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Abstract

Rationale: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy. The metastasis and poor prognosis of
ESCC are closely associated with tumor microenvironment (TME) heterogeneity, which is driven by epithelial-mesenchymal
transition (EMT). Clinically, how to diagnose and target EMT progression remains a key challenge for ESCC.

Methods: Integration of pathological images and bulk RNA sequencing profiles identified a high-risk subtype exhibiting EMT
enrichment and immunosuppression. Single-cell and spatial transcriptomics revealed EMT macrostates and their spatial
distribution. The role of CACNAIC in programming malignant phenotype was tested in vitro. A pathological image-based deep
learning model successfully predicted the spatial expression distribution of CACNAIC, indicating possible clinical utility.

Results: EMT progression comprised three macrostates: the early state (high epithelial and metastatic potential), the stable state
(hybrid E/M phenotype and high stemness), and the late state (high mesenchymal and invasive propensity). ITGA3 and ITGB4
antagonistically regulate malignant phenotype in the early state. Notably, suppression of CACNAIC induced transdifferentiation
from stable/late-state cells to normal epithelium-like cells.

Conclusions: This study provides novel insights into the EMT mechanism in ESCC, proposes an intervention strategy, and
emphasizes the promising clinical application of pathological images in EMT assessment.

Keywords: esophageal squamous carcinoma, epithelial mesenchymal transition, histopathology, bulk sequencing, single-cell sequencing, spatial transcriptomes,
deep learning

Introduction

Esophageal cancer is the seventh leading cause
of cancer-related death worldwide [1]. Esophageal
squamous cell carcinoma (ESCC) accounts for
approximately 90% of esophageal cancer cases, and
more than 70% of ESCC cases are locally advanced at

the time of diagnosis [2]. ESCC is characterized by
aggressive submucosal spread and lymphatic
metastasis, and significantly poorer survival
outcomes are observed in patients with metastatic
disease [3]. While surgical resection is the
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fundamental treatment for ESCC [4], emerging
therapeutic targets and molecular classifications
derived from multiomics technologies have been
increasingly proposed to guide personalized therapy
[5]. Understanding the ESCC tumor
microenvironment (TME) is essential for overcoming
treatment resistance, refining subtype-specific
treatment strategies, and improving patient outcomes.

The degree of epithelial-to-mesenchymal
transition (EMT) has been reported to be a predictor
of tumor invasion and lymph node metastasis [6, 7].
EMT is a cellular process in which polarized epithelial
cells undergo extensive molecular reprogramming
and phenotypic transition [8]. EMT occurs not only
during embryonic development, tissue regeneration,
and wound healing but also in tumors [9], which
leads to a reduction in adhesion between cells and an
increase in the ability to migrate, thus initiating the
transformation from a benign tumor to an invasive
tumor. Recent studies have shown that EMT
encompasses a continuum of phenotypes, with
multiple mixed states driving the transition from a
complete epithelial phenotype to a complete
mesenchymal phenotype [10, 11]. Elucidation of EMT
differentiation trajectories is crucial for understanding
ESCC invasiveness and metastasis and had significant
potential to inform targeted therapies and improve
patient survival; however, the specific EMT
intermediate states and their functions remain
incompletely defined.

Tumor morphology and architecture reflect
biologically relevant subtypes, and integrating spatial
pathology with genomic data enables deeper insights
into the TME and biomarker development [12]. For
example, Wang et al. and Yoo et al. performed
unsupervised clustering on quantitative features
characterizing the cell nuclei and the spatial
relationships between cancer cells and lymphocytes to
develop histological subtypes in liver cancer and
colorectal cancer, respectively [13, 14]. Zhao et al.
further incorporated stromal cell features and
identified clinically relevant subtypes of breast cancer
[15]. Recent deep learning advances have enabled
cost-effective, reliable biological stratification directly
from histopathological images in both clinical
workflows and retrospective cohorts, revealing novel
insights into tumor heterogeneity [16, 17]. The
integration of pathogenomics and deep learning for
multimodal biomarker discovery enables the charac-
terization of tumor heterogeneity and clarification of
previously unexplored genomic mechanisms in ESCC
histological subtypes, advancing both oncology
research and clinical decision-making.

In this study, we identified two pathological
subtypes of ESCC with prognostic differences. We
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performed integrated analysis of genomics data for
paired samples to comprehensively characterize the
molecular dynamics and TME landscapes underlying
individual subtypes, identified EMT as a critical
determinant of prognosis, and mined therapeutic
targets and functional ligand-receptor pairs for the
high-risk subtype. In addition, we constructed
ESCC-specific EMT trajectories and identified three
macrostates with distinct functions. We found that
ITGA3 and ITGB4 are functionally mutually exclusive
and that CACNAIC is a promising trans-
differentiation target for EMT. Finally, we developed
a deep learning model to predict the expression and
spatial distribution of CACNAIC. In conclusion, our
study reveals the widespread impact of EMT on ESCC
invasion, metastasis, prognosis, and treatment.

Methods

Multi-center data collection

This study has been approved by the
institutional review boards at each hospital and
informed consent was waived due to retrospective
nature. This retrospective study involved a discovery
cohort (Affiliated Tumor Hospital of Xinjiang Medical
University, XJ, n = 125), as well as a validation cohort
(Guangdong Provincial People’s Hospital, GDPH, n =
78). Eligible participants met the following criteria: (i)
a confirmed pathological diagnosis of ESCC; (ii)
receipt of primary curative-intent surgical resection;
and (iii) availability of comprehensive histological
data. Patients were excluded if they had: (i)
undergone any preoperative anti-cancer treatment;
(ii) a prior history of malignancy or coexisting cancers;
or (iii) missing or incomplete clinical, imaging, or
pathological records. The overall survival (OS) as the
primary endpoint, defined as the time interval from
surgical resection to death from any cause. The
minimum follow-up period was 36 months after
surgery. We collected clinicopathologic characteristics
from medical records and assessed followed-up
information by pathology/imaging reports or
telephone follow-up. Baseline characteristics were
collected, including age, gender, tumor location,
stage, T stage, N stage, and adjuvant therapy record.
Statistical comparisons across cohorts were calculated
by Chi-squared test (Table S1).

Public data collection

The published clinical specimens here were
collected from the TCGA Research Network
(https:/ /portal.gdc.cancer.gov/) and the Gene
Expression Omnibus (https://www.ncbi.nlm.nih
.gov/geo/). From the GDC Data Portal, we identified
esophageal squamous cell carcinoma (ESCC) samples
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using the following selection criteria: PrimarySite =
"Esophagus", DiseaseType = "Squamous cell
neoplasms", SampleType = "Primary Tumor", and
TreatmentOrTherapy = "No". We further refined our
selection to include only cases with available
Hé&E-stained diagnostic slides from surgical
specimens. We employed the GDC Data Transfer Tool
for download of clinical information and
histopathological slides, while utilizing the
TCGADbiolinks R package [18] to retrieve single
nucleotide variation (SNV) data, copy number
variation (CNV) data, and transcriptomic profiles.
Additionally, we acquired single-cell RNA
sequencing data (GSE160269) of ESCC clinical
specimens from the GEO database.

