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Abstract 

Background: The tumor-resident microbiome plays a pivotal role in shaping the tumor immune microenvironment; however, its 
relationship with the host transcriptome and the response to immune checkpoint inhibitors (ICIs) remains largely uncharacterized 
in non–small cell lung cancer (NSCLC). This study aimed to elucidate the relationship between tissue-resident microbiota, host 
transcriptomic alterations, and immunotherapy response in NSCLC. 
Methods: Paired tumor (T) and paracancerous tissue (PT) samples from patients with NSCLC were analyzed using 2bRAD-M and 
bulk RNA sequencing to generate comprehensive microbiome and transcriptome profiles. The conditional mutual information 
algorithm was employed to systematically investigate intratumoral microbe–host interactions. Associations between key microbes 
and patient prognosis, ICI response, and response to epidermal growth factor receptor (EGFR)–targeted therapy were assessed 
across four independent local clinical cohorts. 
Results: Higher microbial richness, α-diversity, and β-diversity were observed in PT samples than in T samples. Specifically, 
PT-resident Bradyrhizobium and Prevotella were identified as key bacterial taxa significantly associated with immune cell populations, 
including CD8+ T cells, natural killer cells, and activated dendritic cells. Among these, PT-resident Prevotella, but not Bradyrhizobium, 
was independently associated with improved prognosis of patients with NSCLC and ICI response in both local clinical sets and 
public datasets. Furthermore, a combined diagnostic model integrating PT-resident Prevotella abundance with routine clinical blood 
indicators demonstrated markedly superior predictive performance for ICI response compared with the conventional biomarker 
PD-L1. By contrast, PT-resident Prevotella exhibited no association with treatment response in the EGFR-targeted therapy cohort. 
Conclusion: PT-resident Prevotella is strongly associated with the prognosis and ICI response in patients with NSCLC. Moreover, 
integration of PT-resident Prevotella with routine clinical blood indicators holds promise as a potential auxiliary diagnostic tool to 
facilitate personalized immunotherapy in NSCLC. 
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Introduction 
Restoring antitumor immunity through 

immunotherapy has become a cornerstone of modern 
cancer treatment and has demonstrated remarkable 
efficacy in a subset of patients [1-4]. Immune 
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checkpoint inhibitors (ICIs) are now incorporated into 
first-line therapy for non–small cell lung cancer 
(NSCLC), and recent clinical trials (NCT03191786) 
have reported an increase in the 2-year survival rate 
for patients with advanced-stage disease from 12% to 
24% [5]. Despite their ability to alleviate immune 
suppression and reshape the tumor immune 
microenvironment, ICIs provide clinical benefit to 
approximately 40% of patients with NSCLC due to 
substantial interindividual variability in treatment 
response [6]. Therefore, accurately identifying 
patients most likely to respond to immunotherapy is 
essential for advancing personalized treatment 
strategies in NSCLC. 

Currently used clinical biomarkers for predicting 
ICI efficacy, such as programmed death-ligand 1 
(PD-L1) expression, tumor mutational burden, and 
various gene expression signatures, offer limited 
predictive power, with area under the curve (AUC) 
values typically ranging from only 0.6 to 0.75 [7]. 
These biomarkers primarily reflect intrinsic tumor 
features, whereas response to immunotherapy 
depends on the dynamic and complex interactions 
between the tumor and the host [8]. In recent years, 
several newly identified ICI-related biomarkers, such 
as CD8⁺ tumor-infiltrating lymphocytes [9] and T 
cell–inflamed gene expression profiles associated with 
antigen presentation, chemokine expression, cytolytic 
activity, and adaptive immune resistance [10], are all 
derived from intrinsic tumor features and 
demonstrate superior predictive performance 
compared with traditional biomarkers such as PD-L1. 
Therefore, efforts to identify novel 
immunotherapeutic biomarkers should focus on the 
immune system and its closely interacting 
components, such as tumor-associated microbiota, 
which predominantly reside within immune cells and 
form symbiotic relationships with the tumor immune 
microenvironment [11-13].  

The tumor-resident microbiome, an emerging 
and integral component of the tumor 
microenvironment, plays a critical role in modulating 
host immune responses [11]. In studies investigating 
the impact of the microbiome on tumor 
immunotherapy, early research has largely focused on 
the gut microbiome. For instance, the gut microbiota 
has been shown to critically modulate the efficacy of 
ICI therapy by shaping tumor-infiltrating immune 
cells and influencing macrophage polarization, 
thereby enhancing antitumor responses [14]. In 
addition, microbiota-derived signals can reprogram 
mononuclear phagocytes within the tumor 
microenvironment toward immunostimulatory 
phenotypes, activating type I interferon–natural killer 

cell – dendritic cell signaling and improving the 
effectiveness of immune checkpoint blockade [15]. 
With the development of microbiome sequencing 
technologies, it has become possible to accurately 
profile microbial communities within tumor tissues, 
providing novel insights into host – microbe 
interactions in the tumor microenvironment. 
Consequently, recent years have witnessed a growing 
body of evidence highlighting the presence of 
lung-resident microbes and their potential functional 
roles in pulmonary diseases [13, 16, 17]. High 
intratumoral microbial diversity in NSCLC has been 
associated with improved patient survival [13]. A 
more in-depth analysis further revealed that NSCLC 
tumors enriched with intratumoral microbes exhibit 
high expression of genes associated with favorable 
responses to ICIs, including GZMB2, CCL20, 
CXCR2P124, CXCL1312, and IL12RB225, suggesting 
that intratumoral microbes may enhance ICI efficacy 
by promoting an inflammatory tumor 
microenvironment [16]. Although the overall 
abundance and diversity of intratumoral microbes are 
relatively limited, they can modulate the tumor 
immune status by activating innate immunity and 
regulating immune cell function during tumor 
immunoediting [18, 19]. This unique characteristic 
offers strong theoretical and translational significance, 
given its potential to reflect the efficacy of 
immunotherapy. As open organs, the lungs harbor a 
particularly complex tumor immune 
microenvironment owing to the abundant infiltration 
of microorganisms [20]. However, systematic studies 
integrating the intratumoral microbiome with the host 
transcriptome to identify predictive biomarkers of 
immunotherapy response in NSCLC are lacking. 

By integrating microbiome and transcriptome 
data, we aimed to systematically elucidate the 
distribution patterns of tissue-resident microbes in 
patients with NSCLC. Our analysis revealed a 
significantly higher microbial abundance in 
paracancerous tissues (PT) than in tumor tissues (T), 
with no substantial differences observed between 
lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC). Using the conditional mutual 
information (CMI) algorithm, we constructed a 
microbiota–host-gene interaction network that 
identified PT-resident Prevotella as closely associated 
with antitumor-related signaling pathways. 
Moreover, in both bulk and localized clinical cohorts, 
a higher abundance of PT-resident Prevotella was 
positively associated with response to 
immunotherapy and a favorable prognosis in NSCLC. 
Furthermore, a predictive model combining Prevotella 
abundance with routine blood test indicators 
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demonstrated robust performance in predicting 
immunotherapy outcomes, providing a novel 
companion diagnostic approach to support 
personalized immunotherapeutic strategies in 
NSCLC. 

