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Abstract

Background: The tumor-resident microbiome plays a pivotal role in shaping the tumor immune microenvironment; however, its
relationship with the host transcriptome and the response to immune checkpoint inhibitors (ICls) remains largely uncharacterized
in non—small cell lung cancer (NSCLC). This study aimed to elucidate the relationship between tissue-resident microbiota, host
transcriptomic alterations, and immunotherapy response in NSCLC.

Methods: Paired tumor (T) and paracancerous tissue (PT) samples from patients with NSCLC were analyzed using 2bRAD-M and
bulk RNA sequencing to generate comprehensive microbiome and transcriptome profiles. The conditional mutual information
algorithm was employed to systematically investigate intratumoral microbe—host interactions. Associations between key microbes
and patient prognosis, ICl response, and response to epidermal growth factor receptor (EGFR)—targeted therapy were assessed
across four independent local clinical cohorts.

Results: Higher microbial richness, a-diversity, and B-diversity were observed in PT samples than in T samples. Specifically,
PT-resident Bradyrhizobium and Prevotella were identified as key bacterial taxa significantly associated with immune cell populations,
including CD8* T cells, natural killer cells, and activated dendritic cells. Among these, PT-resident Prevotella, but not Bradyrhizobium,
was independently associated with improved prognosis of patients with NSCLC and ICl response in both local clinical sets and
public datasets. Furthermore, a combined diagnostic model integrating PT-resident Prevotella abundance with routine clinical blood
indicators demonstrated markedly superior predictive performance for ICl response compared with the conventional biomarker
PD-L1. By contrast, PT-resident Prevotella exhibited no association with treatment response in the EGFR-targeted therapy cohort.

Conclusion: PT-resident Prevotella is strongly associated with the prognosis and ICl response in patients with NSCLC. Moreover,
integration of PT-resident Prevotella with routine clinical blood indicators holds promise as a potential auxiliary diagnostic tool to
facilitate personalized immunotherapy in NSCLC.
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Introduction

Restoring  antitumor  immunity through  cancer treatment and has demonstrated remarkable
immunotherapy has become a cornerstone of modern  efficacy in a subset of patients [1-4]. Immune
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checkpoint inhibitors (ICIs) are now incorporated into
first-line therapy for non-small cell lung cancer
(NSCLC), and recent clinical trials (NCT03191786)
have reported an increase in the 2-year survival rate
for patients with advanced-stage disease from 12% to
24% [5]. Despite their ability to alleviate immune
suppression and reshape the tumor immune
microenvironment, ICIs provide clinical benefit to
approximately 40% of patients with NSCLC due to
substantial interindividual variability in treatment
response [6]. Therefore, accurately identifying
patients most likely to respond to immunotherapy is
essential for advancing personalized treatment
strategies in NSCLC.

Currently used clinical biomarkers for predicting
ICI efficacy, such as programmed death-ligand 1
(PD-L1) expression, tumor mutational burden, and
various gene expression signatures, offer limited
predictive power, with area under the curve (AUC)
values typically ranging from only 0.6 to 0.75 [7].
These biomarkers primarily reflect intrinsic tumor
features, whereas response to immunotherapy
depends on the dynamic and complex interactions
between the tumor and the host [8]. In recent years,
several newly identified ICI-related biomarkers, such
as CD8* tumor-infiltrating lymphocytes [9] and T
cell-inflamed gene expression profiles associated with
antigen presentation, chemokine expression, cytolytic
activity, and adaptive immune resistance [10], are all
derived from intrinsic tumor features and
demonstrate  superior predictive  performance
compared with traditional biomarkers such as PD-L1.
Therefore, efforts to identify novel
immunotherapeutic biomarkers should focus on the
immune system and its closely interacting
components, such as tumor-associated microbiota,
which predominantly reside within immune cells and
form symbiotic relationships with the tumor immune
microenvironment [11-13].

The tumor-resident microbiome, an emerging
and integral component of the tumor
microenvironment, plays a critical role in modulating
host immune responses [11]. In studies investigating
the impact of the microbiome on tumor
immunotherapy, early research has largely focused on
the gut microbiome. For instance, the gut microbiota
has been shown to critically modulate the efficacy of
ICI therapy by shaping tumor-infiltrating immune
cells and influencing macrophage polarization,
thereby enhancing antitumor responses [14]. In
addition, microbiota-derived signals can reprogram
mononuclear  phagocytes  within the tumor
microenvironment  toward  immunostimulatory

phenotypes, activating type I interferon—natural killer
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cell — dendritic cell signaling and improving the

effectiveness of immune checkpoint blockade [15].
With the development of microbiome sequencing
technologies, it has become possible to accurately
profile microbial communities within tumor tissues,

providing novel insights into host — microbe
interactions in the tumor microenvironment.
Consequently, recent years have witnessed a growing
body of evidence highlighting the presence of
lung-resident microbes and their potential functional
roles in pulmonary diseases [13, 16, 17]. High
intratumoral microbial diversity in NSCLC has been
associated with improved patient survival [13]. A
more in-depth analysis further revealed that NSCLC
tumors enriched with intratumoral microbes exhibit
high expression of genes associated with favorable
responses to ICIs, including GZMB2, CCL20,
CXCR2P124, CXCL1312, and IL12RB225, suggesting
that intratumoral microbes may enhance ICI efficacy
by promoting an inflammatory tumor
microenvironment [16]. Although the overall
abundance and diversity of intratumoral microbes are
relatively limited, they can modulate the tumor
immune status by activating innate immunity and
regulating immune cell function during tumor
immunoediting [18, 19]. This unique characteristic
offers strong theoretical and translational significance,
given its potential to reflect the efficacy of
immunotherapy. As open organs, the lungs harbor a
particularly complex tumor immune
microenvironment owing to the abundant infiltration
of microorganisms [20]. However, systematic studies
integrating the intratumoral microbiome with the host
transcriptome to identify predictive biomarkers of
immunotherapy response in NSCLC are lacking.

By integrating microbiome and transcriptome
data, we aimed to systematically elucidate the
distribution patterns of tissue-resident microbes in
patients with NSCLC. Our analysis revealed a
significantly ~ higher =~ microbial abundance in
paracancerous tissues (PT) than in tumor tissues (T),
with no substantial differences observed between
lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC). Using the conditional mutual
information (CMI) algorithm, we constructed a
microbiota-host-gene  interaction network that
identified PT-resident Prevotella as closely associated
with  antitumor-related  signaling  pathways.
Moreover, in both bulk and localized clinical cohorts,
a higher abundance of PT-resident Prevotella was
positively associated with response to
immunotherapy and a favorable prognosis in NSCLC.
Furthermore, a predictive model combining Prevotella
abundance with routine blood test indicators
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demonstrated robust performance in predicting
immunotherapy outcomes, providing a novel
companion diagnostic approach to support
personalized immunotherapeutic strategies in
NSCLC.