Cell line data were obtained from multiple
public resources: transcriptomic profiles from the
Cancer Cell Line Encyclopedia (CCLE) [19]
(https:/ /sites.broadinstitute.org/ccle/), drug
response data from the Genomics of Drug Sensitivity
in Cancer (GDSC) [20] (https://www.cancerrxgene
.org/), metastatic potential data from MetMap500 [21]
(https:/ /depmap.org/metmap/), genetic
perturbation data from the Library of Integrated
Network-based Cellular Signatures (LINCs) [22]
(https:/ /lincsproject.org/), and genetic dependency
data from DepMap [23]

(https:/ /depmap.org/portal/data_page/).
H&E-stained section scanning

The formalin-fixed and paraffin-embedded
tissue sections were collected by surgical resection
and stained with H&E. A representative section of
each patient was selected by experienced pathologists
(Z.N. and Q.Z.)) blinding of patient outcomes. The
H&E-stained sections were scanned and digitalized
using whole-slide scanners at 400xmagnification with
a resolution of 0.25 pm per pixel. All WSIs were
manually checked for quality control, excluding
images with blurry areas, and light- or over-stained
areas.

Spatial transcriptomic sequencing

For 10x Visium v2 experiment, FFPE tissues
were sectioned (5 pm), and following RNA quality
assessment, sections underwent deparaffinization,
H&E staining, and imaging. Probe hybridization
employed the RTL technique, and ligation products
were captured on Visium slides via poly(dT)
sequences. Subsequent library construction included
mRNA digestion, probe extension for barcode/UMI
incorporation, alkaline elution, pre-amplification,
indexing, and cleanup. Final libraries were sequenced
on an [llumina platform.

For 10x Visium HD experiment, fresh tissue was
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fixed, paraffin-embedded, and sectioned. After
deparaffinization, H&E staining, imaging, and
decrosslinking per the manufacturer's protocol, probe
hybridization and library construction were
performed using the Visium HD kit. Libraries were
sequenced in PE-150 mode on an [llumina platform.

For Stereo-seq experiment, fresh tissue was
OCT-embedded, frozen, and cryosectioned (10 pm).
Sections were adhered to a Stereo-seq poly-T chip,
then processed for methanol fixation, H&E staining,
imaging, permeabilization, reverse transcription, and
cDNA purification according to kit instructions.
Libraries were prepared and sequenced on a
DNBSEQ-T7 instrument.

For 10x Xenium experiment, FFPE sections (5
pm) were mounted on Xenium slides. After
histopathological assessment, spatial profiling was
conducted using the Xenium platform with a 5K gene
panel. The workflow included deparaffinization,
probe  hybridization, ligation, rolling circle
amplification. Image fields of view were
computationally stitched using the DAPI channel to
reconstruct  whole-tissue  spatial maps. Cell
segmentation was performed using a multimodal
approach integrating nuclear and cytoplasmic signals,
and detected transcripts were assigned to individual
cells based on their spatial localization. Following
completion of imaging, slides were subjected to
post-run H&E staining and whole-slide scanning.
H&E images were aligned with Xenium morphology
images using Xenium Explorer software to enable
visualization of spatial gene expression within the
histological context.

Cell culture and transfection

Human ESCC cell line TE-8 (Ethephon,
YCL-0533) was selected because of intrinsic
CACNAIC expression allowing for knock-down of
function assay. TE-8 was cultured in RPMI1640 media
supplemented with 10% FBS and 1% P/S under 5%
CO; conditions. Short tandem repeat profiling of the
cell lines was performed to ensure integrity of cell
line.

For knock-down assay, TE-8 was transfected
with siRNA targeting CACNAIC or control siRNA
(Hycyte, =~ HX-H-53-16863). At 48  hours
post-transfection, RT-qPCR was performed to confirm
that CACNAIC expression was decreased.

Cellular invasion assay

For cell invasion assay, cell lines were plated in a
24-well plate at 9.0 x 10* cells per well. Invasion was
evaluated using the Matrigel 24-well Cell Invasion
Chamber (8 pm, Corning, 354480). After incubation at
37 °C with 5% CO, for 24 h, non-invasion cells on the
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upper membrane surface were removed by gentle
scraping with a cotton swab. Membranes were then
fixed in 4% formaldehyde (15 min, room temperature)
and stained with 0.1% crystal violet (20 min). Invasive
cells on the lower membrane surface were visualized
under bright-field microscopy. Five different 200x
filed images were taken for each well, and the number
of invasive cells was counted by Image] (National
Institutes of Health).

Cellular proliferation and colony formation
assay

For cell proliferation assay, cell lines were plated
in a 96-well plate at 1.0 x 103 cells per well
Proliferation was evaluated using the CellTiter-Glo
Luminescent Cell Viability Assay (Promega, G7570).
After incubation at 37 °C with 5% CO, for 48 h, media
was replaced to 200 pL of media containing 50%
CellTiter-Glo reagent. Contents were mixed on an
orbital shaker for 2 min, and incubated at room
temperature for 10 min. The intensity of luminescent
signal was detected by Luminometer.

For cell colony formation assay, cell lines were
plated in triplicate in a 6-well culture plates at 1.0 x
103 cells per well. Seven days after plating, cells were
fixed and stained with crystal violet. The colony
accounts were counted by Image] (National Institutes
of Health).

Pathological feature extraction and analysis

The analysis pipeline began by segmenting
whole-slide images (WSIs) into 4096 * 4096-pixel
patches representing TME. Each patch was processed
at 40x magnification using Hovernet [24], a
pre-trained cell segmentation model on Panuke
dataset [25], to identify tumor cells, immune cells, and
stromal cells. Spatial positions of these cell types were
extracted and used to construct topological graphs via
minimum spanning trees. From these graphs, we
derived six distinct cellular interaction subnetworks:
tumor-tumor  (T-T),  tumor-lymphocyte  (T-1),
tumor-stroma (T-S), lymphocyte-lymphocyte (I-1),
lymphocyte-stroma (I-S), and stroma-stroma (S-S).
Patch-level features were aggregated into WSI-level
representations using four statistical measures (mean,
variance, skewness, and kurtosis), generating a final
pathological feature matrix of 1,008 dimensions per
WSL.

To evaluate cross-cohort feature consistency, we
first applied the ComBat function from the sva R
package [26] for batch effect correction, followed by
PCA dimensionality reduction for visualization using
the first two principal components. Intra-cohort
heterogeneity was assessed by selecting the top 10
principal components contributing most to cohort
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variation (determined by the elbow method) and
performing K-means clustering to stratify cases into
two pathological subtypes. The clinical relevance of
these  phenotypes was evaluated through
Kaplan-Meier survival analysis with log-rank tests,
supplemented by Cox proportional hazards modeling
to quantify survival impact, using p < 0.05 as the
significance threshold.

Bulk transcriptomic feature extraction and
functional profiling

Using the low-risk subtype as reference, we
identified differentially expressed genes (DEGs)
between pathological subtypes using the DESeq2 R
package [27], obtaining log2 fold-change (logFC),
p-values for each gene. BH method was applied for
p-value significance correction. We performed gene
set over representation analysis (ORA) on GO (Gene
Ontology) terms from MSigDB, using significantly
upregulated genes as the input gene list, implemented
using the ClusterProfiler R package [28]. We
conducted variation and enrichment analyses on gene
sets from MSigDB, including Hallmark, KEGG,
Reactome, CGP, and PID collections, implemented
using the GSVA [29] and clusterProfiler R packages,
respectively.