Materials and Methods 

Sample collection 
A total of 20 paired fresh NSCLC tumor and 

adjacent normal tissue samples for sequencing were 
obtained from Zhongnan Hospital of Wuhan 
University. Additionally, tumor and adjacent normal 
tissue samples were collected from 94 NSCLC patients 
(Table S1) who received anti-PD-L1 immunotherapy 
at Zhongnan Hospital of Wuhan University (14 adult 
patients) and Shanghai Chest Hospital (80 adult 
patients), and from 52 NSCLC adult patients (Table 
S2) who underwent EGFR-targeted therapy at Taihe 
Hospital. Adjacent normal tissue samples were 
collected from regions located more than 5 cm away 
from the tumor margin. All samples were 
histologically verified by experienced pathologists 
through H&E staining to confirm the absence of 
tumor infiltration or airway contamination. The fresh 
tissue samples were rapidly frozen in liquid nitrogen 
within 30 min of the surgical resection. All 
instruments and materials in contact with the lung 
tissues were sterilised. Following the application of 
quality control exclusions, the final sequencing 
analysis was conducted on 17 samples of adjacent 
tissue and 18 samples of tumor tissue. The clinical 
data were collated by the attending physicians from 
the patients' clinical charts and hospital discharge 
records.  

Immunotherapy and targeted therapy responses 
were evaluated radiologically every six weeks based 
on the Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1. Patients achieving a complete 
response (CR), partial response (PR), or stable disease 
(SD) lasting ≥ 6 months were classified as having a 
clinical benefit response (CBR). In contrast, those with 
SD lasting < 6 months or progressive disease (PD) 
were categorized as having no clinical benefit (NCB). 

Tissue microarray 

A LUAD tissue microarray (product No. 
HLugA180Su12; containing 90 paired tumor and 
adjacent normal tissues) and a LUSC tissue 
microarray (product No. HLug-Squl50Sur-02; 
containing 75 paired tumor and adjacent normal 
tissues) were purchased from Shanghai Outdo 
Biotech. 

2bRAD sequencing for microbiome (2bRAD- 
M) 

The 2b-RAD-M technology [21] is a qualitative 
and relative quantitative analysis of microorganisms 
that employs unique tags obtained through the 
enzymatic cleavage of microbial genomes by type IIB 
restriction enzymes. A database containing unique 
tags of each microorganism (2b-Tag-DB) was 
employed for qualitative analysis, whereby all 
microbial species that had unique tags were screened. 
The 2b-Tag-DB was then established again for the 
quantitative microorganisms, and a relative 
quantitative analysis was conducted. This entailed 
screening the microbial species obtained in the 
previous step and estimating their abundance 
according to the distribution of unique tags. 

Microbial diversity analysis and identification 
of differential taxa 

The alpha diversity was calculated using the 
Chao1, Shannon and Simpson indices with the 
"vegan" package, and visualized as box plots [22]. 
Beta diversity was assessed using Bray-Curtis, binary 
Jaccard and Euclidean distances, estimated by the 
"vegan" package and displayed as principal 
coordinate analysis (PCoA) scatter plots. Differential 
taxa between groups were identified using linear 
discriminant analysis (LDA) effect size (LEfSe), with 
an LDA score threshold of 4.0 [23]. 

Bacterial culture 
A total of five pairs of T and PT samples 

obtained from patients with NSCLC were subjected to 
bacterial culture under both aerobic and anaerobic 
conditions. The bacterial culture procedure was 
performed following the method described by Huan 
Yu et al [24]. Specifically, the obtained fresh tissue 
samples were immediately immersed in saline, with 
the entire sampling process conducted in accordance 
with strict aseptic conditions. Subsequently, in a 
sterile environment, tissue fragments were 
homogenised using a glass homogeniser in 1 mL of 
ice-cold PBS. Additionally, PBS was employed as a 
negative control, following the same workflow to 
ascertain the potential for environmental 
contamination. 100 μL of the aforementioned tissue 
homogenate was added to the BHI medium 
supplemented with 5% sheep blood. Pre-cultures was 
performed under aerobic or anaerobic conditions. 
After 24 h, the culture medium was inoculated onto 
Columbia agar medium with 5% sheep blood. The 
plates were incubated at 37 °C for 24 h under aerobic 
conditions or for 72 h under anaerobic conditions. 
Colonies were picked and identified using 
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MALDI-TOF mass spectrometry (MS) systems (Autof 
MS1000). 

Immunohistochemical (IHC) 
After dewaxed with xylene and hydrated with 

absolute ethanol, tissue sections were immersed in 
citric acid antigen retrieval buffer (pH 6.0). The 
sections were heated on medium heat until boiling for 
8 min, taken off the heat for 8 min, followed by an 
additional 7 min on medium-low heat. The sections 
were then washed three times with PBS (pH 7.4) on a 
decolorization shaker, with each wash lasting 5 min. 
Subsequently, the sections were incubated in a 3% 
hydrogen peroxide solution at room temperature, 
protected from light, for 25 min, followed by three 
PBS washes. Next, the sections were blocked with 3% 
BSA at room temperature for 30 min. They were then 
incubated overnight at 4 °C with anti- 
lipopolysaccharide (LPS) antibody (HYCULT 
BIOTECH, HM6011) / lipoteichoic acid (LTA) 
antibody (HYCULT BIOTECH, HM2048). The 
following day, after three PBS washes, the sections 
were incubated at room temperature for 50 min with a 
horseradish peroxidase-conjugated goat anti-mouse 
secondary antibody (abcam, ab6789). Finally, the 
sections were developed using DAB 
(diaminobenzidine) and counterstained with 
hematoxylin. Positive expression was indicated by a 
brownish-yellow coloration. 

Fluorescence in situ hybridization (FISH)  
FFPE tissue sections or tissue microarrays were 

deparaffinized and rehydrated. The sections were 
sequentially soaked in 100% xylene for 15 min twice, 
in 100% ethanol for 5 min twice, in 85% ethanol for 5 
min, and finally in 75% ethanol for 5 min. Sections 
were washed in DEPC-treated water. Incubate the 
sections in boiling citrate-EDTA antigen retrieval 
solution for 10 to 15 min and allow the solution to cool 
naturally. Incubate the sections in a pre-hybridization 
solution at 37 ˚C for 1 h. Use Cy5-labeled probe 
EUB338 5'-GCTGCCTCCCGTAGGAGT-3' (Seebio, 
ECA0016A, 50 μL) and Cy5-labeled Prevotella probe 5'- 
GCA CCT TCG AGC TTA AGC GT -3' 
(custom-synthesized) overnight at 37 ˚C. Wash with 
2× saline sodium citrate at 37 ˚C for 10 min, 1× SSC at 
37 ˚C for 5 min (two changes), and 0.5× SSC at room 
temperature for 10 min. Counterstain cell nuclei with 
DAPI (2 μg/μL) for 8 min in the dark. Mount the 
sections with fade-resistant Mountant. The signal was 
captured using a PANNORAMIC MIDI digital slide 
scanner (3DHISTECH Ltd., Budapest, Hungary). 
Fluorescence images were viewed using CaseViewer 
version 2.4 (3DHISTECH Ltd., Budapest, Hungary), 
and the fluorescence intensity was quantified as 

integrated optical density (IOD) [25, 26] using Image 
Pro Plus 6.0 software (Media Cybernetics, Silver 
Spring, MD, USA). 