Materials and Methods

Sample collection

A total of 20 paired fresh NSCLC tumor and
adjacent normal tissue samples for sequencing were
obtained from Zhongnan Hospital of Wuhan
University. Additionally, tumor and adjacent normal
tissue samples were collected from 94 NSCLC patients
(Table S1) who received anti-PD-L1 immunotherapy
at Zhongnan Hospital of Wuhan University (14 adult
patients) and Shanghai Chest Hospital (80 adult
patients), and from 52 NSCLC adult patients (Table
S2) who underwent EGFR-targeted therapy at Taihe
Hospital. Adjacent normal tissue samples were
collected from regions located more than 5 cm away
from the tumor margin. All samples were
histologically verified by experienced pathologists
through H&E staining to confirm the absence of
tumor infiltration or airway contamination. The fresh
tissue samples were rapidly frozen in liquid nitrogen
within 30 min of the surgical resection. All
instruments and materials in contact with the lung
tissues were sterilised. Following the application of
quality control exclusions, the final sequencing
analysis was conducted on 17 samples of adjacent
tissue and 18 samples of tumor tissue. The clinical
data were collated by the attending physicians from
the patients' clinical charts and hospital discharge
records.

Immunotherapy and targeted therapy responses
were evaluated radiologically every six weeks based
on the Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.1. Patients achieving a complete
response (CR), partial response (PR), or stable disease
(SD) lasting = 6 months were classified as having a
clinical benefit response (CBR). In contrast, those with
SD lasting < 6 months or progressive disease (PD)
were categorized as having no clinical benefit (NCB).

Tissue microarray

A LUAD tissue microarray (product No.
HLugA180Sul2; containing 90 paired tumor and
adjacent normal tissues) and a LUSC tissue
microarray  (product No. HLug-Squl50Sur-02;
containing 75 paired tumor and adjacent normal
tissues) were purchased from Shanghai Outdo
Biotech.
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2bRAD sequencing for microbiome (2bRAD-
M)

The 2b-RAD-M technology [21] is a qualitative
and relative quantitative analysis of microorganisms
that employs unique tags obtained through the
enzymatic cleavage of microbial genomes by type IIB
restriction enzymes. A database containing unique
tags of each microorganism (2b-Tag-DB) was
employed for qualitative analysis, whereby all
microbial species that had unique tags were screened.
The 2b-Tag-DB was then established again for the
quantitative  microorganisms, and a relative
quantitative analysis was conducted. This entailed
screening the microbial species obtained in the
previous step and estimating their abundance
according to the distribution of unique tags.

Microbial diversity analysis and identification
of differential taxa

The alpha diversity was calculated using the
Chaol, Shannon and Simpson indices with the
"vegan" package, and visualized as box plots [22].
Beta diversity was assessed using Bray-Curtis, binary
Jaccard and Euclidean distances, estimated by the
"vegan" package and displayed as principal
coordinate analysis (PCoA) scatter plots. Differential
taxa between groups were identified using linear
discriminant analysis (LDA) effect size (LEfSe), with
an LDA score threshold of 4.0 [23].

Bacterial culture

A total of five pairs of T and PT samples
obtained from patients with NSCLC were subjected to
bacterial culture under both aerobic and anaerobic
conditions. The bacterial culture procedure was
performed following the method described by Huan
Yu et al [24]. Specifically, the obtained fresh tissue
samples were immediately immersed in saline, with
the entire sampling process conducted in accordance
with strict aseptic conditions. Subsequently, in a
sterile environment, tissue fragments were
homogenised using a glass homogeniser in 1 mL of
ice-cold PBS. Additionally, PBS was employed as a
negative control, following the same workflow to
ascertain  the  potential for environmental
contamination. 100 puL of the aforementioned tissue
homogenate was added to the BHI medium
supplemented with 5% sheep blood. Pre-cultures was
performed under aerobic or anaerobic conditions.
After 24 h, the culture medium was inoculated onto
Columbia agar medium with 5% sheep blood. The
plates were incubated at 37 °C for 24 h under aerobic
conditions or for 72 h under anaerobic conditions.
Colonies were picked and identified using
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MALDI-TOF mass spectrometry (MS) systems (Autof
MS1000).

Immunohistochemical (IHC)

After dewaxed with xylene and hydrated with
absolute ethanol, tissue sections were immersed in
citric acid antigen retrieval buffer (pH 6.0). The
sections were heated on medium heat until boiling for
8 min, taken off the heat for 8 min, followed by an
additional 7 min on medium-low heat. The sections
were then washed three times with PBS (pH 7.4) on a
decolorization shaker, with each wash lasting 5 min.
Subsequently, the sections were incubated in a 3%
hydrogen peroxide solution at room temperature,
protected from light, for 25 min, followed by three
PBS washes. Next, the sections were blocked with 3%
BSA at room temperature for 30 min. They were then

incubated overnight at 4 °C with anti-
lipopolysaccharide  (LPS)  antibody (HYCULT
BIOTECH, HMG6011) / lipoteichoic acid (LTA)

antibody (HYCULT BIOTECH, HM2048). The
following day, after three PBS washes, the sections
were incubated at room temperature for 50 min with a
horseradish peroxidase-conjugated goat anti-mouse
secondary antibody (abcam, ab6789). Finally, the
sections were developed using DAB
(diaminobenzidine) and  counterstained  with
hematoxylin. Positive expression was indicated by a
brownish-yellow coloration.

Fluorescence in situ hybridization (FISH)

FFPE tissue sections or tissue microarrays were
deparaffinized and rehydrated. The sections were
sequentially soaked in 100% xylene for 15 min twice,
in 100% ethanol for 5 min twice, in 85% ethanol for 5
min, and finally in 75% ethanol for 5 min. Sections
were washed in DEPC-treated water. Incubate the
sections in boiling citrate-EDTA antigen retrieval
solution for 10 to 15 min and allow the solution to cool
naturally. Incubate the sections in a pre-hybridization
solution at 37 °C for 1 h. Use Cyb-labeled probe
EUB338 5'-GCTGCCTCCCGTAGGAGT-3' (Seebio,
ECAOQ016A, 50 pL) and Cy5-labeled Prevotella probe 5'-
GCA CCT TCG AGC TTA AGC GT -3
(custom-synthesized) overnight at 37 "C. Wash with
2x saline sodium citrate at 37 °C for 10 min, 1x SSC at
37 °C for 5 min (two changes), and 0.5% SSC at room
temperature for 10 min. Counterstain cell nuclei with
DAPI (2 pg/pL) for 8 min in the dark. Mount the
sections with fade-resistant Mountant. The signal was
captured using a PANNORAMIC MIDI digital slide
scanner (3DHISTECH Ltd., Budapest, Hungary).
Fluorescence images were viewed using CaseViewer
version 2.4 (3DHISTECH Ltd., Budapest, Hungary),
and the fluorescence intensity was quantified as
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integrated optical density (IOD) [25, 26] using Image
Pro Plus 6.0 software (Media Cybernetics, Silver
Spring, MD, USA).