Pathology-pathway association

We employed regularized generalized linear
models to investigate associations between
pathological features and molecular pathways.
Specifically, the model incorporated 1,008 WSI-level
pathological features as predictors and pathway
GSVA scores as response variables, implemented
using the glmnet R package [30]. Model performance
was evaluated via prediction accuracy in five-fold
cross-validation, with lambda (regularization
parameter) selection optimized through nested
ten-fold cross-validation within each fold. Finally, we
assessed model accuracy by computing Spearman's
rank correlation coefficients between predicted
pathway scores and actual GSVA scores for each
pathway.

Disease-drug-target association

We computed drug-disease associations using
the summarized Reverse Gene Expression Score
(sRGES) established by Chen et al. [31] To validate the
association reliability, we correlated sRGES with drug
AUC values from cell-line experiments. For target
prioritization, we retrieved protein targets of drugs
from chEMBL, and performed target enrichment
analysis on the sRGES-ranked drug list. The
enrichment score was calculated using the single
sample gene set enrich analysis (ssGSEA), and its
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significance was computed by a permutation test.

Microenvironment deconvolution

We performed cell type deconvolution of bulk
RNA-seq data wusing both CIBERSORTx [32]
(estimating 22 cell types) and xCell [33] (estimating 64
cell types), implemented using the R package

immunedeconv [32]. Additionally, we inferred
receptor-ligand  interaction activity from bulk
transcriptomes using the absolute model of

BulkSignalR R package [34], followed by univariate
Cox regression to evaluate the prognostic significance
of each receptor-ligand pair. Corrected p-values were
calculated with the BH method.

Single-cell transcriptomic preprocessing

We retrieved a ESCC single-cell RNA
sequencing atlas from GEO and processed it into
Seurat object using the Seurat R package [35] for
downstream analysis. Cell subtype marker genes
were retrieved from corresponding paper.

For quality control, we retained cells with >200
features and <10% mitochondrial gene, while
removing genes expressed in <0.1% of cells along
with all mitochondrial and ribosomal genes, followed
by doublet detection and removal using the
DoubletFinder R package [36]. Count matrices were
log-normalized (scale factor = 10,000) via the
NormalizeData function, and the top 2,000 highly
variable genes (HVGs) were identified using
FindVariableFeatures function with the vst method.
HVG expression matrices were then scaled and
centered using ScaleData. Dimensionality reduction
was performed via PCA with optimal PC numbers
determined by the ElbowPlot method, followed by
batch effect correction using Harmony. These selected
PCs were subsequently employed for cell clustering,
constructing sNN graphs (FindNeighbors) followed
by Louvain algorithm-based clustering (FindClusters)
and UMAP visualization.

For cell annotation, we first assigned major cell
types based on expression of canonical marker genes.
Subsequently, using cell subtype markers provided
by Zhang et al.,, we computed AUC scores for each
subtype within major cell categories via the AUCell R
package [37], ultimately assigning each cell its optimal
subtype based on maximum AUC values.

We quantified gene module activity for each cell
using the AddModuleScore function. Epithelial scores
were computed as the average expression of canonical
epithelial markers (KRT14, KRT17, KRT6A, KRT5,
KRT19, KRT8, KRT16, KRT18, KRT6B, KRT15, KRT6C,
KRTCAP3, SEN, EPCAM), while mesenchymal scores
represented the mean expression of established
mesenchymal markers (VIM, CDH2, FOXC2, SNAII,
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SNAI2, TWIST1, FN1, ITGB6, MMP2, MMP3, MMP?9,
SOX10, GSC, ZEB1, ZEB2, TWIST2). The
epithelial-mesenchymal transition (EMT) score was
derived by subtracting epithelial scores from
mesenchymal scores. Proliferation scores were
calculated based on the average expression of S-phase
and G2M-phase genes from the cc.genes function.
Additionally, we assessed the differentiation potential
using the CytoTRACE2 R package [38].

Cell trajectory inference

Monocle2 R package [39] was used to perform
cell trajectory inference. Monocle2 generates the
trajectory using the principal graph algorithm. The
top 50 highly expressed genes were selected for cell
ordering. Dimensionality reduction and trajectory
construction were executed via the reduceDimension
function, followed by visualization of gene expression
pattern on  pseudo-time axis using the
plot_genes_in_pseudotime function.

Definition of EMT macro states

Using the mclust R package [40], we modeled
predicted pseudo-time scores as a mixture of three
Gaussian distributions, with curve intersection points
serving as data-driven boundaries to classifty EMT
progression into three distinct states: EMT-early,
EMT-stable, and EMT-late.

Inference of metastatic potential and
survival/functional dependency

We employed a K-nearest neighbors (KNN)
approach to project cell line transcriptomic data onto
single-cell differentiation trajectories. Batch effect
correction was performed by merging cell line and
single cell count matrices followed by the ComBat
normalization from sva R package. Using the get.knn
function from FNN R package [41], each cell line was
mapped to its k-nearest single-cell neighbors along
the trajectory. Through systematic evaluation of
k-values, we determined k=50 reliably produced three
distinct peaks in the pseudo-time density distribution.
Cell line pseudo-time estimates were derived from
median values of the 50 nearest single cells, with EMT
phase assignment based on established pseudo-time
boundaries, thereby facilitating identification of
phase-specific ~ metastatic =~ competencies  and
survival-associated genes.

We extracted the gene knock down profiles
generated by shRNA interference across 4,371 target
genes and 20 cell lines from LINCs. However, due to
the absence of ESCC cell lines, we employed a
connectivity = method to generate simulated
perturbation profiles. We first generated the disease
signature using tumor and adjacent normal samples
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from our bulk RNA-seq cohorts (XJ and TCGA).
Subsequently, we computed connectivity scores
between disease signature and each perturbation
signature using the connectivity map (CMAP)
method. Finally, for perturbation signatures across
multiple treatment cell lines, concentrations, and
times, the signature closest to the median connectivity
score was selected to assign a unique signature for
each knock down gene.

Spatial transcriptomic preprocessing

We first loaded the feature-barcode matrix and
corresponding high-resolution tissue image using the
Load10X_Spatial function. Data normalization was
performed via SCTransform with retention of the top
2,000 variable features, followed by PCA
dimensionality reduction for downstream analyses.
For quality control, the localOutliers function from the
SpotSweeper R package [42] was used to identify and
remove low quality spots: (i) low library size, (ii) few
detected unique features, or (iii) high mitochondrial
gene content percentage.

Inference of copy number alterations

To delineate the tumor regions within our
spatial transcriptomics dataset, we used the STARCH
Python package [43] designed to infer copy number
alterations (CNAs). STARCH identifies tumor clones
(setting K =2 clones) and non-tumor spots. It confirms
the identification of normal spots by clustering the
first principal component into two clusters using
K-means. Changing the value of K alters the number
of identified tumor clones, but the number of cells
labeled as tumor cells remains the same. We then
annotated tissue regions in conjunction with manual
annotations from the pathologist (Z.N. and Q.Z.).