Weighted gene co-expression network analysis 
(WGCNA) 

WGCNA aims to mine functionally related 
bacteria with similar co-expression patterns. By 
calculating the expression correlation coefficients, 
bacteria with highly correlated expression profiles are 
clustered into the same module, thereby revealing 
similar expression patterns. These modules often 
consist of bacteria that are potentially involved in the 
same biological processes or pathways. To achieve 
this, we selected a soft-thresholding power of 8 to 
ensure a scale-free network, enabling dynamic 
pruning of dendrogram branches according to cluster 
morphology. To reduce the likelihood of spurious 
associations during module identification, the 
adjacency matrix was subsequently transformed into 
a Topological Overlap Matrix (TOM). The bacteria 
within the identified modules were then mapped to 
construct co-occurrence networks of tissue bacterial 
communities, which were visualized using Cytoscape 
3.5.1 software. Additionally, we explored the 
correlation between WGCNA modules and various 
clinical variables, such as age, gender, smoking status, 
alcohol consumption, histological type, TNM stage, 
lymph node metastasis, PD-L1 expression, and 
sample type-by generating heatmaps that illustrate 
the relationships and corresponding P-values for each 
module. 

RNA extraction and RNA-seq 

Total RNA was extracted using the TRIzol 
reagent (Invitrogen, 15596026CN) according to the 
manufacturer’s instructions. RNA purity and 
concentration were assessed with a NanoDrop 2000 
spectrophotometer (Thermo Scientific, USA), while 
RNA integrity was evaluated using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). Subsequently, transcriptome libraries were 
constructed following the protocol of the VAHTS 
Universal V6 RNA-seq Library Prep Kit. RNA 
sequencing was performed by OE Biotech Co., Ltd. 
(Shanghai, China) using the Illumina NovaSeq 6000 
platform, generating 150 bp paired-end reads. The 
raw reads in fastq format were processed with fastp to 
remove low-quality reads, yielding clean reads for 
subsequent analysis. Alignment to the reference 
genome (GRCh38) was conducted using HISAT2, 
followed by quantification of gene expression levels 
(FPKM). Gene-level read counts were obtained using 
HTSeq-count. 
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Construction of microbe-gene dependency 
network dependent on conditional mutual 
information algorithm (CMI) 

Data pre-processing. For all species-level 
microbes, only those with abundance in at least 5 
samples were retained for subsequent analysis. The 
same processing was applied to gene. Next, each 
microbe (gene) was discretized using its median value 
across all samples as the threshold, setting values 
below the median to 0 and those equal to or above the 
median to 1. For phenotype data, when the phenotype 
is adenocarcinoma vs. squamous cell carcinoma, 
adenocarcinoma was set to 0 and squamous cell 
carcinoma to 1. When the phenotype is cancer vs. 
control, cancer was set to 1 and control to 0. 
Calculation of dependency value. For each microbe 
and gene pair, conditional mutual information was 
applied to calculate the dependency value of the gene 
(denoted as G) on the microbe (denoted as M) in the 
context of phenotype (denoted as P). The dependency 
relationship of gene G on microbe M was calculated 
via the CMI described as the following equation: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺; 𝑃𝑃|𝑀𝑀)

= � � �𝑝𝑝𝐺𝐺,𝑃𝑃,𝑀𝑀
𝑔𝑔∈𝐺𝐺𝑝𝑝∈𝑃𝑃𝑚𝑚∈𝑀𝑀

(𝑔𝑔, 𝑝𝑝,𝑚𝑚)log
𝑝𝑝𝑀𝑀(m)𝑝𝑝𝐺𝐺,𝑃𝑃,𝑀𝑀(𝑔𝑔, 𝑝𝑝,𝑚𝑚)
𝑝𝑝𝐺𝐺,𝑀𝑀(𝑔𝑔,𝑚𝑚)𝑝𝑝𝑃𝑃,𝑀𝑀(𝑝𝑝,𝑚𝑚) 

Significance test of the dependency relation. 
We used permutation method to evaluate the 
significance of every microbe-gene dependency 
relation. For each candidate pair (Mi, Gj), we first 
calculated its real CMI value as described above. Then 
we randomly permuted the abundance of microbe Mi 
1000 times and calculated 1,000 CMI values as the null 
hypothesis distribution. Then the order (descending) 
of the real CMI value in the null hypothesis 
distribution divided by 1000 was taken as the P-value 
of the dependency pair. Finally, we used a threshold 
(0.05 in this work) to decide whether the pair was 
significant or not. Construction of microbe-gene 
dependency network. The significant microbe-gene 
dependency pairs were preserved to construct the 
dependency network, in which, nodes are microbes 
and genes, and the edge represents the dependency 
relationship of the gene on the corresponding 
microbe. 

Identification of key bacteria by random forest 
Random forest is a classic regression and 

classification ensemble algorithm. By constructing 
multiple decision trees, each using a different subset 
of features during training, and by repeatedly 
evaluating the significance of features in different 
decision trees, random forest is able to identify robust 
features that show significance across multiple trees 

[27]. In this study, the randomForest package was 
used to perform random forest analysis to identify 
key bacteria (ntree = 100). 

Enrichment analysis of characteristic bacteria 
We input the dependent genes of Bradyrhizobium 

and Prevotella screened by CMI into the g:Profiler 
analysis tool (https://biit.cs.ut.ee/gprofiler/gost), 
selected GO, KEGG, REACTOME and WikiPathway 
as the background gene set, and used the BH method 
for P value correction. Entries with P < 0.05 were 
considered significantly enriched. 

Immune infiltration correlation analysis  
To evaluate the correlation between identified 

key bacteria and immune cell infiltration, we first 
calculated cell infiltration scores using the 
single-sample Gene Set Enrichment Analysis 
(ssGSEA) algorithm based on our bulk RNA-seq data. 
A set of 28 immune cell gene markers, derived from 
the study by Charoentong p et al. [28], was employed 
as the background gene set. Subsequently, Spearman 
correlation analysis was performed to compute the 
correlation coefficients and significance between 
bacterial abundance and immune cell infiltration 
scores. Finally, the results were visualized using the R 
package "pheatmap". 

Survival analysis 
To assess the association between Bradyrhizobium 

and Prevotella and patient survival, we utilized 
TCGA-LUAD/LUSC data pre-aligned with bacterial 
sequences, as reported by Chen et al. [29]. We 
extracted normal tissue samples (as both bacteria 
were found to be highly enriched in adjacent 
non-cancerous tissues) and grouped them based on 
the median bacterial abundance. Survival analysis 
was conducted using the R package "survival" and 
"survminer", with significance evaluated by the 
log-rank test, where a P-value < 0.05 was considered 
indicative of significant survival differences between 
the two patient groups. 

Differential gene expression and enrichment 
analysis 

To further validate the association between 
Prevotella and immune regulation within TCGA data, 
we first grouped the TCGA-LUAD/LUSC adjacent 
non-cancerous samples according to the median 
abundance of Prevotella. Differential gene expression 
analysis was then performed using the R package 
"edgeR". Subsequently, the top 50 genes highly 
expressed in the high-Prevotella group were subjected 
to enrichment analysis employing the same methods 
as described earlier. 
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Gene set enrichment analysis (GSEA) 
The genes identified from the differential 

expression analysis were ranked by log fold change 
(logFC) values, from highest to lowest, and used as 
input for GSEA. The hallmark gene sets (H: hallmark 
gene sets) were downloaded from the MsigDB 
database (https://www.gsea-msigdb.org/gsea/ 
msigdb) to serve as the background gene set. GSEA 
was conducted using the R package "clusterProfiler", 
with pathways showing a corrected P-value < 0.05 
and a normalized enrichment score (NES) greater 
than 0 considered significantly upregulated in the 
high-Prevotella group. 