Weighted gene co-expression network analysis
(WGCNA)

WGCNA aims to mine functionally related
bacteria with similar co-expression patterns. By
calculating the expression correlation coefficients,
bacteria with highly correlated expression profiles are
clustered into the same module, thereby revealing
similar expression patterns. These modules often
consist of bacteria that are potentially involved in the
same biological processes or pathways. To achieve
this, we selected a soft-thresholding power of 8 to
ensure a scale-free network, enabling dynamic
pruning of dendrogram branches according to cluster
morphology. To reduce the likelihood of spurious
associations during module identification, the
adjacency matrix was subsequently transformed into
a Topological Overlap Matrix (TOM). The bacteria
within the identified modules were then mapped to
construct co-occurrence networks of tissue bacterial
communities, which were visualized using Cytoscape
3.5.1 software. Additionally, we explored the
correlation between WGCNA modules and various
clinical variables, such as age, gender, smoking status,
alcohol consumption, histological type, TNM stage,
lymph node metastasis, PD-L1 expression, and
sample type-by generating heatmaps that illustrate
the relationships and corresponding P-values for each
module.

RNA extraction and RNA-seq

Total RNA was extracted using the TRIzol
reagent (Invitrogen, 15596026CN) according to the
manufacturer’s instructions. RNA purity and
concentration were assessed with a NanoDrop 2000
spectrophotometer (Thermo Scientific, USA), while
RNA integrity was evaluated using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). Subsequently, transcriptome libraries were
constructed following the protocol of the VAHTS
Universal V6 RNA-seq Library Prep Kit. RNA
sequencing was performed by OE Biotech Co., Ltd.
(Shanghai, China) using the Illumina NovaSeq 6000
platform, generating 150 bp paired-end reads. The
raw reads in fastq format were processed with fastp to
remove low-quality reads, yielding clean reads for
subsequent analysis. Alignment to the reference
genome (GRCh38) was conducted using HISAT2,
followed by quantification of gene expression levels
(FPKM). Gene-level read counts were obtained using
HTSeq-count.
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Construction of microbe-gene dependency
network dependent on conditional mutual
information algorithm (CMI)

Data pre-processing. For all species-level
microbes, only those with abundance in at least 5
samples were retained for subsequent analysis. The
same processing was applied to gene. Next, each
microbe (gene) was discretized using its median value
across all samples as the threshold, setting values
below the median to 0 and those equal to or above the
median to 1. For phenotype data, when the phenotype
is adenocarcinoma vs. squamous cell carcinoma,
adenocarcinoma was set to 0 and squamous cell
carcinoma to 1. When the phenotype is cancer vs.
control, cancer was set to 1 and control to 0.
Calculation of dependency value. For each microbe
and gene pair, conditional mutual information was
applied to calculate the dependency value of the gene
(denoted as G) on the microbe (denoted as M) in the
context of phenotype (denoted as P). The dependency
relationship of gene G on microbe M was calculated
via the CMI described as the following equation:

CMI(G; P|M)
— Pm (m)pG,P,M (gl D, m)
= Pe,pm (9,0, m)log

mEM peP geG Pe.m (9, m)ppu (P, M)

Significance test of the dependency relation.
We used permutation method to evaluate the
significance of every microbe-gene dependency
relation. For each candidate pair (M; Gj), we first
calculated its real CMI value as described above. Then
we randomly permuted the abundance of microbe M;
1000 times and calculated 1,000 CMI values as the null
hypothesis distribution. Then the order (descending)
of the real CMI value in the null hypothesis
distribution divided by 1000 was taken as the P-value
of the dependency pair. Finally, we used a threshold
(0.05 in this work) to decide whether the pair was
significant or not. Construction of microbe-gene
dependency network. The significant microbe-gene
dependency pairs were preserved to construct the
dependency network, in which, nodes are microbes
and genes, and the edge represents the dependency
relationship of the gene on the corresponding
microbe.

Identification of key bacteria by random forest

Random forest is a classic regression and
classification ensemble algorithm. By constructing
multiple decision trees, each using a different subset
of features during training, and by repeatedly
evaluating the significance of features in different
decision trees, random forest is able to identify robust
features that show significance across multiple trees
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[27]. In this study, the randomForest package was
used to perform random forest analysis to identify
key bacteria (ntree = 100).

Enrichment analysis of characteristic bacteria

We input the dependent genes of Bradyrhizobium
and Prevotella screened by CMI into the g:Profiler
analysis tool (https://biit.cs.ut.ee/gprofiler/gost),
selected GO, KEGG, REACTOME and WikiPathway
as the background gene set, and used the BH method
for P value correction. Entries with P < 0.05 were
considered significantly enriched.

Immune infiltration correlation analysis

To evaluate the correlation between identified
key bacteria and immune cell infiltration, we first
calculated cell infiltration scores using the
single-sample Gene Set Enrichment Analysis
(ssGSEA) algorithm based on our bulk RNA-seq data.
A set of 28 immune cell gene markers, derived from
the study by Charoentong p et al. [28], was employed
as the background gene set. Subsequently, Spearman
correlation analysis was performed to compute the
correlation coefficients and significance between
bacterial abundance and immune cell infiltration
scores. Finally, the results were visualized using the R
package "pheatmap".

Survival analysis

To assess the association between Bradyrhizobium
and Prevotella and patient survival, we utilized
TCGA-LUAD/LUSC data pre-aligned with bacterial
sequences, as reported by Chen et al. [29]. We
extracted normal tissue samples (as both bacteria
were found to be highly enriched in adjacent
non-cancerous tissues) and grouped them based on
the median bacterial abundance. Survival analysis
was conducted using the R package "survival" and
"survminer", with significance evaluated by the
log-rank test, where a P-value < 0.05 was considered
indicative of significant survival differences between
the two patient groups.

Differential gene expression and enrichment
analysis

To further validate the association between
Prevotella and immune regulation within TCGA data,
we first grouped the TCGA-LUAD/LUSC adjacent
non-cancerous samples according to the median
abundance of Prevotella. Differential gene expression
analysis was then performed using the R package
"edgeR". Subsequently, the top 50 genes highly
expressed in the high-Prevotella group were subjected
to enrichment analysis employing the same methods
as described earlier.
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Gene set enrichment analysis (GSEA)

The genes identified from the differential
expression analysis were ranked by log fold change
(logFC) values, from highest to lowest, and used as
input for GSEA. The hallmark gene sets (H: hallmark
gene sets) were downloaded from the MsigDB
database (https:/ /www.gsea-msigdb.org/gsea/
msigdb) to serve as the background gene set. GSEA
was conducted using the R package "clusterProfiler",
with pathways showing a corrected P-value < 0.05
and a normalized enrichment score (NES) greater
than 0 considered significantly upregulated in the
high-Prevotella group.