Spot deconvolution

We performed cellular deconvolution of spatial
transcriptomics dataset using the spacexr R package
[44], which requires both spatial transcriptomic data
(including gene expression counts and spatial
coordinates) and reference single-cell RNA
sequencing data with cell type annotations as input.
We ran spacexr in doublet mode to predict one or two
predominant cell types for each spot while
simultaneously = generating a weight matrix
representing the proportions of all possible cell types.
We first conducted cell subtype deconvolution across
all spots, then performing EMT-state-specific
deconvolution focused on spots containing
mesenchymal-like epithelial cells.

Spatial colocalization analysis

Using a KNN approach, we first identified
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neighboring spots surrounding each interested spots,
then expanded concentric circular zones (radius levels
1-5) outward from the center to define spatially
graduated neighborhoods. Comparative analysis of
gene/pathway expressions across these zonal
partitions revealed distance-dependent patterns:
increased expression indicated spatial co-localization
with the interested spots, while decreased expression
suggested spatial exclusion.

Development and validation of the deep
learning model

To build sample labels, we categorized 175
specimens into high, medium, and low CACNA1C
expression groups through Gaussian mixture
modeling.  The  corresponding  Hé&E-stained
whole-slide images were randomly divided into
training and test sets while maintaining a 4:1 ratio,
with reproducibility ensured by setting the random
seed to 42. Model evaluation employed five-fold
cross-validation, where performance metrics were
averaged across all test folds.

For digital pathology image management, we
established a standardized preprocessing workflow
beginning with background correction using
combined Gaussian filtering and OTSU, followed by
tissue segmentation into non-overlapping 256x256
patches at 40xmagnification. Image normalization
was subsequently performed using Reinhard method
with Z-score standardization of RGB channels to
ensure intensity consistency.

Our analytical framework incorporated four
attention-based multiple instance learning (AMIL)
architectures [45] (Attention_mil, Clam_sb, Clam_mb,
TransMIL), with feature extraction initialized using
CTransPath pretrained weights [46]. The models were
trained for 32 epochs using cross-entropy loss
function and Adam optimizer with an initial learning
rate of 1x107*, with the best-performing model from
cross-validation selected for subsequent analysis.

To investigate the clinical relevance of model
attention patterns, we extracted patch-level features
from the optimal AMIL model's average pooling layer
and conducted unsupervised clustering analysis
using the Seurat package. Computational efficiency
was maintained by subsampling 200 representative
patches per specimen for dimensional reduction and
cluster visualization.

Results

Pathological image analysis reveals an
EMT-driven prognostic subtype

Clinically relevant cell types, distributions, and
interactions in  pathological  images  were
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characterized by deep learning-based cell
segmentation and spatial mapping. Following strict
inclusion criteria (see Methods), we retrospectively
obtained 254 H&E-stained whole slide images (WSIs)
of primary surgical resection specimens from 254
ESCC patients across three cohorts (XJ = 125, GDPH =
78, TCGA = 50) along with their clinical information
(Figure 1A). The WSIs were segmented into
4096%4096 patches at 40x magnification. For each
patch, cell segmentation was performed to identify
tumor cells (T), immune cells (I), and other stromal
cells (S), and a local cell interaction map was
constructed using the minimum spanning tree (Figure
2A). Edges longer than 50 pixels were discarded, and
up to five edges were constructed per cell (denoted
from v1 to v5). We quantified the distribution of edge
length wusing six statistical methods (minimal,
maximum, mean, variance, skewness, and kurtosis),
generating a multiparameter phenotypic descriptor
for each patch. These patch-level descriptors were
further aggregated into WSI-level features using four
statistical measures (mean, variance, skewness, and
kurtosis) for subsequent sample-level analysis.

To investigate the clinical relevance of
pathological features, we assessed their associations
with overall survival (OS) in the XJ cohort via a
univariate Cox regression model (Figure 2B, Table S2).
Five types of cell interaction features (I-I, I-S, S-S, T-],
and T-S) were proven to be independent prognostic
factors for ESCC. By combining feature interaction
and aggregation types, we performed enrichment
analysis and noted that immune cell features (I-I_sd,
I-S_kurtosis, and I-S_sd) correlated with favorable
survival, whereas stromal cell features (S5-S_sd,
T-S_kurtosis) correlated with poorer outcomes
(Figure S1A-B) and had the greatest variability across
samples (S-S_skewness, T-S_skewness) (Figure S1C,
Table S3). Correlation analysis revealed strong
associations between the same feature type and weak
associations across different types (Figure 2C), and
the T-S features demonstrated the strongest
independence. Previous studies have shown that the
interplay between cancer-associated fibroblasts
(CAFs) and epithelial cells can promote malignant
transformation and contribute to the formation of an
immunosuppressive TME in ESCC [47, 48]. The 65
significant prognostic features were then used to
construct a LASSO-Cox regression proportional
hazards model to obtain a continuous risk score. This
model significantly stratified patients into two risk
groups: the XJ cohort (HR =2.75, 95% Cl = [1.70, 4.45],
log-rank p < 0.0001), the TCGA cohort (HR = 2.55, 95%
CI = [1.07, 6.10], log-rank p = 0.022), and the GDPH
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cohort (HR =221, 95% CI = [1.05, 4.65], log-rank p =
0.039) (Figure S1D-F). To analyze the biological basis
of stratification, we calculated the correlation between
the risk scores and the gene set variance analysis
(GSVA) scores of the hallmark collection. The top 5
pathways were the coagulation cascade, KRAS
upregulation, apoptosis, angiogenesis, and
epithelial-mesenchymal transition (Figure S1G),
which play important roles in the development of
ESCC [49-53].