Generalized linear mixed model and combined 
diagnostic model construction 

To identify biomarkers associated with response 
to immunotherapy or targeted therapy, a generalized 
linear mixed model (GLMM) was constructed using 
the glm function in R. The association between each 
biomarker and treatment response was evaluated by 
calculating the odds ratio (OR), where an OR > 1 
indicated a positive association with treatment 
response and an OR < 1 indicated an association with 
non-response. Biomarkers with a P value < 0.05 were 
considered significant. Receiver operating 
characteristic (ROC) curves for individual biomarkers 
were generated using the R package pROC, and AUC 
was calculated to assess their diagnostic performance 
in predicting treatment response. To evaluate the 
diagnostic performance of multiple biomarkers in 
combination, those identified by GLMM were 
incorporated into a binary logistic regression model. 
The immunotherapy cohort was randomly divided 
into a training set and a validation set in an 8:2 ratio, 
and ROC analysis was performed to assess the 
diagnostic performance in both sets. 

Statistical analysis 
All statistical analyzes were conducted using R 

software (version 4.3.0) and Sangerbox 
(http://sangerbox.com/login.html). For group 
comparisons of continuous variables following a 
normal distribution, t-tests were used; otherwise, the 
Wilcoxon test was applied. P-values for gene set 
enrichment analysis were adjusted using the 
Benjamini–Hochberg method. Survival analysis was 
performed using the log-rank test, and P-values were 
corrected using the Bonferroni method. Correlations 
between variables were assessed using Spearman’s 
correlation coefficients. All statistical tests were 
two-sided, with a threshold of P < 0.05 set for 
statistical significance. 

Results 
Microbial diversity and community structure 
in patients with NSCLC 

Twenty paired T and PT samples were collected 
from patients diagnosed with NSCLC. Following 
quality control filtering, 17 PT and 18 T samples were 
included in the final sequencing analysis. Detailed 
clinical information for all patients is provided in 
Table S3. The 2bRAD-M technology was employed to 
investigate microbial communities within the clinical 
samples, yielding 277.24 million raw reads, 247.98 
million enzyme reads, and 232.34 million clean reads. 
On average, each sample yielded 6.64 million clean 
reads (Table S4). Taxonomic classification of the clean 
reads performed against the 2b-Tag-DB identified 262 
species, 111 genera, 62 families, and 37 orders (Table 
S5). The predominant bacterial orders included 
Enterobacterales, Bacillales, and Lactobacillales, with 
Bacillus_A_bombysepticus, Escherichia coli, and 
Streptococcus pneumoniae being the most abundant 
species (Figure 1A-B). 

At the species level, 58 bacterial taxa were shared 
between the T and PT groups, with seven species 
unique to the T group and 197 unique to the PT group 
(Figure 1C-D). Alpha diversity metrics, including the 
Chao1, Shannon, and Simpson indices, revealed 
significantly higher bacterial diversity in PT than in T 
(Figure 1E). Beta diversity analysis based on binary 
Jaccard distance using both NMDS and PCoA 
revealed a clear separation of microbial communities 
between T and PT tissue (Figure 1F). Furthermore, 
PERMANOVA performed by the ADONIS test 
yielded a p-value < 0.001, underscoring the distinct 
microbial community structures between the two 
groups (Figure 1F). 

Based on our sequencing data, we confirmed the 
presence of bacterial DNA in NSCLC tissues, 
designed probes targeting pan-bacterial DNA, and 
performed fluorescence in situ hybridization (FISH). 
The results showed that the presence of bacteria was 
higher in NSCLC tissues and in the PT group than in 
the T group (Figure 1G). Immunohistochemical (IHC) 
staining for LTA and LPS produced similar results 
(Figure 1H). 

Next, we performed bacterial culture techniques 
on five pairs of fresh T and PT samples to verify the 
presence of viable bacteria. Following 
homogenization, the samples were evenly spread on 
culture plates and incubated, resulting in visible 
colony growth of bacterial colonies in 80% of PT 
samples, thereby confirming the presence of live 
bacteria in the lung tissue (Figure 1I). Multiple 
colonies were isolated and identified by MS, 
confirming the presence of Bacillus cereus in fresh PT 
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samples. This finding was consistent with our 
2bRAD-M sequencing data. By contrast, no colonies 
were observed on plates coated with T samples, likely 
due to the extremely low bacterial abundance in T 
samples, which was insufficient for visible culture 

growth. This observation aligned with our sequencing 
data, which indicated a significantly higher bacterial 
abundance in the PT group than in the T group 
(Figure 2A-B, Table S5). 

 

 
Figure 1. Analysis and validation of the composition of microbiota in NSCLC tissues. (A, B) Composition features of the microbiota in tumor (T) and paracancerous tissue (PT) 
groups at the order (A) and species (B) level. (C) A Venn diagram exhibited the shared and unique species between the T and PT groups. (D) Abundance of the microbiota in 
the T and PT groups at the species level. (E) Comparison of alpha diversity (Chao1, Shannon index, and Simpson index) between the T and PT groups, Statistical significance was 
determined by two-sided Wilcoxon rank-sum test, *P < 0.05, ***P < 0.001. (F) Comparison of β-diversity between the T and PT groups based on the Binary Jaccard distance. 
Statistical significance was assessed using PERMANOVA performed with the ADONIS function, P < 0.001. (G) Results of FISH fluorescence staining NSCLC tissues. The red signal 
indicates the positive signal of the synthetic FISH probe (EUB338). (H) Results of IHC staining of T and PT sections. T: tumor tissue; PT: paracancerous tissue. (I) Fresh T and PT 
of NSCLC patients were used to homogenize and culture live bacteria. NC: negative control. 
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Figure 2. Differential abundances of bacterial taxa between the tumor (T) and paracancerous tissue (PT) groups. (A, B) The boxplot showed the relative abundance of top ten 
genus(a) and species (b) were increased in the PT group as determined by two-sided paired Wilcoxon signed-rank tests, P < 0.05 considered statistically significant. *P < 0.05, **P 
< 0.01, ***P < 0.001, ****P < 0.0001. (C) Cladogram generated by the LEfSe represents the taxonomic hierarchical structure of the identified microbial populations. Red nodes 
and green nodes represent relatively high abundance of species with significant difference in T and PT group, respectively. Yellow nodes indicate that there was no significant 
difference in the comparison of species in the two groups. (D) The histogram of LDA score showed 39 biomarkers with significant differences between the T and PT group. LDA 
score represented the influencing degree of biomarkers. 