Generalized linear mixed model and combined
diagnostic model construction

To identify biomarkers associated with response
to immunotherapy or targeted therapy, a generalized
linear mixed model (GLMM) was constructed using
the glm function in R. The association between each
biomarker and treatment response was evaluated by
calculating the odds ratio (OR), where an OR > 1
indicated a positive association with treatment
response and an OR < 1 indicated an association with
non-response. Biomarkers with a P value < 0.05 were
considered significant. Receiver operating
characteristic (ROC) curves for individual biomarkers
were generated using the R package pROC, and AUC
was calculated to assess their diagnostic performance
in predicting treatment response. To evaluate the
diagnostic performance of multiple biomarkers in
combination, those identified by GLMM were
incorporated into a binary logistic regression model.
The immunotherapy cohort was randomly divided
into a training set and a validation set in an 8:2 ratio,
and ROC analysis was performed to assess the
diagnostic performance in both sets.

Statistical analysis

All statistical analyzes were conducted using R
software (version  4.3.0) and  Sangerbox
(http:/ /sangerbox.com/login.html). =~ For  group
comparisons of continuous variables following a
normal distribution, t-tests were used; otherwise, the
Wilcoxon test was applied. P-values for gene set
enrichment analysis were adjusted wusing the
Benjamini-Hochberg method. Survival analysis was
performed using the log-rank test, and P-values were
corrected using the Bonferroni method. Correlations
between variables were assessed using Spearman’s
correlation coefficients. All statistical tests were
two-sided, with a threshold of P < 0.05 set for
statistical significance.
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Results

Microbial diversity and community structure
in patients with NSCLC

Twenty paired T and PT samples were collected
from patients diagnosed with NSCLC. Following
quality control filtering, 17 PT and 18 T samples were
included in the final sequencing analysis. Detailed
clinical information for all patients is provided in
Table S3. The 2bRAD-M technology was employed to
investigate microbial communities within the clinical
samples, yielding 277.24 million raw reads, 247.98
million enzyme reads, and 232.34 million clean reads.
On average, each sample yielded 6.64 million clean
reads (Table S4). Taxonomic classification of the clean
reads performed against the 2b-Tag-DB identified 262
species, 111 genera, 62 families, and 37 orders (Table
S5). The predominant bacterial orders included
Enterobacterales, Bacillales, and Lactobacillales, with
Bacillus_A_bombysepticus,  Escherichia  coli, — and
Streptococcus pneumonige being the most abundant
species (Figure 1A-B).

At the species level, 58 bacterial taxa were shared
between the T and PT groups, with seven species
unique to the T group and 197 unique to the PT group
(Figure 1C-D). Alpha diversity metrics, including the
Chaol, Shannon, and Simpson indices, revealed
significantly higher bacterial diversity in PT thanin T
(Figure 1E). Beta diversity analysis based on binary
Jaccard distance using both NMDS and PCoA
revealed a clear separation of microbial communities
between T and PT tissue (Figure 1F). Furthermore,
PERMANOVA performed by the ADONIS test
yielded a p-value < 0.001, underscoring the distinct
microbial community structures between the two
groups (Figure 1F).

Based on our sequencing data, we confirmed the
presence of bacterial DNA in NSCLC tissues,
designed probes targeting pan-bacterial DNA, and
performed fluorescence in situ hybridization (FISH).
The results showed that the presence of bacteria was
higher in NSCLC tissues and in the PT group than in
the T group (Figure 1G). Immunohistochemical (IHC)
staining for LTA and LPS produced similar results
(Figure 1H).

Next, we performed bacterial culture techniques
on five pairs of fresh T and PT samples to verify the
presence of viable bacteria. Following
homogenization, the samples were evenly spread on
culture plates and incubated, resulting in visible
colony growth of bacterial colonies in 80% of PT
samples, thereby confirming the presence of live
bacteria in the lung tissue (Figure 1I). Multiple
colonies were isolated and identified by MS,
confirming the presence of Bacillus cereus in fresh PT
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samples. This finding was consistent with our
2bRAD-M sequencing data. By contrast, no colonies
were observed on plates coated with T samples, likely
due to the extremely low bacterial abundance in T
samples, which was insufficient for visible culture

A
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growth. This observation aligned with our sequencing
data, which indicated a significantly higher bacterial
abundance in the PT group than in the T group
(Figure 2A-B, Table S5).
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Figure 1. Analysis and validation of the composition of microbiota in NSCLC tissues. (A, B) Composition features of the microbiota in tumor (T) and paracancerous tissue (PT)
groups at the order (A) and species (B) level. (C) A Venn diagram exhibited the shared and unique species between the T and PT groups. (D) Abundance of the microbiota in
the T and PT groups at the species level. (E) Comparison of alpha diversity (Chaol, Shannon index, and Simpson index) between the T and PT groups, Statistical significance was
determined by two-sided Wilcoxon rank-sum test, *P < 0.05, ***P < 0.001. (F) Comparison of B-diversity between the T and PT groups based on the Binary Jaccard distance.
Statistical significance was assessed using PERMANOVA performed with the ADONIS function, P < 0.001. (G) Results of FISH fluorescence staining NSCLC tissues. The red signal
indicates the positive signal of the synthetic FISH probe (EUB338). (H) Results of IHC staining of T and PT sections. T: tumor tissue; PT: paracancerous tissue. (I) Fresh T and PT
of NSCLC patients were used to homogenize and culture live bacteria. NC: negative control.
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Figure 2. Differential abundances of bacterial taxa between the tumor (T) and paracancerous tissue (PT) groups. (A, B) The boxplot showed the relative abundance of top ten
genus(a) and species (b) were increased in the PT group as determined by two-sided paired Wilcoxon signed-rank tests, P < 0.05 considered statistically significant. *P < 0.05, **P
< 0.01, P < 0.001, ¥**P < 0.0001. (C) Cladogram generated by the LEfSe represents the taxonomic hierarchical structure of the identified microbial populations. Red nodes
and green nodes represent relatively high abundance of species with significant difference in T and PT group, respectively. Yellow nodes indicate that there was no significant
difference in the comparison of species in the two groups. (D) The histogram of LDA score showed 39 biomarkers with significant differences between the T and PT group. LDA

score represented the influencing degree of biomarkers.

Given the marked differences in the tumor
microenvironments of LUAD and LUSC tissues, we
further examined the compositional diversity of
bacterial microbiota. LUAD tissues exhibited greater
bacterial species richness than LUSC tissues, whereas
no significant differences were observed in the overall
community diversity between the two subtypes
(Figure S1A-D). Moreover, beta diversity analysis
revealed no significant differences between the LUAD

and LUSC microbiomes (Figure S1E).