To further explore the associations of
pathological features with clinical prognosis and
biological molecules, we merged the X] and TCGA
cohorts (n = 175) with the corresponding bulk-seq
profiles. After unsupervised clustering (see Methods),
we identified two pathological subtypes with
significant overall survival differences (HR = 2.66,
95% CI = [1.75, 4.044], log-rank p = 0.0065) (Figure
2D-E). Mirroring our findings from the univariate Cox
regression, subtype 1 exhibited elevated stromal cell
features and short survival times, whereas subtype 2
presented increased immune cell features and
prolonged survival (Figure 2F-G). Differential
expression analysis from bulk RNA-seq revealed 754
significantly overexpressed genes in subtype 1 and
1,035 in subtype 2 (|Log2FC| =1, p < 0.05) (Figure
3A). Overrepresentation analysis (ORA) of Gene
Ontology terms revealed that cell adhesion, collagen
formation, epithelial cell proliferation, and
differentiation were specifically upregulated in
subtype 1, whereas leukocyte immunity, T-cell
differentiation and regulation were upregulated in
subtype 2 (Figure S2A). Moreover, gene set
enrichment analysis (GSEA) of hallmark samples
revealed that subtype 1 was enriched in the EMT and
hypoxia pathways in addition to the common P53 and
TGF-f pathways, and subtype 2 was enriched in the
immune  response  pathway  (Figure  3B).
Deconvolution analysis also revealed that the
fractions of keratinocytes and immunosuppressive
M2 macrophages were increased in subtype 1,
whereas those of B cells and T cells were increased in
subtype 2 (Figure S2E-F). Whole-exome sequencing
(WES) analysis revealed 5 significant somatic
mutations (Fisher’s exact test p < 0.05) (Figure S2C),
including TTN (p = 0.033, 95% CI = [1.00, 23.22]),
PKHD1L1 (p = 0.020, 95% CI = [0.04, 0.94]), EHBP1 (p =
0.015, 95% CI = [0.001, 0.81]), LRRC56 (p = 0.015, 95%
CI =[0.06, 0.81]), and ZNF429 (p = 0.0043, 95% CI = [0,
0.47]). However, the tumor mutation burden (TMB)
and fraction of genome altered (FGA) metrics were
not significantly different between the subtypes
(Figure S2D).
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Step A: Pathogenomics analysis reveals the EMT-driven prognostic phenotype in ESCC
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Figure 3. Tumor microenvironment (TME) and therapeutic characteristics in ESCC prognostic risk stratification. (A) Volcano plot of differentially expressed
genes between pathological subtypes, highlighting the top 20 upregulated and downregulated genes. (B) GSEA of hallmark gene sets. (C) Spearman correlation between the drug
response AUC and sRGES in the high-risk subtype representative cell line EFO27. (D) Core receptor-ligand pairs. (E) Heatmap of correlation z score between the predicted
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We  hypothesized that EMT  primarily
contributes to the stratification of pathological
subtypes. To demonstrate this, we utilized a
regularized generalized linear model to learn the
associations of pathological features with three types
of molecular pathways summarized manually by
Jiang et al. [54]. This analysis revealed that the G2M
checkpoint pathway in the proliferation type and the
EMT pathway in the migration/immune type were
more consistent between cohorts than were pathways
in the metabolism type (Figure 3C) (Table S4). Overall,
these results indicated that epithelial cells exhibiting
high proliferation and differentiation potential, an
immunosuppressive TME and enrichment of EMT
signatures were characteristic of subtype 1, whereas
subtype 2 was related to an immune-activated
phenotype and favorable clinical outcomes, and EMT
primarily drove the prognostic stratification of
pathological subtypes.

Vulnerability and dependency across
pathological subtypes

For the EMT-enriched & high-risk subtype 1, we
next sought to identify potential therapeutic agents
and targets using a computational approach. The
disease signature was defined as a list of differentially
expressed genes (DEGs) between tumor and
peritumoral samples of subtype 1. By combining drug
perturbation transcriptome profiles of cancer cell lines
[31], we screened drugs that can inhibit upregulated
genes, stimulate downregulated genes, and
eventually reverse the gene expression pattern of the
disease signature. We acquired a ranked list
consisting of 12,443 small-molecule compounds
(Table S5). The VEGF-receptor-2-kinase-inhibitor-IV
hit was the top-ranked compound with a known
mechanism of action [55, 56]. In addition, we used the
transcriptome profiles to select a cancer cell line most
related to subtype 1 and then leveraged the published
drug sensitivity data of the representative cell line for
in silico validation (see Methods). The summarized
reverse gene expression scores (sRGES) were
significantly positively correlated with the drug
efficiency AUCs (Table S6), which increased the
confidence of the ranked drug list (Figure 3D).
Therefore, we performed enrichment analysis to
identify targets whose corresponding drugs were
significantly enriched at the top of the prediction. In
total, 25 genes were identified as potential targets
(NES > 0, p £ 0.05) (Table S7). Among these genes, the
high expression of CACNAIC, which encodes an
alpha-1 subunit of a voltage-dependent calcium
channel, has been proven to be associated with poor
differentiation of ESCC [57]. Moreover, high
expression of its corresponding long-chain noncoding
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RNA CACNA1C-AS2 inhibits the proliferation,
migration, and invasion of esophageal cancer [58].
These findings highlight CACNAIC as a potential
therapeutic target in ESCC subtype 1.

Considering that the pathological features were
derived from a cell-cell interplay map, we next
investigated ligand-receptor interactions at the
molecular level. On the basis of the manually curated
ligand-receptor interaction database [59], we
identified 824 pairs in our dataset, with 381
upregulated in subtype 1 and 441 upregulated in
subtype 2 (Table S8). Univariate Cox regression
revealed a set of 109 pairs significantly associated
with OS, with 97 classified as unfavorable prognostic
factors and 12 as favorable prognostic factors.
Opposite trends for the hazard ratios (negative vs.
positive values) were observed for epidermal growth
factor receptors (EGFRs) and fibroblast growth factor

receptors (FGFRs), indicating their antagonistic
functions (Figure S2G). A summary of the
pair-associated = pathways revealed that the

upregulated pairs in subtype 1 were involved mainly
in collagen formation and planar cell polarity, which
are also independent unfavorable factors (Figure
2H-I). This analysis enabled us to identify a set of 85
pairs (defined as core pairs, including 42 ligands and
32 receptors) that were positively correlated with the
LASSO-Cox risk score, upregulated in subtype 1, and
unfavorable factors in terms of prognosis (Figure 3E).

The bulk-seq data includes data on
transcriptional programs from a variety of cell types,
which could introduce noise signals to our analysis.
Therefore, we next validated candidate therapeutic
targets and functional ligand-receptor pairs at
single-cell resolution (Figure 1B). We incorporated an
ESCC single-cell atlas from the Zhang 2021 dataset
[60], including 208,659 cells from 64 donors with a
total of 128 samples (64 tumors and 64 peritumoral
samples). This atlas is represented by 8 major cell
types and 51 cell subtypes (Figure 3F-G) (Figure S2J).
At the major cell type level, the expression of core
pairs was universally upregulated in epithelial cells
(Table S8), highlighting their close interactions (Figure
S2K). When the signals were refined to the cell
subtype level, both the incoming and outgoing signals
were dominated by mesenchyme-like epithelial cells
(MESs) (Figure 3H) (Figure S2L). Among the core
pairs pertaining to epithelial cells (Figure 3I),
LAMA3/LAMB3/LAMC2-ITGA3/ITGB4 were
significantly enriched in MESs, indicating their
autocrine regulation. In addition, we detected
high-frequency interactions between CAFs and MESs:
CAF4 and CAF2 could interact with ITGA3*MES
through FN1 and PLAU, respectively, and
LAMBI1+*CAF4 could interact with both ITGA3*MES
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and ITGB4*MES. Although many genes were not
detected, we confirmed that 14 therapeutic candidates
were specifically upregulated in epithelial cells (Table
S9). Strikingly, CACNAIC was the only significantly
highly expressed gene in the MESs (logFC = 2.087, p <
0.001) (Figure 3]). Overall, we identified CACNAIC as
a promising therapeutic target for the EMT-enriched
subtype 1 subtype and revealed widespread autocrine
interactions and paracrine crosstalk of MESs.

Reconstruction and exploration of EMT
trajectories

We focused on 5,986 MESs from the Zhang 2021
dataset for further analysis. Unsupervised clustering
resulted in seven clusters (Figure 4A). Both the
epithelial and mesenchymal programs exhibited
cluster-specific enrichment (Figure 4B), resulting in a
gradient distribution of EMT scores across clusters
(Figure 4C). We inferred the development of MESs by
computing a diffusion map and ordering them along
a pseudotime axis. Using cluster 0 (with the highest
epithelial program) as the origin, trajectory inference
predicted two main branches: branch 1 developed
through cluster 2 to cluster 1, and branch 2 moved
through cluster 3 instead, ending in cluster 4 and
cluster 5 (Figure 4D). These trajectories demonstrated
that EMT did not follow monotonic linear progression
but rather exhibited a stable intermediate state.