 
Given the marked differences in the tumor 

microenvironments of LUAD and LUSC tissues, we 
further examined the compositional diversity of 
bacterial microbiota. LUAD tissues exhibited greater 
bacterial species richness than LUSC tissues, whereas 
no significant differences were observed in the overall 
community diversity between the two subtypes 
(Figure S1A-D). Moreover, beta diversity analysis 
revealed no significant differences between the LUAD 

and LUSC microbiomes (Figure S1E). 
Overall, these findings indicate that bacterial 

diversity is significantly higher in PT samples than in 
T samples of patients with NSCLC, with the presence 
of viable bacteria further confirmed in PT samples. By 
contrast, no significant differences in bacterial 
diversity were observed between LUAD and LUSC 
tissues. 
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Differential abundances in bacterial taxa 
between T and PT of patients with NSCLC 

To identify differentially represented taxa in T 
and PT samples of patients with NSCLC, the relative 
abundances of microbial communities were compared 
between the two groups. The analysis revealed that 
nearly all of the top 10 differential microbiotas were 
significantly enriched in the PT group. At the genus 
level, Bradyrhizobium, Geobacillus, Prevotella, 
Sediminibacterium, and Porphyromonas exhibited 
pronounced enrichment in PT (Figure 2A). At the 
species level, Bradyrhizobium sp003020075, Geobacillus 
thermoleovorans, Sediminibacterium sp017537025, 
Mesorhizobium sp004136315, and Sphingomonas 
sp002127225 were more abundant in PT (Figure 2B). 

To further identify high-dimensional 
biomarkers, LEfSe and calculated LDA scores were 
employed to compare the bacterial taxa between the 
groups. The resulting cladogram depicting the 
phylogenetic distribution indicated that biomarkers 
distinguishing T from PT were predominantly located 
in the PT group, likely reflecting the significantly 
higher bacterial abundance in PT samples than in T 
samples (Figure 2C). LDA revealed 39 discriminative 
features with significantly distinct relative 
abundances between the groups. Among these, 
Bradyrhizobium, Geobacillus, and Prevotella emerged as 
the top three distinguishing genera in PT samples, 
whereas Acinetobacter guillouiae was the most 
distinctive taxon in T samples (Figure 2D). 
Conversely, only three genera and five species 
exhibited differential abundance between LUAD and 
LUSC, with nearly all taxa showing a significantly 
higher enrichment in the PT group (Figure S2A-B). 
Among these taxa, Cupriavidus metallidurans emerged 
as the most discriminative in LUSC, whereas 
Sphingomonadaceae was the most discriminative in 
LUAD (Figure S2C-D).  

These findings indicate that major differences in 
tissue-resident microbial composition were primarily 
observed between T and PT, whereas microbial 
variation between LUAD and LUSC was 
comparatively limited. 

Correlation between tissue microbial 
signatures and clinical characteristics 

To investigate co-abundant interactions among 
microbiota and their clinical relevance, WGCNA was 
employed to characterize the network architecture of 
tissue-resident microbiota. This method enables the 
systematic identification of associations between 
microbial co-abundance modules and clinical traits 
while preserving sensitivity to low-abundance taxa 
and minimizing information loss [30]. The analysis 
revealed 11 distinct microbial modules (Table S6), 

with the gray module classified as non-functional and 
the remaining modules considered functionally 
relevant (Figure 3A). Notable heterogeneity was 
observed across these functional modules (Figure 3B). 

Subsequent analyzes evaluated correlations 
between the identified microbial modules and a range 
of clinical and pathological characteristics, including 
age, sex, smoking status, drinking habits, histological 
type, TNM stage, lymph node metastasis (LNM), 
PD-L1 expression, and tumor group (Figure 3C). The 
microbial members of the black module were 
significantly negatively correlated with those of the T 
group, suggesting a potential role for probiotic taxa 
with anticancer properties. This effect is likely 
attributable to the high enrichment of Geobacillus 
within this module, which has been shown to exert 
antitumor effects via the secretion of the metabolite 
L-norleucine [31]. Additionally, pink and 
green-yellow modules were significantly positively 
correlated with tumor LNM, potentially due to the 
presence of Veillonella, a key microbial flora in the 
lower respiratory tract known to promote tumor 
LNM in patients with lung cancer [32]. In summary, 
WGCNA provided a comprehensive overview of the 
complex microbial interactions within NSCLC tissues 
and revealed strong associations with clinical 
characteristics. 

Tumor transcriptome and biological status are 
shaped by tissue-resident microbiota via the 
tumor immune microenvironment 

The marked enrichment of microbiota in PT 
prompted us to investigate the association between 
bacterial abundance and tumor progression, as well as 
the potential influence of the microbiome on host gene 
expression and biological processes. To elucidate 
these interactions, bulk RNA sequencing was 
performed on tissue samples paired with microbiome 
data, followed by integrative multi-omics analysis. To 
more accurately characterize microbe–host 
interactions, a CMI-based approach was used (Figure 
4A). The CMI was calculated between phenotypes (T 
vs. PT) and gene expression profiles, conditioned on 
the abundance of phenotype-associated microbes, that 
is, CMI (gene, phenotypes, and microbes). This metric 
quantifies the additional predictive value of microbial 
abundance that contributes to phenotypic 
differentiation through gene expression, reflecting the 
extent to which gene expression depends on the 
presence of microbes. 

Based on this framework, a microbe–gene 
interaction network was constructed, leading to the 
identification of 43 gene-dependent microbes (GDMs) 
in patients with NSCLC, of which 25 exhibited 
differential enrichment between T and PT groups 
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(Figure 4B–C, Table S7). Random Forest analyzes 
were then performed to rank the importance of these 
GDMs, highlighting 20 bacterial taxa with strong 
discriminative power between T and PT samples 
(Figure 4D). Considering the inherently low 
abundance of intratumoral microorganisms, the top 
10 most enriched bacterial taxa in the tissue samples 

were selected (Figure 4E). These were then intersected 
with those identified through CMI-based analysis and 
the top contributors to classification performance, 
revealing Bradyrhizobium and Prevotella as 
representative microbes characterized by high tissue 
abundance, strong gene dependency, and robust 
discriminative power (Figure 4F). 

 

 
Figure 3. WGCNA analysis of tissue microbes at the genus level. (A) Hierarchical clustering dendrogram of co-expressed microbes after module fusion. (B) Eigen microbe 
adjacency correlation heatmap of the function module. (C) Heatmap of the correlation between module and clinical trait. 
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Figure 4. Screening of NSCLC gene-dependent microbes based on CMI technology. (A) The construction process of interaction network based on CMI technology. (B) 
Microbes-host interaction network constructed using CMI technology. (C) 25 of the 43 gene-dependent genera in the microbes-host interaction network differed between the 
T and PT groups. (D) Random forest was used to screen top 20 microbe variables, 100 trees were selected to build a robust model, and microbes were sorted according to mean 
decrease accuracy and mean decrease Gini. (E) The top 10 abundant genera in tumor (T) and paracancerous tissue (PT) groups. (F) Venn diagram showing shared and unique 
genera between (C), (D), and (E).  

 
Subsequent analyzes focused on Bradyrhizobium 

and Prevotella to investigate their potential functional 
roles in NSCLC. Pathway enrichment analysis 
revealed that Bradyrhizobium-dependent genes were 
primarily involved in pathways regulating intrinsic 
apoptosis signaling in response to DNA damage, 
inflammatory responses following antigen 
stimulation, αβ–T-cell activation, and positive 
regulation of T-cell differentiation within the thymus 
(Figure 5A). By contrast, Prevotella-dependent genes 
were enriched in pathways related to AMP-mediated 
immune responses, insulin metabolism, and innate 
immune responses in the mucosa (Figure 5B). 
Notably, both Bradyrhizobium- and Prevotella- 
dependent genes were enriched across multiple 
immune-related pathways. Consequently, we 
conducted immune cell infiltration analysis, which 
revealed significant correlations between these 
bacteria and key components of the tumor immune 
microenvironment, including effector memory CD8+ 

T cells, natural killer (NK) cells, activated dendritic 
cells (DCs), macrophages, and neutrophils (Figure 
5C). 