Overall, these findings indicate that bacterial
diversity is significantly higher in PT samples than in
T samples of patients with NSCLC, with the presence
of viable bacteria further confirmed in PT samples. By
contrast, no significant differences in bacterial
diversity were observed between LUAD and LUSC

tissues.
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Differential abundances in bacterial taxa
between T and PT of patients with NSCLC

To identify differentially represented taxa in T
and PT samples of patients with NSCLC, the relative
abundances of microbial communities were compared
between the two groups. The analysis revealed that
nearly all of the top 10 differential microbiotas were
significantly enriched in the PT group. At the genus
level, Bradyrhizobium, Geobacillus, Prevotella,
Sediminibacterium, and  Porphyromonas exhibited
pronounced enrichment in PT (Figure 2A). At the
species level, Bradyrhizobium sp003020075, Geobacillus
thermoleovorans, Sediminibacterium sp017537025,
Mesorhizobium  sp004136315, and  Sphingomonas
sp002127225 were more abundant in PT (Figure 2B).

To  further  identify  high-dimensional
biomarkers, LEfSe and calculated LDA scores were
employed to compare the bacterial taxa between the
groups. The resulting cladogram depicting the
phylogenetic distribution indicated that biomarkers
distinguishing T from PT were predominantly located
in the PT group, likely reflecting the significantly
higher bacterial abundance in PT samples than in T
samples (Figure 2C). LDA revealed 39 discriminative
features with  significantly  distinct  relative
abundances between the groups. Among these,
Bradyrhizobium, Geobacillus, and Prevotella emerged as
the top three distinguishing genera in PT samples,
whereas Acinetobacter  guillouine was the most
distinctive taxon in T samples (Figure 2D).
Conversely, only three genera and five species
exhibited differential abundance between LUAD and
LUSC, with nearly all taxa showing a significantly
higher enrichment in the PT group (Figure S2A-B).
Among these taxa, Cupriavidus metallidurans emerged
as the most discriminative in LUSC, whereas
Sphingomonadaceae was the most discriminative in
LUAD (Figure S2C-D).

These findings indicate that major differences in
tissue-resident microbial composition were primarily
observed between T and PT, whereas microbial
variation between LUAD and LUSC was
comparatively limited.

Correlation between tissue microbial
signatures and clinical characteristics

To investigate co-abundant interactions among
microbiota and their clinical relevance, WGCNA was
employed to characterize the network architecture of
tissue-resident microbiota. This method enables the
systematic identification of associations between
microbial co-abundance modules and clinical traits
while preserving sensitivity to low-abundance taxa
and minimizing information loss [30]. The analysis
revealed 11 distinct microbial modules (Table S6),

3434

with the gray module classified as non-functional and
the remaining modules considered functionally
relevant (Figure 3A). Notable heterogeneity was
observed across these functional modules (Figure 3B).

Subsequent analyzes evaluated correlations
between the identified microbial modules and a range
of clinical and pathological characteristics, including
age, sex, smoking status, drinking habits, histological
type, TNM stage, lymph node metastasis (LNM),
PD-L1 expression, and tumor group (Figure 3C). The
microbial members of the black module were
significantly negatively correlated with those of the T
group, suggesting a potential role for probiotic taxa
with anticancer properties. This effect is likely
attributable to the high enrichment of Geobacillus
within this module, which has been shown to exert
antitumor effects via the secretion of the metabolite
L-norleucine  [31].  Additionally, pink and
green-yellow modules were significantly positively
correlated with tumor LNM, potentially due to the
presence of Veillonella, a key microbial flora in the
lower respiratory tract known to promote tumor
LNM in patients with lung cancer [32]. In summary,
WGCNA provided a comprehensive overview of the
complex microbial interactions within NSCLC tissues
and revealed strong associations with clinical
characteristics.

Tumor transcriptome and biological status are
shaped by tissue-resident microbiota via the
tumor immune microenvironment

The marked enrichment of microbiota in PT
prompted us to investigate the association between
bacterial abundance and tumor progression, as well as
the potential influence of the microbiome on host gene
expression and biological processes. To elucidate
these interactions, bulk RNA sequencing was
performed on tissue samples paired with microbiome
data, followed by integrative multi-omics analysis. To
more  accurately = characterize = microbe-host
interactions, a CMI-based approach was used (Figure
4A). The CMI was calculated between phenotypes (T
vs. PT) and gene expression profiles, conditioned on
the abundance of phenotype-associated microbes, that
is, CMI (gene, phenotypes, and microbes). This metric
quantifies the additional predictive value of microbial
abundance that contributes to  phenotypic
differentiation through gene expression, reflecting the
extent to which gene expression depends on the
presence of microbes.

Based on this framework, a microbe-gene
interaction network was constructed, leading to the
identification of 43 gene-dependent microbes (GDMs)
in patients with NSCLC, of which 25 exhibited
differential enrichment between T and PT groups
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(Figure 4B-C, Table S7). Random Forest analyzes
were then performed to rank the importance of these
GDMs, highlighting 20 bacterial taxa with strong
discriminative power between T and PT samples
(Figure 4D). Considering the inherently low
abundance of intratumoral microorganisms, the top
10 most enriched bacterial taxa in the tissue samples

A
Cluster Dendrogran
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were selected (Figure 4E). These were then intersected
with those identified through CMI-based analysis and
the top contributors to classification performance,
revealing  Bradyrhizobium  and  Prevotella  as
representative microbes characterized by high tissue
abundance, strong gene dependency, and robust
discriminative power (Figure 4F).
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Figure 3. WGCNA analysis of tissue microbes at the genus level. (A) Hierarchical clustering dendrogram of co-expressed microbes after module fusion. (B) Eigen microbe
adjacency correlation heatmap of the function module. (C) Heatmap of the correlation between module and clinical trait.
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Figure 4. Screening of NSCLC gene-dependent microbes based on CMI technology. (A) The construction process of interaction network based on CMI technology. (B)
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Subsequent analyzes focused on Bradyrhizobium
and Prevotella to investigate their potential functional
roles in NSCLC. Pathway enrichment analysis
revealed that Bradyrhizobium-dependent genes were
primarily involved in pathways regulating intrinsic
apoptosis signaling in response to DNA damage,
inflammatory  responses  following  antigen
stimulation, af-T-cell activation, and positive
regulation of T-cell differentiation within the thymus
(Figure 5A). By contrast, Prevotella-dependent genes
were enriched in pathways related to AMP-mediated
immune responses, insulin metabolism, and innate
immune responses in the mucosa (Figure 5B).
Notably, both Bradyrhizobium- and Prevotella-
dependent genes were enriched across multiple
immune-related  pathways. Consequently, we
conducted immune cell infiltration analysis, which
revealed significant correlations between these
bacteria and key components of the tumor immune
microenvironment, including effector memory CD8*

T cells, natural killer (NK) cells, activated dendritic
cells (DCs), macrophages, and neutrophils (Figure
5C).