To characterize the dominant states governing
the continuum of transcriptional activity, we
segmented the trajectories on the basis of pseudotime
values using a Gaussian mixture model and identified
three macro states (Figure 4E): the early state
(EMT-early), intermediate/residency state
(EMT-stable), and late state (EMT-late). These states
were robust to varying pseudotime values, with EMT
scores progressively increasing across the three states
(Figure 4F) (Figure S3A). Branch-dependent gene
analysis revealed regulators governing state
transitions (Figure 4G). As expected, keratins
(KRT23/81) and collagens (COL1A1/2, COL3AL,
COL5A/2, and COL6A3) predominantly shaped
epithelial and mesenchymal phenotypes during early
and late states, respectively, and TGFBI served as the
phenotypic stability factor (PSF) for maintaining the
EMT-stable state. We noted that chemokines (CCL21,
CXCL8/14) and human leukocyte antigens
(HLA-DRB1) were highly expressed across the three
states, indicating immune system involvement in
EMT. Notably, cells in the EMT-early state exhibited
significantly greater proliferative ability, and cells in
the EMT-stable state exhibited significantly greater
stemness. In terms of their differentiation potential,
most MESs maintained lineage-restricted limited
differentiation potential (Figure 4H). Recent studies
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have demonstrated that cells with hybrid E/M
phenotypes can either be permanently “locked” in
one state or dynamically switch states, which is called
epithelial-mesenchymal plasticity (EMP) [61, 62].
These results suggested that the ESCC-specific EMT
trajectories not only recapitulated classical marker
genes but also captured widespread phenotypic
plasticity and crosstalk with the immune system,

supporting the development of a reliable,
generalizable EMT model.
To investigate how EMT states influence

metastatic potential, after removing nonbiological
batch effects between in vitro cell lines and in vivo cell
models (Figure S3B-C), we projected the corrected
metastatic-annotated ESCC cell line profiles onto EMT
trajectories (see Methods). Since only epithelial cells
were included in the following analysis, confounding
effects from mesenchymal cells were precluded. Our
analysis robustly captured three EMT macrostates in
the cell lines (Figure S3D), with a strong positive
correlation between pseudotime values and EMT
scores (Figure S3E). As expected, the nonmetastatic
group presented relatively lower EMT scores, but the
weakly metastatic group presented significantly
higher EMT scores than did the metastatic group did
(Figure 4H), and we observed a strong negative
correlation between EMT scores and metastatic
potential across all ESCC cell lines (Figure S3F). This
pattern was corroborated by single-cell data, which
revealed a decrease in metastatic potential with
increasing EMT (Figure 4H) (Figure S3G). The
reversal of EMT, a process called
mesenchymal-epithelial transition (MET), has been
proven to promote metastatic outgrowth at distant
sites [63, 64]. These findings underscore the
importance of homeostasis between epithelial and
mesenchymal programs and reveal that cells in the
EMT-early state, which exhibit a predominant
epithelial program, have enhanced metastatic
potential.

ITGA3 and ITGB4 exhibit functional
antagonism in early EMT

We identified distinct expression patterns of
MES-specific receptors associated with different EMT
states: IGFIR and PLXNA1 were preferentially
expressed during the EMT-stable state, whereas ITGA3
and ITGB4 were enriched in the EMT-early state
(Figure S3H). Intriguingly, ITGA3 depletion
concurrently suppressed epithelial programs and
activated mesenchymal programs, whereas ITGB4
depletion induced the opposite effects (Figure 4J).
This opposing effect was further evidenced by
strongly negatively correlated transcriptome profiles
upon  perturbation (Figure S3I), indicating
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fundamental differences in the downstream
regulatory consequences. In contrast, IGFIR and
PLXNA1 knockout did not significantly affect
transcriptome profiles (Figure 54J). Collectively, these

between ITGA3 and ITGB4 in the EMT-early state,
where ITGB4 promotes EMT and ITGA3 drives MET.
The dynamic balance of these processes determines
the differentiation fate of cells in the EMT-early state

findings establish an antagonistic relationship  (Figure 4L).
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Inhibition of CACNIC reprograms the
malignant phenotype

The phenotypic plasticity of MESs and the
dynamic nature of epithelial and mesenchymal
programs during metastasis highlight a possible
weakness of cell transdifferentiation. As CACNIC was
identified as a promising therapeutic target for the
poorly prognostic subtype, we next investigated its
function in the EMT trajectory. CACNAIC*MESs
demonstrated a lower expression level in cells in the
EMT-early state than in those in the EMT-stable/late
states (Figure 4I). Consistently, projection of corrected
dependency-annotated ESCC cell line onto EMT
trajectories revealed that cells in the EMT-stable/late
states showed significantly greater survival
dependency than those in the EMT-early state (Figure
4]). We postulated that the elevated expression of
CACNIC reflected enrichment of cells in the
EMT-stable/late state, potentially explaining its
correlation with the poor differentiation of ESCC. To
delineate its mechanism, we further analyzed the gene
knockdown transcriptome profiles of the ESCC cell
lines. We found that CACNAIC depletion
concurrently upregulated epithelial programs,
downregulated mesenchymal programs (Figure 4]J),
and significantly suppressed the cell cycle pathway
(Figure 4K). Therefore, we hypothesized that
targeting CACNIC simultaneously inhibits both the
mesenchymal program and the proliferative program
in cells in the EMT-stable/late state and initiates their
transdifferentiation into normal epithelium-like cells
(Figure 4L).

Screening of human ESCC cell line from
DepMap illustrated the highest basic CACNAIC
expression and dependency in TE-8, which had
weakly metastatic potential (Figure 5A). In addition,
TE-8 showed sensitivity to more than half of
CACNAIC targeted compounds (Cell viability < 0)
(Figure 5B). To validate the impact of CACNAIC on
the malignant phenotype, we performed in vitro gene
knock-down and functional assays using TE-8 (Figure
5C). The mRNA expression of cancer stemness related
genes, including BMI1, SOX2, KLF4, MYC, OCT4, and
NANOG were analyzed in paired cell line models
with or without knock-down. RT-qPCR showed that
BMI1 and SOX2 were significantly decrease, and KLF4
was lightly increased compared with controls (Figure
5D). The activation of BMI1 and SOX2 has been
reported to be drivers of ESCC [65]. KLF4 is enriched
in normal esophageal epithelium, and it has been
shown that its expression is lost in ESCC and
associated with poor prognosis [66], thus the
upregulated of KLF4 might indicate the tendency of
recovery of cell phenotype from malignant to normal.
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In contrast, the expression of other stemness genes,
including MYC, OCT4, and NANOG, remained largely
unchanged, which indicated a selective disruption of a
specific regulatory module of cancer stemness.
Additionally, the chamber invasion assay (Figure 5E)
and the colony formation/ proliferation assay (Figure
5F) showed that the CACNA1C enhanced the invasion
and proliferation process of TE-8. These findings
collectively highlight the essential role of inhibiting
CACNAIC in reprogramming ESCC malignant
phenotype.