In addition, CMI analysis was extended to 
various histological subgroups. Within the LUAD and 
LUSC groups, 24 gene-dependent microorganisms 
were identified, of which only two (Novosohingobium 
and Tardiphaga) exhibited differential expression 
between the groups (Figure S3A-B, Table S8). 
Considering the enrichment of microorganisms in PT 
and the distinct microenvironmental contexts of 
LUAD and LUSC, separate microbial–gene interaction 
networks were constructed for LUAD paracancerous 
(LUADP) and LUSC paracancerous (LUSCP) tissues. 
A total of 18 gene-dependent microorganisms were 
identified across these groups. However, none of 
these microorganisms exhibited significant 
differences in abundance between LUADP and 
LUSCP tissues (Figure S3C-D, Table S9). Owing to 
the limited number of differentially gene-dependent 
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microorganisms detected across the LUAD, LUSC, 
LUADP, and LUSCP groups, no additional subgroup 
analyzes were conducted. Overall, these findings 
suggest that tissue microbiota may influence the 

tumor transcriptome and biological properties by 
modulating both innate and adaptive immune 
processes within the tumor microenvironment. 

 

 
Figure 5. Gene signatures associated with Bradyrhizobium and Prevotella and their immune infiltration analysis. (A) Bradyrhizobium-dependent genes and their enrichment 
pathways (p<0.05). (B) Prevotella-dependent genes and their enrichment pathways (p<0.05). (C) Heatmap of the correlations between Bradyrhizobium, Prevotella and the 
infiltration levels of tumor-associated immune cells. 
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PT-resident Prevotella is associated with 
improved prognosis in patients with NSCLC 

Given the significant associations previously 
identified between Bradyrhizobium, Prevotella, and 
antitumor immune components in NSCLC, we 
hypothesized that these microbial taxa may be linked 
to improved patient prognosis. Survival analyzes 
were first performed using PT data from NSCLC cases 
in the TCGA cohort, in which both Bradyrhizobium and 
Prevotella were detected. The results revealed that 
Prevotella abundance was significantly associated with 
favorable clinical outcomes, including prolonged 
overall survival (OS), disease-specific survival, and 
disease-free survival (Figure 6A), whereas no 
significant associations were observed between 
Bradyrhizobium and patient survival outcomes (Figure 
6B). And our previous WGCNA analysis of the 
clinical relevance of microbial modules revealed that 
the turquoise module, which includes Prevotella 
(Table S6), was negatively correlated with TNM 
stage, LNM, and T group, but positively correlated 
with PD-L1 expression (Figure 3). This finding further 
supports the observation that patients with higher 
Prevotella abundance tend to have better prognosis. 

To validate these findings, Prevotella abundance 
was quantitatively assessed in clinical tissue 
microarrays comprising 90 LUAD and 75 LUSC 
samples using FISH. These results were consistent 
with the sequencing data, which showed significantly 
higher Prevotella abundance in PT samples than in T 
samples (Figure 6C-D). Further clinical correlation 
analysis revealed a significant positive relationship 
between Prevotella abundance in PT and prolonged 
OS (Figure 7A). Survival analyzes further revealed 
that patients with high Prevotella abundance exhibited 
markedly improved OS in both LUAD and LUSC 
(Figure 7B). Importantly, multivariate Cox regression 
analysis adjusted for clinical variables, including age, 
sex, tumor grade, LNM, and TNM stage, confirmed 
that Prevotella abundance in PT was an independent 
prognostic factor for patients with NSCLC (Figure 
7C). Collectively, these results corroborated our initial 
hypothesis and highlighted Prevotella as a promising 
prognostic biomarker for improving NSCLC 
outcomes. 

To gain deeper insights into the potential 
mechanisms by which Prevotella influences the 
prognosis of patients with NSCLC, differential gene 
expression and functional enrichment analyzes were 
conducted between patients with high and low 
Prevotella abundance in PT. Notably, genes 
upregulated in patients with high Prevotella 
abundance were significantly enriched in signaling 
pathways closely associated with immunotherapy 
and targeted therapy, including the mitogen-activated 

protein kinase (MAPK) pathway (ERK and p38), JAK–
STAT signaling, T-cell proliferation, and 
inflammatory responses (Figure 7D-F). These 
pathways are well-established regulators of 
therapeutic efficacy. Collectively, these findings 
demonstrate that Prevotella enrichment in the PT of 
patients with NSCLC is associated with improved 
prognosis and serves as an independent prognostic 
factor. This beneficial effect may be mediated through 
its modulation of host responses to targeted therapy 
and immunotherapy. 

PT-resident Prevotella combined with routine 
blood indicators may serve as a predictive 
biomarker for immunotherapy response in 
NSCLC 

To investigate the association between Prevotella 
and immunotherapy response, 94 patients treated 
with anti–PD-L1 therapy were enrolled from two 
independent centers. According to RECIST v1.1 
criteria, 50 patients exhibited a clinical benefit 
response (CBR), whereas 44 showed no clinical benefit 
(NCB) (Figure 8A). Notably, significant differences 
were observed between the CBR and NCB groups in 
terms of PT-resident Prevotella, TNM stage, PD-L1 
expression, commonly used lung cancer biomarkers 
(CEA, CYFRA21-1, and CA125), and routine blood 
tests indicators (including aspartate aminotransferase 
[AST], alkaline phosphatase [ALP], alanine 
aminotransferase [ALT], calcium [Ca], eosinophil 
[EOS], lymphocytes [LYM], hematocrit [HCT], 
hemoglobin [HGB], and mean corpuscular volume 
[MCV]) (Figure 8A). To assess the independent 
predictive value of these clinical variables, a 
generalized linear mixed model was constructed 
incorporating all clinical indicators. After adjustment, 
PT-resident Prevotella, Ca, age, and HGB were 
identified as independent protective factors, whereas 
HCT and ALT were identified as independent risk 
factors for immunotherapy response (Figure 8B, 
Table S10). Based on these predictors, a combined 
predictive model was developed by integrating 
PT-resident Prevotella abundance with routine blood 
test indicators. The model formula is expressed as 
follows: 

Predictive Score = 9.675 × PT_Prevotella + 1.749 × Ca + 
8.086 × Age + 3.332 × HGB − 1.676 × HCT − 5.930 × 

ALT. 

Patients with a predictive score above the 
optimal cutoff of 720.7 were classified as likely 
responders to immunotherapy. The combined 
diagnostic model demonstrated superior predictive 
performance (AUC: 0.97) compared with models 
based solely on PD-L1 expression (AUC: 0.66) or 
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PT-resident Prevotella alone (AUC: 0.86) (Figure 8C). 
Although PD-L1 is widely used as a clinical 

biomarker, it was not significant as an independent 
predictor in the multivariate model (Figure 8B), 
suggesting that its predictive utility may be 
modulated by other covariates within the tumor 
microenvironment. Given the previously observed 
association between paracancerous Prevotella 

abundance and tumor-infiltrating immune 
components, further correlation analysis revealed a 
significant positive association between Prevotella 
abundance and PD-L1 expression (Figure 8D). 
Consistently, IHC staining of NSCLC tissues 
confirmed that higher Prevotella abundance in PT 
samples corresponded to elevated PD-L1 expression 
in T samples (Figure S4). 