In addition, CMI analysis was extended to
various histological subgroups. Within the LUAD and
LUSC groups, 24 gene-dependent microorganisms
were identified, of which only two (Novosohingobium
and Tardiphaga) exhibited differential expression
between the groups (Figure S3A-B, Table S8).
Considering the enrichment of microorganisms in PT
and the distinct microenvironmental contexts of
LUAD and LUSC, separate microbial-gene interaction
networks were constructed for LUAD paracancerous
(LUADP) and LUSC paracancerous (LUSCP) tissues.
A total of 18 gene-dependent microorganisms were
identified across these groups. However, none of
these  microorganisms  exhibited  significant
differences in abundance between LUADP and
LUSCP tissues (Figure S3C-D, Table S9). Owing to
the limited number of differentially gene-dependent
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microorganisms detected across the LUAD, LUSC,
LUADP, and LUSCP groups, no additional subgroup
analyzes were conducted. Overall, these findings
suggest that tissue microbiota may influence the

tumor transcriptome and biological properties by
modulating both innate and adaptive immune
processes within the tumor microenvironment.
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Figure 5. Gene signatures associated with Bradyrhizobium and Prevotella and their
pathways (p<0.05). (B) Prevotella-dependent genes and their enrichment pathways
infiltration levels of tumor-associated immune cells.

immune infiltration analysis. (A) Bradyrhizobium-dependent genes and their enrichment
(p<0.05). (C) Heatmap of the correlations between Bradyrhizobium, Prevotella and the
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PT-resident Prevotella is associated with
improved prognosis in patients with NSCLC

Given the significant associations previously
identified between Bradyrhizobium, Prevotella, and
antitumor immune components in NSCLC, we
hypothesized that these microbial taxa may be linked
to improved patient prognosis. Survival analyzes
were first performed using PT data from NSCLC cases
in the TCGA cohort, in which both Bradyrhizobium and
Prevotella were detected. The results revealed that
Prevotella abundance was significantly associated with
favorable clinical outcomes, including prolonged
overall survival (OS), disease-specific survival, and
disease-free survival (Figure 6A), whereas no
significant associations were observed between
Bradyrhizobium and patient survival outcomes (Figure
6B). And our previous WGCNA analysis of the
clinical relevance of microbial modules revealed that
the turquoise module, which includes Prevotella
(Table S6), was negatively correlated with TNM
stage, LNM, and T group, but positively correlated
with PD-L1 expression (Figure 3). This finding further
supports the observation that patients with higher
Prevotella abundance tend to have better prognosis.

To validate these findings, Prevotella abundance
was quantitatively assessed in clinical tissue
microarrays comprising 90 LUAD and 75 LUSC
samples using FISH. These results were consistent
with the sequencing data, which showed significantly
higher Prevotella abundance in PT samples than in T
samples (Figure 6C-D). Further clinical correlation
analysis revealed a significant positive relationship
between Prevotella abundance in PT and prolonged
OS (Figure 7A). Survival analyzes further revealed
that patients with high Prevotella abundance exhibited
markedly improved OS in both LUAD and LUSC
(Figure 7B). Importantly, multivariate Cox regression
analysis adjusted for clinical variables, including age,
sex, tumor grade, LNM, and TNM stage, confirmed
that Prevotella abundance in PT was an independent
prognostic factor for patients with NSCLC (Figure
7C). Collectively, these results corroborated our initial
hypothesis and highlighted Prevotella as a promising
prognostic  biomarker for improving NSCLC
outcomes.

To gain deeper insights into the potential
mechanisms by which Prevotella influences the
prognosis of patients with NSCLC, differential gene
expression and functional enrichment analyzes were
conducted between patients with high and low
Prevotella  abundance in PT. Notably, genes
upregulated in patients with high Prevotella
abundance were significantly enriched in signaling
pathways closely associated with immunotherapy
and targeted therapy, including the mitogen-activated
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protein kinase (MAPK) pathway (ERK and p38), JAK-
STAT  signaling, T-cell  proliferation, and
inflammatory responses (Figure 7D-F). These
pathways are well-established regulators of
therapeutic efficacy. Collectively, these findings
demonstrate that Prevotella enrichment in the PT of
patients with NSCLC is associated with improved
prognosis and serves as an independent prognostic
factor. This beneficial effect may be mediated through
its modulation of host responses to targeted therapy
and immunotherapy.

PT-resident Prevotella combined with routine
blood indicators may serve as a predictive
biomarker for immunotherapy response in
NSCLC

To investigate the association between Prevotella
and immunotherapy response, 94 patients treated
with anti-PD-L1 therapy were enrolled from two
independent centers. According to RECIST vl.1
criteria, 50 patients exhibited a clinical benefit
response (CBR), whereas 44 showed no clinical benefit
(NCB) (Figure 8A). Notably, significant differences
were observed between the CBR and NCB groups in
terms of PT-resident Prevotells, TNM stage, PD-L1
expression, commonly used lung cancer biomarkers
(CEA, CYFRA21-1, and CA125), and routine blood
tests indicators (including aspartate aminotransferase

[AST], alkaline phosphatase [ALP], alanine
aminotransferase [ALT], calcium [Ca], eosinophil
[EOS], lymphocytes [LYM], hematocrit [HCT],

hemoglobin [HGB], and mean corpuscular volume
[MCV]) (Figure 8A). To assess the independent
predictive value of these clinical variables, a
generalized linear mixed model was constructed
incorporating all clinical indicators. After adjustment,
PT-resident Prevotella, Ca, age, and HGB were
identified as independent protective factors, whereas
HCT and ALT were identified as independent risk
factors for immunotherapy response (Figure 8B,
Table S10). Based on these predictors, a combined
predictive model was developed by integrating
PT-resident Prevotella abundance with routine blood
test indicators. The model formula is expressed as
follows:

Predictive Score = 9.675 x PT_Prevotella +1.749 x Ca +
8.086 x Age +3.332 x HGB - 1.676 x HCT — 5.930 x
ALT.

