of the cell proportions in 
tissue regions demonstrated the enrichment of cells in 
the EMT-early state at tumor-normal interfaces, while 
cells in the EMT-late state predominated at 
tumor-stroma interfaces, emphasizing the 
stroma-oriented invasion of cells in the EMT-late state 
(Figure 6C). 
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Figure 5. Inhibition of CACN1C represses stemness, invasion and proliferation of TE-8 human ESCC cell line. (A) Basic characteristics of ESCC cell line. (B) 
ESCC cell line viability after disturbance of CACNA1C targeted compounds. (C) Scheme of cell line functional experiment. (D) The relative expression of CACNA1C and stemness 
markers in TE-8 cell line expressing siRNAs targeting CACNA1C (siRNA-CACNA1C) or control siRNA (siRNA-NC). Quantitative PCR with reverse transcription (RT-qPCR) data 
are normalized to GAPDH mRNA expression. n = 6 replicates per group. Statistical analysis was performed using two-sided Student’s t-test. (E) Left, Crystal violet staining imaging 
of invasion assay. Right, Quantification showing the knock-down effect on TE-8 invasion. (F) Left, Crystal violet staining imaging of colony formation assay. Right, Quantification 
showing the knock-down effect on TE-8 clone formation and proliferation. 
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Figure 6. Spatial cell colocalization along the EMT trajectories. (A) Spatial mapping of a VisiumHD sample (E0) with 16-μm bins colored by cell type predicted by 
deconvolution via the single-cell reference dataset (right) and MES-containing spots colored according to tissue region (bottom). (B) Spatial mapping of EMT states. (C) Stacked 
histogram with the proportions of EMT states across tissue regions. (D) Spatial visualization of MES-specific receptors. (E) Spatial visualization of ITGA3 and ITGB4 in 
MES-containing spots. (F) Spatial correlation between ITGA3/ITGB4-specific EMT-early spots and regional EMT activity. (G) Schematic of workflows for Xenium experiment. (H) 
Top, Diagram showing the quantification of spatial proximity of cells, and violin and bar plot showing EMT-early subtype classification. Bottom, Kernel density plots displaying the 
EMT-early distribution along X and Y axis, and stacked bar plots showing the proportion of EMT-early. P values calculated by Mann-Kendall trend test. 
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 Spatial mapping of MES-specific receptors 

showed their predominant localization within the 
tumor region (Figure 6D). Specifically, ITGA3 
exhibited preferential expression toward the normal 
epithelium, whereas ITGB4 presented tumor- and 
stroma-oriented expression (Figure 6E). Spots 
containing EMT-early state cells were classified into 
four groups based on ITGA3 and ITGB4 expression 
(Figure S4B). As predicted, the ITGA3+ITGB4- spots 
had the lowest EMT scores, whereas the 
ITGA3-ITGB4+ spots showed significantly higher 
scores (Figure 6F). Despite the limited spots detected 
(n = 407), ITGA3+ITGB4+ spots presented the highest 
EMT scores, which was recapitulated by the 
single-cell data (Figure S4C). These findings 
collectively suggest a cooperative effect in which 
ITGA3 and ITGB4 are coexpressed in the EMT-early 
state. 

 Using a neighborhood enrichment approach (see 
Methods), we evaluated the environment around 
ITGA3+ITGB4- and ITGA3-ITGB4+ EMT-early spots 
(Figure S4E-F). EMT scores decreased progressively 
with distance from the ITGA3-ITGB4+ spots, but 
showed the opposite trend for the ITGA3+ITGB4- 
spots (Figure 6F). Using Stereo-seq data, we 
consistently observed spatial exclusion of ITGA3 and 
ITGB4 (Figure S5D-H), their potential cooperative 
effects, and distance-dependent EMT distributions 
(Figure S5I-J). In addition, EMT-early specific ligands 
(LAMA3, LAMB3, LAMC2) showed decreasing 
expression with distance from both ITGA3+ITGB4- 
and ITGA3-ITGB4+ spots (Figure S4F-G). In contrast, 
expression of the CAF4-specific ligand FN1 increased 
with distance from ITGA3+ITGB4- spots (Figure S4H).  