 

 
Figure 6. Paracancerous tissue (PT)-resident Prevotella is associated with a better prognosis of NSCLC. (A, B) Kaplan-Meier curves depicting the survival differences of NSCLC 
patients between high and low paracancerous tissue-resident Bradyrhizobium (A) and Prevotella (B) abundance groups based on TCGA data (TCGA-LUAD/LUSC). Survival 
differences were assessed using the two-sided log-rank test, with P < 0.05 considered statistically significant. (C) Boxplots show that the abundance of Prevotella was higher in PT 
than in tumor (T) in both LUAD and LUSC as determined by two-sided paired Wilcoxon signed-rank tests, P < 0.05 considered statistically significant. (D) FISH fluorescence 
staining images show high enrichment of Prevotella in PT than in T in LUAD and LUSC. 
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To comprehensively evaluate the predictive 
value of Prevotella, an additional cohort of 52 patients 
with NSCLC receiving EGFR–targeted therapy was 
analyzed (36 vs. 16 in the CBR and NCB groups, 
respectively). The clinical feature distributions 
between the groups are shown in Figure S5A. A 
significantly higher abundance of PT-resident 
Prevotella was observed in the CBR group. Although 
PT-resident Prevotella remained an independent 
predictor of response to targeted therapy after 
multivariate adjustment (Figure S5B) and its AUC 
exceeded 0.75 (Figure S5C), its positive predictive 
value was only 0.52. Moreover, no significant 

differences were observed in the EGFR mutation 
status (Figure S5D), suggesting that the predictive 
capacity of PT-resident Prevotella for targeted therapy 
is limited. 

In summary, integrating PT-resident Prevotella 
abundance with routine blood test indicators provides 
a more accurate prediction of immunotherapy 
response in patients with NSCLC than PD-L1 alone; 
however, this predictive advantage is not evident in 
the context of targeted therapy. Moreover, the clinical 
role of PD-L1 may be influenced by the adjacent 
paracancerous microbial microenvironment, 
particularly Prevotella.  

 

 
Figure 7. Effect of paracancerous tissue (PT)-resident Prevotella on clinical prognosis of NSCLC. (A) Heatmap showing the distribution of clinical parameters across samples and 
their association with the PT-resident Prevotella. (B) Kaplan-Meier curves show a longer OS in the high PT-resident Prevotella group than in the low Prevotella group in both LUAD 
and LUSC. Survival differences were assessed using the two-sided log-rank test, with P < 0.05 considered statistically significant. (C) Forest plot illustrating hazard ratios (HR) of 
PT-resident Prevotella and other clinical parameters based on multivariable Cox regression analysis. (D) Volcano plot showing differential gene expression between the Prevotella 
high- and low-abundance groups, as determined by edgeR. Genes with P < 0.05 were considered significantly differentially expressed. (E) Functional enrichment analysis of highly 
expressed genes in high abundance group of Prevotella. (F) GSEA analysis showed that the inflammatory response pathway was significantly enriched in the high abundance group 
of Prevotella. 
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Figure 8. Effect of paracancerous tissue (PT)-resident Prevotella on immunotherapy response of NSCLC. (A) The heatmap displays the distribution of PT-resident Prevotella and 
clinical indicators between the CBR and NCB groups in the immunotherapy cohort. (B) The Generalized Linear Mixed Model (GLMM) identifies independent indicators 
associated with immunotherapy response. (C) The ROC curve for predicting immunotherapy response using the combined diagnostic model, PT-resident Prevotella, and PD-L1. 
(D) Correlation between tumor (T)- and PT-resident Prevotella and PD-L1 expression, assessed using two-sided Spearman’s rank correlation. P < 0.05 was considered statistically 
significant. 
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Discussion 
The introduction of ICIs has significantly 

improved the survival outcomes for patients with 
NSCLC and reshaped their treatment landscape [5]. 
Nevertheless, significant interindividual 
heterogeneity in treatment response and the limited 
proportion of long-term responders underscore the 
need for novel biomarkers to optimize patient 
stratification [6]. Tissue-resident microbiota actively 
participates in tumor immune modulation and holds 
potential as a powerful indicator of therapeutic 
efficacy [18, 19]. The present study integrated 
microbiome and transcriptome profiles from paired 
clinical specimens to construct a microbe–host-gene 
interaction network, through which Bradyrhizobium 
and Prevotella were identified as key taxa exhibiting 
high host-gene dependency. Notably, Prevotella 
demonstrated strong positive associations with 
enhanced antitumor immunity and favorable clinical 
outcomes. Furthermore, a predictive model 
incorporating PT-resident Prevotella abundance with 
routine blood test indicators exhibited robust 
predictive performance, offering a novel and practical 
companion diagnostic tool to facilitate personalized 
immunotherapy in NSCLC. 

While intratumoral microbes are significantly 
more abundant than those in adjacent non-tumor 
tissues in liver [33], pancreatic [34], and breast cancers 
[12], lung cancer exhibits an opposite pattern 
characterized by substantial microbial accumulation 
non-tumorous regions, as reflected by markedly 
reduced microbial abundance and diversity within 
tumor tissues [19, 35-37]. In the present study, 
2bRAD-M was employed to profile microbial 
communities in NSCLC T and PT samples due to its 
advantage in low-biomass microbiome detection. 
Several intratumoral bacteria previously reported in 
NSCLC, including Acinetobacter, Streptococcus, 
Sphingomonas, and Pseudomonas [20, 38], were also 
detected in our study. Distinct from these prior 
observations, our data revealed a unique microbial 
signature in PT samples, marked by higher 
abundance of Bradyrhizobium, Geobacillus, Prevotella, 
and other genera, alongside increased microbial 
diversity compared with T samples. This differential 
microbial pattern between T and PT samples was 
further validated by both IHC and FISH analyzes. 
Moreover, bronchoalveolar lavage fluid, a biofluid in 
direct contact with the lung cancer microenvironment, 
exhibits a microbial composition similar to that of 
tumor tissues [39]. The microbial diversity is also 
markedly reduced compared with that of adjacent 
non-cancerous and healthy tissues [40], further 
supporting the presence of characteristic microbial 

depletion within lung cancer lesions. One possible 
explanation for the reduced intratumoral microbiota 
in lung cancer may be attributed to the elevated 
expression of MUC5AC within adjacent 
non-cancerous tissues, which, as a mucin, may 
provide favorable adhesion sites for microbial 
colonization [36]. Collectively, these findings suggest 
that the transition from normal lung tissue to NSCLC 
involves substantial remodeling of the microbiome. 

To elucidate how intratumoral microbiome 
remodeling influences NSCLC progression, 
transcriptomic data were integrated to construct a 
microbe–gene interaction network, through which 
Bradyrhizobium and Prevotella were identified as key 
bacterial taxa exhibiting the highest gene dependency 
in NSCLC. These taxa were markedly enriched in PT 
samples, and their associated genes were significantly 
involved in immune-related pathways, showing 
strong correlations with major immune components, 
including T cells, NK cells, B cells, and DCs. Notably, 
the pathways identified by the CMI-based analysis of 
Prevotella-dependent genes differed from those 
enriched in the high-Prevotella group in bulk 
transcriptomic analysis. This difference likely reflects 
the distinct analytical focuses, as the CMI method 
captures Prevotella-specific regulatory interactions, 
whereas bulk analysis reveals overall transcriptional 
changes. These complementary results collectively 
enhance understanding of how Prevotella modulates 
host immune regulation in NSCLC.  