Spatial colocalization of EMT niches

Given the extensive interactions among MESs,
we hypothesized that their spatial colocalization
might establishe EMT niches. We employed
high-resolution spatial transcriptomic technologies
including Visium HD for discovery (tumor EO:
152,517 bins at 16 pm resolution) and Stereo-seq for
verification (tumors E1 and E2: 130,927 and 106,236
bins at 20 bin resolution, respectively). Following a
uniform quality control pipeline (Figure S4A) (Figure
S5A), we performed spot deconvolution based on
single-cell data, which generated a spatial map
consistent with the tissue morphology (Figure 6A).
Copy number variation (CNV) inference delineated
the tumor region, tumor-normal epithelium interface,
and normal/stromal regions. With reference to the
pathologist-annotated tissue masks, we further
defined the tumor-stroma interface as a 3-spot-wide
zone adjacent to the tumor boundary.

Oxidative phosphorylation-characterized
epithelial cells (OXDs) and MESs were the
predominant cell types in the spatial map, and they
exhibited distinct zonation patterns. OXDs were
localized in the tumor nest, whereas MESs
surrounded them in the periphery (Figure 6A). The
transcriptomic similarity between MESs and OXDs
was corroborated by single-cell UMAP projection
(Figure 3I). The application of EMT trajectories to
spots containing MESs revealed a reliable spatial map
of EMT states (Figure 6B). Intriguingly, we noted the
spatial overlap of EMT-stable cells and OXDs. Reactive
oxygen species (ROS) accumulate during EMT
initiation and cancer progression [67], and this spatial
association suggests that OXDs may represent an
alternative origin distinct from that of EMT-early cells.
A quantitative comparison of the cell proportions in
tissue regions demonstrated the enrichment of cells in
the EMT-early state at tumor-normal interfaces, while
cells in the EMT-late state predominated at
tumor-stroma interfaces, emphasizing the
stroma-oriented invasion of cells in the EMT-late state
(Figure 6C).
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Spatial mapping of MES-specific receptors
showed their predominant localization within the
tumor region (Figure 6D). Specifically, ITGA3
exhibited preferential expression toward the normal
epithelium, whereas ITGB4 presented tumor- and
stroma-oriented expression (Figure 6E). Spots
containing EMT-early state cells were classified into
four groups based on ITGA3 and ITGB4 expression
(Figure S4B). As predicted, the ITGA3*ITGB4 spots
had the lowest EMT scores, whereas the
ITGA3ITGB4* spots showed significantly higher
scores (Figure 6F). Despite the limited spots detected
(n = 407), ITGA3*ITGB4* spots presented the highest
EMT scores, which was recapitulated by the
single-cell data (Figure S4C). These findings
collectively suggest a cooperative effect in which
ITGA3 and ITGB4 are coexpressed in the EMT-early
state.

Using a neighborhood enrichment approach (see
Methods), we evaluated the environment around
ITGA3*ITGB4 and ITGA3ITGB4* EMT-early spots
(Figure S4E-F). EMT scores decreased progressively
with distance from the ITGA3TTGB4* spots, but
showed the opposite trend for the ITGA3*ITGB4
spots (Figure 6F). Using Stereo-seq data, we
consistently observed spatial exclusion of ITGA3 and
ITGB4 (Figure S5D-H), their potential cooperative
effects, and distance-dependent EMT distributions
(Figure S51-]). In addition, EMT-early specific ligands
(LAMA3, LAMB3, LAMC2) showed decreasing
expression with distance from both ITGA3*ITGB4
and ITGA3ITGB4* spots (Figure S4F-G). In contrast,
expression of the CAF4-specific ligand FN1 increased
with distance from ITGA3*ITGB4 spots (Figure S4H).

We further employed 10x Xenium technology for
in-situ spatial profiling 5,000 mRNAs across 385,959
cells from 6 primary ESCC samples (Figure 6G). After
obtaining 14 major cell types using marker genes, we
employed label transfer approach to acquire subtypes
of epithelial and fibroblast cells using single-cell data
as reference (Table S6). Subsequently, we
distinguished EMT-early subtypes by the expression
levels of ITGA3 and ITGB4, and calculated spatial
distances between cells at single-cell resolution. In
brief, we not only verified the spatial exclusion
between ITGA3*ITGB4 and ITGA3-ITGB4* EMT-early
(Figure 6H), but also the spatial co-localization
between ITGA3*ITGB4 EMT-early with CAF4 (Figure
S6). Taken together, these results collectively suggest
that cells in the EMT-early state colocalize with
self-derived or CAF4-secreted ligands to establish
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EMT niches.

Prediction of CACNIC expression and
distribution using pathological H&E images

Deep learning has been successfully applied in
various cancer types for extracting clinically relevant
features from routine histopathological slides [68-70].
Building on the above findings, we subsequently
investigated whether deep learning could accurately
predict molecular target expression and whether
computational predictions would reveal meaningful
clinical and molecular associations.

We initially  discretized the CACNAIC
expression values into three groups
(high/medium/low) as sample labels (Figure 7A),
with significant differences in OS between the
medium- and low-expression groups, whereas the
high-expression group presented a fluctuating
Kaplan-Meier curve (Figure 7B), highlighting the
biological complexity of ESCC prognosis. We
subsequently trained several attention-based multiple
instance learning (AMIL) models for three-class
classification (Figure 7C) (Figure S7), among which
Clam_mb  demonstrated  superior  predictive
performance in our dataset, achieving a mean fivefold
cross-validated area under the receiver operating
characteristic curve (AUROC) of 0.668, outperforming
other AMIL models (Clam_sb = 0.658, Attention_mil
= 0.648, Trans_mil = 0.628).

To decipher the clinical implications of model
predictions, we extracted patch-level features from
the average pooling layer of the Clam_mb model,
reduced feature dimensionality to 50 using PCA, and
identified six patch clusters using Louvain clustering
method (Figure 7D). These clusters demonstrated
differential attention score contributions: cluster 5
showed the highest attribution for low-expression
classification, cluster 0 for medium-expression
classification, and cluster 1 for high-expression
classification. =~ Whole-slide = visualization  and
H&E-correlated  annotation  revealed  distinct
histopathological identities: cluster 0 represented
stromal tissue, cluster 1 represented the tumor region,
cluster 2 represented muscle/normal epithelium,
cluster 3 represented the tumor stroma, and clusters 4
and 5 represented invasive tumor margins (Figure
7E). Collectively, these computationally derived
clusters  presented  unique  histopathological
signatures, suggesting the tissue-specific expression
of CACNA1C in ESCC.
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To gain further insights into the in situ
relationships between the model predictions and the
biological ground truth, we performed Visium
sequencing on two ESCC FFPE tissue sections
(capturing 4,820 and 4,468 spots from tumors E3 and
E4, respectively), with tumor/stroma demarcation
through CNV inference. Despite the inherent tissue
morphology variations between serial sections,
application of the Clam_mb model to adjacent
H&E-stained sections revealed strong concordance

between  attention  heatmaps and  spatial
transcriptomics, where model-identified
high-attention regions exhibited corresponding

gene-specific upregulation (Figure 7F). Notably, we
did not incorporate tissue masks or region-specific
cropping during training, and the model selectively
focused on high-expression regions in tumor areas
while filtering out stromal signals (Figure S7D),
demonstrating that our deep learning framework can
sensitively detect in situ CACNAIC expression
patterns in tumor tissue from H&E images.