Patients with a predictive score above the
optimal cutoff of 720.7 were classified as likely
responders to immunotherapy. The combined
diagnostic model demonstrated superior predictive
performance (AUC: 0.97) compared with models
based solely on PD-L1 expression (AUC: 0.66) or
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PT-resident Prevotella alone (AUC: 0.86) (Figure 8C). abundance and  tumor-infiltrating  immune

Although PD-L1 is widely used as a clinical = components, further correlation analysis revealed a
biomarker, it was not significant as an independent  significant positive association between Prevotella
predictor in the multivariate model (Figure 8B), abundance and PD-L1 expression (Figure 8D).
suggesting that its predictive utility may be  Consistently, IHC staining of NSCLC tissues
modulated by other covariates within the tumor  confirmed that higher Prevotella abundance in PT
microenvironment. Given the previously observed  samples corresponded to elevated PD-L1 expression
association  between  paracancerous Prevotella  in T samples (Figure S4).
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Figure 6. Paracancerous tissue (PT)-resident Prevotella is associated with a better prognosis of NSCLC. (A, B) Kaplan-Meier curves depicting the survival differences of NSCLC
patients between high and low paracancerous tissue-resident Bradyrhizobium (A) and Prevotella (B) abundance groups based on TCGA data (TCGA-LUAD/LUSC). Survival
differences were assessed using the two-sided log-rank test, with P < 0.05 considered statistically significant. (C) Boxplots show that the abundance of Prevotella was higher in PT
than in tumor (T) in both LUAD and LUSC as determined by two-sided paired Wilcoxon signed-rank tests, P < 0.05 considered statistically significant. (D) FISH fluorescence
staining images show high enrichment of Prevotella in PT than in T in LUAD and LUSC.
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To comprehensively evaluate the predictive
value of Prevotella, an additional cohort of 52 patients
with NSCLC receiving EGFR-targeted therapy was
analyzed (36 vs. 16 in the CBR and NCB groups,
respectively). The clinical feature distributions
between the groups are shown in Figure S5A. A
significantly higher abundance of PT-resident
Prevotella was observed in the CBR group. Although
PT-resident Prevotella remained an independent
predictor of response to targeted therapy after
multivariate adjustment (Figure S5B) and its AUC
exceeded 0.75 (Figure S5C), its positive predictive
value was only 0.52. Moreover, no significant
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differences were observed in the EGFR mutation
status (Figure S5D), suggesting that the predictive
capacity of PT-resident Prevotella for targeted therapy
is limited.

In summary, integrating PT-resident Prevotella
abundance with routine blood test indicators provides
a more accurate prediction of immunotherapy
response in patients with NSCLC than PD-L1 alone;
however, this predictive advantage is not evident in
the context of targeted therapy. Moreover, the clinical
role of PD-L1 may be influenced by the adjacent
paracancerous microbial microenvironment,

particularly Prevotella.
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Figure 7. Effect of paracancerous tissue (PT)-resident Prevotella on clinical prognosis of NSCLC. (A) Heatmap showing the distribution of clinical parameters across samples and
their association with the PT-resident Prevotella. (B) Kaplan-Meier curves show a longer OS in the high PT-resident Prevotella group than in the low Prevotella group in both LUAD
and LUSC. Survival differences were assessed using the two-sided log-rank test, with P < 0.05 considered statistically significant. (C) Forest plot illustrating hazard ratios (HR) of
PT-resident Prevotella and other clinical parameters based on multivariable Cox regression analysis. (D) Volcano plot showing differential gene expression between the Prevotella
high- and low-abundance groups, as determined by edgeR. Genes with P < 0.05 were considered significantly differentially expressed. (E) Functional enrichment analysis of highly
expressed genes in high abundance group of Prevotella. (F) GSEA analysis showed that the inflammatory response pathway was significantly enriched in the high abundance group
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associated with immunotherapy response. (C) The ROC curve for predicting immunotherapy response using the combined diagnostic model, PT-resident Prevotella, and PD-L1.
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significant.
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Discussion

The introduction of ICIs has significantly
improved the survival outcomes for patients with
NSCLC and reshaped their treatment landscape [5].
Nevertheless, significant interindividual
heterogeneity in treatment response and the limited
proportion of long-term responders underscore the
need for novel biomarkers to optimize patient
stratification [6]. Tissue-resident microbiota actively
participates in tumor immune modulation and holds
potential as a powerful indicator of therapeutic
efficacy [18, 19]. The present study integrated
microbiome and transcriptome profiles from paired
clinical specimens to construct a microbe-host-gene
interaction network, through which Bradyrhizobium
and Prevotella were identified as key taxa exhibiting
high host-gene dependency. Notably, Prevotella
demonstrated strong positive associations with
enhanced antitumor immunity and favorable clinical
outcomes. Furthermore, a predictive model
incorporating PT-resident Prevotella abundance with
routine blood test indicators exhibited robust
predictive performance, offering a novel and practical
companion diagnostic tool to facilitate personalized
immunotherapy in NSCLC.

While intratumoral microbes are significantly
more abundant than those in adjacent non-tumor
tissues in liver [33], pancreatic [34], and breast cancers
[12], lung cancer exhibits an opposite pattern
characterized by substantial microbial accumulation
non-tumorous regions, as reflected by markedly
reduced microbial abundance and diversity within
tumor tissues [19, 35-37]. In the present study,
2bRAD-M was employed to profile microbial
communities in NSCLC T and PT samples due to its
advantage in low-biomass microbiome detection.
Several intratumoral bacteria previously reported in
NSCLC, including Acinetobacter,  Streptococcus,
Sphingomonas, and Pseudomonas [20, 38], were also
detected in our study. Distinct from these prior
observations, our data revealed a unique microbial
signature in PT samples, marked by higher
abundance of Bradyrhizobium, Geobacillus, Prevotella,
and other genera, alongside increased microbial
diversity compared with T samples. This differential
microbial pattern between T and PT samples was
further validated by both IHC and FISH analyzes.
Moreover, bronchoalveolar lavage fluid, a biofluid in
direct contact with the lung cancer microenvironment,
exhibits a microbial composition similar to that of
tumor tissues [39]. The microbial diversity is also
markedly reduced compared with that of adjacent
non-cancerous and healthy tissues [40], further
supporting the presence of characteristic microbial
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depletion within lung cancer lesions. One possible
explanation for the reduced intratumoral microbiota
in lung cancer may be attributed to the elevated
expression of MUC5AC  within  adjacent
non-cancerous tissues, which, as a mucin, may
provide favorable adhesion sites for microbial
colonization [36]. Collectively, these findings suggest
that the transition from normal lung tissue to NSCLC
involves substantial remodeling of the microbiome.

To elucidate how intratumoral microbiome
remodeling  influences = NSCLC  progression,
transcriptomic data were integrated to construct a
microbe-gene interaction network, through which
Bradyrhizobium and Prevotella were identified as key
bacterial taxa exhibiting the highest gene dependency
in NSCLC. These taxa were markedly enriched in PT
samples, and their associated genes were significantly
involved in immune-related pathways, showing
strong correlations with major immune components,
including T cells, NK cells, B cells, and DCs. Notably,
the pathways identified by the CMI-based analysis of
Prevotella-dependent genes differed from those
enriched in the high-Prevotells group in bulk
transcriptomic analysis. This difference likely reflects
the distinct analytical focuses, as the CMI method
captures Prevotella-specific regulatory interactions,
whereas bulk analysis reveals overall transcriptional
changes. These complementary results collectively
enhance understanding of how Prevotella modulates
host immune regulation in NSCLC.