In lung cancer, Bradyrhizobium preferentially 
localizes to non-tumor regions and exhibits higher 
abundance in early-stage patients compared with 
late-stage patients [41, 42]. This genus has been 
implicated in suppressing prostate tumor progression 
by recruiting immune cells and downregulating 
androgen receptor expression [43]. Similarly, 
Prevotella colonizes healthy lung tissue, with a 
progressive decline in abundance observed during 
lung cancer development [44, 45]. Prevotella promotes 
the regression of high-grade intraepithelial neoplasia 
via interactions with DCs [46]. The observed 
associations of Bradyrhizobium and Prevotella with 
antitumor immunity prompted further evaluation of 
their prognostic value in NSCLC. Higher Prevotella 
abundance, but not Bradyrhizobium abundance, 
correlated with improved outcomes, a finding that 
was validated in an independent cohort of 165 cases. 
Further investigation of a cohort of 94 patients who 
received immunotherapy demonstrated that the 
observed prognostic enhancement stemmed from the 
correlation of Prevotella with and favorable 
therapeutic outcomes. Compared with the 
conventional biomarker PD-L1, the combination of 
PT-resident Prevotella and routine blood test 
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indicators enhanced the predictive power for NSCLC 
immunotherapy response, achieving an AUC 
exceeding 0.95. Previous studies have demonstrated 
that Prevotella is associated with favorable 
immunotherapy responses in hepatocellular 
carcinoma [47], gastrointestinal malignancies [48], and 
hematologic malignancies [49]. Therefore, the 
integrative predictive model developed herein may 
possess broad applicability and potential for 
extension to additional cancer types. 

Furthermore, the relationship between Prevotella 
and targeted therapy was explored, but its predictive 
capacity for treatment response proved limited, with a 
positive predictive value of merely 0.52. Although 
Prevotella was associated with MAPK and JAK–STAT 
signaling pathways related to EGFR-targeted therapy, 
no significant differences were observed between 
EGFR-mutant and wild-type tumors, highlighting the 
need for further validation. Notably, although 
previous studies have implicated the MAPK pathway 
acts as a potential oncogenic signaling cascade 
promoting NSCLC progression [50], our study 
revealed a significant positive correlation between 
Prevotella, identified as a protective factor associated 
with favorable NSCLC prognosis, and MAPK 
signaling. This seemingly paradoxical association 
may be attributed to the fact that MAPK activation is 
often accompanied by increased infiltration of 
CD8⁺PD1⁺ T cells and proinflammatory polarization 
of tumor-associated macrophages, both of which 
enhance antitumor immune responses [51, 52]. In this 
study, the significant positive correlation observed 
between Prevotella and CD8⁺ T cells may account for 
its association with MAPK activation, suggesting that 
the interaction between Prevotella and MAPK likely 
occurs indirectly through CD8⁺ T cells rather than via 
a direct causal mechanism. This represents an 
important avenue for future mechanistic 
investigations. Taken together, despite the need for 
large-scale clinical validation, Prevotella emerges as a 
promising biomarker candidate for predicting NSCLC 
response to ICIs rather than to targeted therapies. 

Tumor-associated microbes play a pivotal role in 
modulating host immune responses and influencing 
the efficacy of cancer immunotherapy. In melanoma, 
the co-presentation of intratumoral bacteria-derived 
human leukocyte antigen peptides by both 
antigen-presenting cells and tumor cells enhances the 
presentation of immunogenic antigens, thereby 
promoting T-cell activation and improving the 
efficacy of ICIs [53]. Similarly, intratumoral 
Lactobacillus reuteri and Fusobacterium nucleatum have 
been shown to enhance ICI efficacy by promoting the 
accumulation of Interferon-gamma–positive CD8⁺ T 
cells within the tumor microenvironment [54, 55]. In 

addition to NSCLC, Prevotella enrichment has been 
consistently associated with favorable 
immunotherapy responses across gastrointestinal and 
hematologic malignancies, correlating with delayed 
tumor progression, reduced mortality, and higher 
rates of complete remission [48, 49, 56]. These 
converging observations across cancer types suggest 
that Prevotella plays an active and conserved role in 
augmenting antitumor immunity, underscoring its 
potential as a predictive biomarker of ICI efficacy. 
More importantly, a notable concordance between 
Prevotella abundance and PD-L1 expression patterns 
was observed in the present study, suggesting that 
Prevotella may act as a potential regulatory factor of 
PD-L1, which could account for its critical influence 
on immunotherapy response. A plausible underlying 
mechanism may involve the ability of 
Prevotella-stimulated bone marrow–derived DCs to 
prime naïve T-helper cells, leading to up to a fivefold 
increase in interleukin (IL)–17 levels compared with 
other commensal bacteria [57]. Elevated IL-17 
production subsequently upregulates PD-L1 
expression in tumor cells, thereby enhancing the 
efficacy of immunotherapy [58]. Further studies are 
warranted to elucidate the precise molecular 
mechanisms through which Prevotella regulates PD-L1 
expression. 

The primary strength of this study lies in the use 
of paired clinical tissue samples, which enabled a 
comprehensive, system-level analysis of host–
intratumoral microbiota interactions through the 
simultaneous acquisition of both microbiome and 
host transcriptome datasets. Clinical validation across 
prognosis, immunotherapy, and targeted therapy 
cohorts further enhanced the robustness and 
reliability of the results. Nonetheless, several 
limitations should be acknowledged. First, Prevotella 
has not yet been specifically cultured from clinical 
tissues, limiting direct mechanistic validation; second, 
the clinical relevance of Bradyrhizobium was assessed 
only using public datasets, without confirmation in 
independent clinical cohorts. Finally, the predictive 
value of Prevotella for immunotherapy efficacy was 
derived from a relatively small clinical cohort without 
multicenter validation and its predictive accuracy 
may vary across different immunotherapeutic agents. 
Therefore, further large-scale, prospective, 
multicenter studies are warranted. 

Conclusion 
In summary, a comprehensive analysis revealed 

significant differences in the microbial communities 
between NSCLC tumors and PT, with PT exhibiting 
markedly higher microbial richness and diversity. 
Viable bacteria were successfully isolated and 
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cultured from fresh tissue samples, confirming the 
presence of live bacteria within lung tissues. 
Moreover, microbial–host interactions were 
delineated using the CMI approach, which identified 
Bradyrhizobium and Prevotella as key bacteria 
exhibiting the strongest host-gene dependency in 
NSCLC. Both taxa were significantly enriched in 
pathways associated with innate and adaptive 
immune responses. Notably, Prevotella is closely 
associated with prolonged survival in patients with 
NSCLC, with its prognostic advantage largely 
attributable to its influence on immunotherapy 
responsiveness. In the immunotherapy cohort, a 
predictive model integrating PT-resident Prevotella 
abundance with routine blood test indicators 
demonstrated robust performance in forecasting 
immunotherapy outcomes, highlighting a promising 
companion diagnostic tool to advance personalized 
immunotherapy for patients with NSCLC. 
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