Discussion

Understanding the mechanisms by which cell
crosstalk drives cancer aggression and metastasis is
critical for improving the diagnostic precision and
development of targeted therapies for ESCC. Here, we
described the development, validation, and
explanation of pathological cell-cell interplay features
for prognosticating overall survival time using
Hé&E-stained images. We combined a deep learning
model for cell segmentation and classification, a
minimum spanning tree for topological feature
construction and extraction, a Cox regression model
and unsupervised clustering to maximize
interpretability. We developed and validated our
features using three independent cohorts. Our results
revealed that image-derived cell interaction features
serve as strong predictors of survival outcomes in
ESCC patients and are concordant with known
molecular pathways. The clinical and biological
relevance of these features support their utility and
generalizability.

Using combined bulk-seq data, we demonstrated
the existence of a high-risk pathological subtype
characterized by an EMT-enriched state and
emphasized the concomitant immunosuppressive
microenvironment. In addition, the ligand-receptor
pairs enriched in pathological subtypes demonstrated
EMT-promoting  effects, = with  predominant
localization between mesenchymal cell-like epithelial
cells (MESs) and between MESs and CAFs, indicating
both autocrine and paracrine regulation of EMT.
Through systematic target screening, we identified
CACNAIC as a specifically overexpressed target in
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MESs, which is consistent with its established
association with poor ESCC differentiation.

EMT progression has been proven to be a
continuous phenotypic process characterized by
multiple intermediate states [71]. However, to our
knowledge, relevant investigations have relied on
pancancer cell line models, leaving a critical gap in
single-cell characterization using clinical specimens.
We reconstructed EMT trajectories using the largest
available single-cell atlas of clinical ESCC samples.
Gradient shifts between epithelial and mesenchymal
programs across MESs demonstrated phenotypic
continuity, and pseudotime analysis revealed a
plateau state during EMT progression. On the basis of
pseudotime score distributions, we defined three
macrostates for MESs (EMT-early, EMT-stable, and
EMT-late), with progressively increasing EMT scores
across states. As anticipated, keratins and collagens
mainly shape epithelial and mesenchymal
phenotypes in the early and late states, respectively,
whereas TGFBI functions as a phenotypic stability
factor during the stable phase. Notably, chemokines
and human  leukocyte antigens exhibit
stage-dependent expression, indicating that there is
crosstalk between EMT and the immune system.
Furthermore, cells in the EMT-early state displayed
the greatest proliferative capacity, cells in the
EMT-stable state presented the highest differentiation
potential, and most MESs maintained
lineage-restricted limited differentiation potential,
collectively demonstrating remarkable phenotypic
plasticity during EMT. The full spectrum of EMT
intermediate states remains to be fully characterized,
and the mechanism of state switches needs to be
better understood. Here, the ESCC-specific EMT
trajectory delineates three well-supported macrostates
reflecting both intrinsic cancer cell alterations and
microenvironment adaptations.

It has been reported that cells with hybrid E/M
phenotypes generate progeny cells that are either
mesenchymal or epithelial and are more prone to
migrate [72]. To evaluate the impact of EMT on ESCC
metastasis, we projected metastatic ESCC cell lines
onto EMT trajectories. This analysis revealed that cells
in the EMT-early state had the strongest metastatic
potential, highlighting the critical balance between the
epithelial and mesenchymal programs. While
enrichment of the epithelial program is required for
ESCC metastasis, we demonstrated that targeting
CACNAIC simultaneously suppresses both the
mesenchymal program and cell cycle progression in
EMT-stable/late states, driving their
transdifferentiation into normal epithelium-like cells.
Furthermore, we established that ITGB4
overexpression promotes EMT, whereas ITGA3
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enhances MET. Importantly, by exclusively analyzing
epithelial cells, we eliminated potential confounding
effects from mesenchymal cell contamination.

Recent studies have demonstrated that hybrid
E/M cells preferentially localize to the tumor invasive
front [73-75]. Similarly, our spatial transcriptomic
data revealed enrichment of EMT-early cells at the
tumor-normal epithelium interface, whereas EMT-late
cells were predominant at the tumor-stroma border.
Notably, we observed spatial overlap between
EMT-stable and epithelial cells with oxidative
phosphorylation characteristics (OXDs), suggesting
that OXDs may serve as alternative EMT-initiating
cells distinct from those with early EMT. Previous
work revealed that ITGA3 and ITGB1 are specifically
overexpressed in the tumor-specific keratinocytes
(TSKs) of cutaneous squamous cell carcinoma, where
they function as receptors for ligands expressed by
TAMs and MDSCs [76]. Our findings not only
confirmed the mutually exclusive spatial expression
of ITGA3 and ITGB4 but also revealed a potential
cooperative role in driving EMT progression when
they are coexpressed in the EMT-early state.

End-to-end deep learning models have yielded
impressive results for diagnostic applications such as
the detection of cancer and the prediction of the
primary origin of metastases [77, 78]. Attention-based
MIL methods learn from patient-level labels and offer
explanations in the form of saliency heatmaps that
localize relevant regions. Inspired by Calderaro et al.
[79], we used spatial transcriptomes as the gold
standard for the molecular detection problem. We
developed a target prediction model in which
computationally derived patch clusters exhibited

distinct histopathological signatures, with
CACNAI1C-high expression clusters specifically
localized to tumor regions. Spatial validation

demonstrated strong concordance between the model
predictions and the in situ biological ground truth.
Notably, without incorporating tissue masks or
region-specific cropping during training, the model
autonomously attended to tumor-specific
high-expression  zones, confirming both the
tissue-specific expression of CACNAIC and the
translational potential of this model.

This study has some limitations: (i) As a
retrospective analysis of patient cohorts, this study
requires future prospective validation to confirm its
predictive findings. (ii) Although local cell interaction
maps effectively correlate with clinical and biological
features, the absence of detailed tissue architecture
and refined cellular subtypes may limit analytical
depth. This limitation could be addressed through
dedicated tissue and cell segmentation models. (iii)
ESCC-specific EMT trajectories warrant
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comprehensive validation in clinical metastatic
samples, and the time-course dynamics should be
further explored. (iv) Model performance should be
improved by several approaches, including
expanding training datasets, employing more robust
pre-training encoders, obtaining accurate labels via in
situ hybridization, combining multiple pathological
images from the sample patient and multimodal
feature engineering.

Overall, the results of this study systematically
delineate EMT dynamics in ESCC through integrative
analysis of histopathology, bulk-seq, single-cell
transcriptomics, and spatial transcriptomics. By
analyzing cellular interaction features from
pathological images, we first demonstrated that
pathological patterns are driven by EMT dynamics.
We further validated the continuum of intermediate
EMT states, revealed the pivotal role of the EMT-early
state in metastasis and further identified CACNAIC as
a therapeutic target for cells in the EMT-stable/late
state. These findings provide novel insights into the
cellular and molecular mechanisms underlying tumor
invasion and metastasis. Finally, we developed an
end-to-end deep learning model that predicts
therapeutic targets from pathology images, enabling
clinically  translatable risk stratification and
personalized therapy for ESCC patients.
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