We further employed 10x Xenium technology for 
in-situ spatial profiling 5,000 mRNAs across 385,959 
cells from 6 primary ESCC samples (Figure 6G). After 
obtaining 14 major cell types using marker genes, we 
employed label transfer approach to acquire subtypes 
of epithelial and fibroblast cells using single-cell data 
as reference (Table S6). Subsequently, we 
distinguished EMT-early subtypes by the expression 
levels of ITGA3 and ITGB4, and calculated spatial 
distances between cells at single-cell resolution. In 
brief, we not only verified the spatial exclusion 
between ITGA3+ITGB4- and ITGA3-ITGB4+ EMT-early 
(Figure 6H), but also the spatial co-localization 
between ITGA3+ITGB4- EMT-early with CAF4 (Figure 
S6). Taken together, these results collectively suggest 
that cells in the EMT-early state colocalize with 
self-derived or CAF4-secreted ligands to establish 

EMT niches. 

Prediction of CACN1C expression and 
distribution using pathological H&E images 

 Deep learning has been successfully applied in 
various cancer types for extracting clinically relevant 
features from routine histopathological slides [68-70]. 
Building on the above findings, we subsequently 
investigated whether deep learning could accurately 
predict molecular target expression and whether 
computational predictions would reveal meaningful 
clinical and molecular associations. 

 We initially discretized the CACNA1C 
expression values into three groups 
(high/medium/low) as sample labels (Figure 7A), 
with significant differences in OS between the 
medium- and low-expression groups, whereas the 
high-expression group presented a fluctuating 
Kaplan-Meier curve (Figure 7B), highlighting the 
biological complexity of ESCC prognosis. We 
subsequently trained several attention-based multiple 
instance learning (AMIL) models for three-class 
classification (Figure 7C) (Figure S7), among which 
Clam_mb demonstrated superior predictive 
performance in our dataset, achieving a mean fivefold 
cross-validated area under the receiver operating 
characteristic curve (AUROC) of 0.668, outperforming 
other AMIL models (Clam_sb = 0.658, Attention_mil 
= 0.648, Trans_mil = 0.628). 

 To decipher the clinical implications of model 
predictions, we extracted patch-level features from 
the average pooling layer of the Clam_mb model, 
reduced feature dimensionality to 50 using PCA, and 
identified six patch clusters using Louvain clustering 
method (Figure 7D). These clusters demonstrated 
differential attention score contributions: cluster 5 
showed the highest attribution for low-expression 
classification, cluster 0 for medium-expression 
classification, and cluster 1 for high-expression 
classification. Whole-slide visualization and 
H&E-correlated annotation revealed distinct 
histopathological identities: cluster 0 represented 
stromal tissue, cluster 1 represented the tumor region, 
cluster 2 represented muscle/normal epithelium, 
cluster 3 represented the tumor stroma, and clusters 4 
and 5 represented invasive tumor margins (Figure 
7E). Collectively, these computationally derived 
clusters presented unique histopathological 
signatures, suggesting the tissue-specific expression 
of CACNA1C in ESCC. 
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Figure 7. Development and validation of the pathological deep learning model. (A) Sample classification on the basis of CACNA1C expression. (B) Kaplan-Meier 
analysis of the sample classification. (C) Receiver operating characteristic (ROC) curves showing the performance of the Clam_mb model in fivefold cross-validation. (D) UMAP 
visualization of patch-level clusters derived from deep learning features, with box plots quantifying each cluster's contribution to attention scores. (E) Spatial distribution mapping 
of computational patch clusters across whole-slide images. (F) Spatial concordance between the model attention score and in situ CACNA1C expression in tumor tissues. 
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 To gain further insights into the in situ 
relationships between the model predictions and the 
biological ground truth, we performed Visium 
sequencing on two ESCC FFPE tissue sections 
(capturing 4,820 and 4,468 spots from tumors E3 and 
E4, respectively), with tumor/stroma demarcation 
through CNV inference. Despite the inherent tissue 
morphology variations between serial sections, 
application of the Clam_mb model to adjacent 
H&E-stained sections revealed strong concordance 
between attention heatmaps and spatial 
transcriptomics, where model-identified 
high-attention regions exhibited corresponding 
gene-specific upregulation (Figure 7F). Notably, we 
did not incorporate tissue masks or region-specific 
cropping during training, and the model selectively 
focused on high-expression regions in tumor areas 
while filtering out stromal signals (Figure S7D), 
demonstrating that our deep learning framework can 
sensitively detect in situ CACNA1C expression 
patterns in tumor tissue from H&E images. 