In lung cancer, Bradyrhizobium preferentially
localizes to non-tumor regions and exhibits higher
abundance in early-stage patients compared with
late-stage patients [41, 42]. This genus has been
implicated in suppressing prostate tumor progression
by recruiting immune cells and downregulating
androgen receptor expression [43]. Similarly,
Prevotella colonizes healthy lung tissue, with a
progressive decline in abundance observed during
lung cancer development [44, 45]. Prevotella promotes
the regression of high-grade intraepithelial neoplasia
via interactions with DCs [46]. The observed
associations of Bradyrhizobium and Prevotella with
antitumor immunity prompted further evaluation of
their prognostic value in NSCLC. Higher Prevotella
abundance, but not Bradyrhizobium abundance,
correlated with improved outcomes, a finding that
was validated in an independent cohort of 165 cases.
Further investigation of a cohort of 94 patients who
received immunotherapy demonstrated that the
observed prognostic enhancement stemmed from the
correlation of Prevotells with and favorable
therapeutic =~ outcomes. = Compared with the
conventional biomarker PD-L1, the combination of
PT-resident Prevotella and routine blood test
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indicators enhanced the predictive power for NSCLC
immunotherapy response, achieving an AUC
exceeding 0.95. Previous studies have demonstrated
that Prevotella is associated with favorable
immunotherapy  responses in  hepatocellular
carcinoma [47], gastrointestinal malignancies [48], and
hematologic malignancies [49]. Therefore, the
integrative predictive model developed herein may
possess broad applicability and potential for
extension to additional cancer types.

Furthermore, the relationship between Prevotella
and targeted therapy was explored, but its predictive
capacity for treatment response proved limited, with a
positive predictive value of merely 0.52. Although
Prevotella was associated with MAPK and JAK-STAT
signaling pathways related to EGFR-targeted therapy,
no significant differences were observed between
EGFR-mutant and wild-type tumors, highlighting the
need for further validation. Notably, although
previous studies have implicated the MAPK pathway
acts as a potential oncogenic signaling cascade
promoting NSCLC progression [50], our study
revealed a significant positive correlation between
Prevotella, identified as a protective factor associated
with favorable NSCLC prognosis, and MAPK
signaling. This seemingly paradoxical association
may be attributed to the fact that MAPK activation is
often accompanied by increased infiltration of
CD8'PD1* T cells and proinflammatory polarization
of tumor-associated macrophages, both of which
enhance antitumor immune responses [51, 52]. In this
study, the significant positive correlation observed
between Prevotells and CD8" T cells may account for
its association with MAPK activation, suggesting that
the interaction between Prevotells and MAPK likely
occurs indirectly through CD8* T cells rather than via
a direct causal mechanism. This represents an
important avenue for future  mechanistic
investigations. Taken together, despite the need for
large-scale clinical validation, Prevotella emerges as a
promising biomarker candidate for predicting NSCLC
response to ICls rather than to targeted therapies.

Tumor-associated microbes play a pivotal role in
modulating host immune responses and influencing
the efficacy of cancer immunotherapy. In melanoma,
the co-presentation of intratumoral bacteria-derived
human leukocyte antigen peptides by both
antigen-presenting cells and tumor cells enhances the
presentation of immunogenic antigens, thereby
promoting T-cell activation and improving the
efficacy of ICIs [53]. Similarly, intratumoral
Lactobacillus reuteri and Fusobacterium nucleatum have
been shown to enhance ICI efficacy by promoting the
accumulation of Interferon-gamma-positive CD8* T
cells within the tumor microenvironment [54, 55]. In
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addition to NSCLC, Prevotella enrichment has been
consistently associated with favorable
immunotherapy responses across gastrointestinal and
hematologic malignancies, correlating with delayed
tumor progression, reduced mortality, and higher
rates of complete remission [48, 49, 56]. These
converging observations across cancer types suggest
that Prevotella plays an active and conserved role in
augmenting antitumor immunity, underscoring its
potential as a predictive biomarker of ICI efficacy.
More importantly, a notable concordance between
Prevotella abundance and PD-L1 expression patterns
was observed in the present study, suggesting that
Prevotella may act as a potential regulatory factor of
PD-L1, which could account for its critical influence
on immunotherapy response. A plausible underlying
mechanism  may involve the ability of
Prevotella-stimulated bone marrow-derived DCs to
prime naive T-helper cells, leading to up to a fivefold
increase in interleukin (IL)-17 levels compared with
other commensal bacteria [57]. Elevated IL-17
production  subsequently = upregulates  PD-L1
expression in tumor cells, thereby enhancing the
efficacy of immunotherapy [58]. Further studies are
warranted to elucidate the precise molecular
mechanisms through which Prevotella regulates PD-L1
expression.

The primary strength of this study lies in the use
of paired clinical tissue samples, which enabled a
comprehensive, system-level analysis of host-
intratumoral microbiota interactions through the
simultaneous acquisition of both microbiome and
host transcriptome datasets. Clinical validation across
prognosis, immunotherapy, and targeted therapy
cohorts further enhanced the robustness and
reliability of the results. Nonetheless, several
limitations should be acknowledged. First, Prevotella
has not yet been specifically cultured from clinical
tissues, limiting direct mechanistic validation; second,
the clinical relevance of Bradyrhizobium was assessed
only using public datasets, without confirmation in
independent clinical cohorts. Finally, the predictive
value of Prevotella for immunotherapy efficacy was
derived from a relatively small clinical cohort without
multicenter validation and its predictive accuracy
may vary across different immunotherapeutic agents.
Therefore,  further  large-scale,  prospective,
multicenter studies are warranted.

Conclusion

In summary, a comprehensive analysis revealed
significant differences in the microbial communities
between NSCLC tumors and PT, with PT exhibiting
markedly higher microbial richness and diversity.
Viable bacteria were successfully isolated and
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cultured from fresh tissue samples, confirming the
presence of live bacteria within lung tissues.
Moreover, microbial-host interactions were
delineated using the CMI approach, which identified
Bradyrhizobium and Prevotella as key bacteria
exhibiting the strongest host-gene dependency in
NSCLC. Both taxa were significantly enriched in
pathways associated with innate and adaptive
immune responses. Notably, Prevotella is closely
associated with prolonged survival in patients with
NSCLC, with its prognostic advantage largely
attributable to its influence on immunotherapy
responsiveness. In the immunotherapy cohort, a
predictive model integrating PT-resident Prevotella
abundance with routine blood test indicators
demonstrated robust performance in forecasting
immunotherapy outcomes, highlighting a promising
companion diagnostic tool to advance personalized
immunotherapy for patients with NSCLC.
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