Discussion 
 Understanding the mechanisms by which cell 

crosstalk drives cancer aggression and metastasis is 
critical for improving the diagnostic precision and 
development of targeted therapies for ESCC. Here, we 
described the development, validation, and 
explanation of pathological cell-cell interplay features 
for prognosticating overall survival time using 
H&E-stained images. We combined a deep learning 
model for cell segmentation and classification, a 
minimum spanning tree for topological feature 
construction and extraction, a Cox regression model 
and unsupervised clustering to maximize 
interpretability. We developed and validated our 
features using three independent cohorts. Our results 
revealed that image-derived cell interaction features 
serve as strong predictors of survival outcomes in 
ESCC patients and are concordant with known 
molecular pathways. The clinical and biological 
relevance of these features support their utility and 
generalizability. 

Using combined bulk-seq data, we demonstrated 
the existence of a high-risk pathological subtype 
characterized by an EMT-enriched state and 
emphasized the concomitant immunosuppressive 
microenvironment. In addition, the ligand-receptor 
pairs enriched in pathological subtypes demonstrated 
EMT-promoting effects, with predominant 
localization between mesenchymal cell-like epithelial 
cells (MESs) and between MESs and CAFs, indicating 
both autocrine and paracrine regulation of EMT. 
Through systematic target screening, we identified 
CACNA1C as a specifically overexpressed target in 

MESs, which is consistent with its established 
association with poor ESCC differentiation. 

 EMT progression has been proven to be a 
continuous phenotypic process characterized by 
multiple intermediate states [71]. However, to our 
knowledge, relevant investigations have relied on 
pancancer cell line models, leaving a critical gap in 
single-cell characterization using clinical specimens. 
We reconstructed EMT trajectories using the largest 
available single-cell atlas of clinical ESCC samples. 
Gradient shifts between epithelial and mesenchymal 
programs across MESs demonstrated phenotypic 
continuity, and pseudotime analysis revealed a 
plateau state during EMT progression. On the basis of 
pseudotime score distributions, we defined three 
macrostates for MESs (EMT-early, EMT-stable, and 
EMT-late), with progressively increasing EMT scores 
across states. As anticipated, keratins and collagens 
mainly shape epithelial and mesenchymal 
phenotypes in the early and late states, respectively, 
whereas TGFBI functions as a phenotypic stability 
factor during the stable phase. Notably, chemokines 
and human leukocyte antigens exhibit 
stage-dependent expression, indicating that there is 
crosstalk between EMT and the immune system. 
Furthermore, cells in the EMT-early state displayed 
the greatest proliferative capacity, cells in the 
EMT-stable state presented the highest differentiation 
potential, and most MESs maintained 
lineage-restricted limited differentiation potential, 
collectively demonstrating remarkable phenotypic 
plasticity during EMT. The full spectrum of EMT 
intermediate states remains to be fully characterized, 
and the mechanism of state switches needs to be 
better understood. Here, the ESCC-specific EMT 
trajectory delineates three well-supported macrostates 
reflecting both intrinsic cancer cell alterations and 
microenvironment adaptations. 

 It has been reported that cells with hybrid E/M 
phenotypes generate progeny cells that are either 
mesenchymal or epithelial and are more prone to 
migrate [72]. To evaluate the impact of EMT on ESCC 
metastasis, we projected metastatic ESCC cell lines 
onto EMT trajectories. This analysis revealed that cells 
in the EMT-early state had the strongest metastatic 
potential, highlighting the critical balance between the 
epithelial and mesenchymal programs. While 
enrichment of the epithelial program is required for 
ESCC metastasis, we demonstrated that targeting 
CACNA1C simultaneously suppresses both the 
mesenchymal program and cell cycle progression in 
EMT-stable/late states, driving their 
transdifferentiation into normal epithelium-like cells. 
Furthermore, we established that ITGB4 
overexpression promotes EMT, whereas ITGA3 
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enhances MET. Importantly, by exclusively analyzing 
epithelial cells, we eliminated potential confounding 
effects from mesenchymal cell contamination. 

 Recent studies have demonstrated that hybrid 
E/M cells preferentially localize to the tumor invasive 
front [73-75]. Similarly, our spatial transcriptomic 
data revealed enrichment of EMT-early cells at the 
tumor-normal epithelium interface, whereas EMT-late 
cells were predominant at the tumor-stroma border. 
Notably, we observed spatial overlap between 
EMT-stable and epithelial cells with oxidative 
phosphorylation characteristics (OXDs), suggesting 
that OXDs may serve as alternative EMT-initiating 
cells distinct from those with early EMT. Previous 
work revealed that ITGA3 and ITGB1 are specifically 
overexpressed in the tumor-specific keratinocytes 
(TSKs) of cutaneous squamous cell carcinoma, where 
they function as receptors for ligands expressed by 
TAMs and MDSCs [76]. Our findings not only 
confirmed the mutually exclusive spatial expression 
of ITGA3 and ITGB4 but also revealed a potential 
cooperative role in driving EMT progression when 
they are coexpressed in the EMT-early state. 

 End-to-end deep learning models have yielded 
impressive results for diagnostic applications such as 
the detection of cancer and the prediction of the 
primary origin of metastases [77, 78]. Attention-based 
MIL methods learn from patient-level labels and offer 
explanations in the form of saliency heatmaps that 
localize relevant regions. Inspired by Calderaro et al. 
[79], we used spatial transcriptomes as the gold 
standard for the molecular detection problem. We 
developed a target prediction model in which 
computationally derived patch clusters exhibited 
distinct histopathological signatures, with 
CACNA1C-high expression clusters specifically 
localized to tumor regions. Spatial validation 
demonstrated strong concordance between the model 
predictions and the in situ biological ground truth. 
Notably, without incorporating tissue masks or 
region-specific cropping during training, the model 
autonomously attended to tumor-specific 
high-expression zones, confirming both the 
tissue-specific expression of CACNA1C and the 
translational potential of this model. 

 This study has some limitations: (i) As a 
retrospective analysis of patient cohorts, this study 
requires future prospective validation to confirm its 
predictive findings. (ii) Although local cell interaction 
maps effectively correlate with clinical and biological 
features, the absence of detailed tissue architecture 
and refined cellular subtypes may limit analytical 
depth. This limitation could be addressed through 
dedicated tissue and cell segmentation models. (iii) 
ESCC-specific EMT trajectories warrant 

comprehensive validation in clinical metastatic 
samples, and the time-course dynamics should be 
further explored. (iv) Model performance should be 
improved by several approaches, including 
expanding training datasets, employing more robust 
pre-training encoders, obtaining accurate labels via in 
situ hybridization, combining multiple pathological 
images from the sample patient and multimodal 
feature engineering. 

Overall, the results of this study systematically 
delineate EMT dynamics in ESCC through integrative 
analysis of histopathology, bulk-seq, single-cell 
transcriptomics, and spatial transcriptomics. By 
analyzing cellular interaction features from 
pathological images, we first demonstrated that 
pathological patterns are driven by EMT dynamics. 
We further validated the continuum of intermediate 
EMT states, revealed the pivotal role of the EMT-early 
state in metastasis and further identified CACNA1C as 
a therapeutic target for cells in the EMT-stable/late 
state. These findings provide novel insights into the 
cellular and molecular mechanisms underlying tumor 
invasion and metastasis. Finally, we developed an 
end-to-end deep learning model that predicts 
therapeutic targets from pathology images, enabling 
clinically translatable risk stratification and 
personalized therapy for ESCC patients. 
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