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Abstract

Steatotic liver diseases (SLD) associated with metabolic dysfunction (Metabolic dysfunction-Associated Steatotic Liver
Disease: MASLD), chronic alcohol consumption (alcohol-associated liver disease: ALD), or both (MetALD) represent a
major health issue worldwide. These chronic liver diseases are major drivers of fibrosis, cirrhosis, hepatocellular carcinoma
(HCC), and liver-related mortality, with limited treatments currently available. Their progression is fueled by persistent
disruptions in hepatic metabolism, inflammation, and tissue remodeling. The autonomic nervous system, notably its
regulatory role in hepatic function, is receiving increasing attention as a key mediator of pathogenesis of liver disease.
Serotonin (5-hydroxytryptamine, 5-HT) has emerged as a pivotal regulator of all these processes. Acting via combined
central and peripheral pathways and a range of receptor subtypes, 5-HT modulates hepatic glucose and lipid metabolism,
immune responses, fibrogenesis, and liver regenerative capacity. In this review, we explore the multifaceted role of 5-HT
signaling in metabolic control, obesity, liver physiology, and chronic liver diseases. Our focus extends beyond the direct
effects of 5-HT on liver cell populations to its interaction with the autonomic nervous system, metabolic hormones, and the
gut-liver-brain axis. Lastly, we discuss how 5-HT's dual origin and pleiotropic effects may offer therapeutic avenues for
MASLD, ALD, and HCC.

Introduction

Obesity and excessive alcohol intake are two
major contributors to chronic liver diseases, notably
metabolic  dysfunction-associated steatotic liver
disease (MASLD, previously NAFLD) and alcohol-
associated liver disease (ALD) [1]. MASLD, which
closely mirrors the rising prevalence of obesity, type 2
diabetes, and metabolic syndrome, encompasses a
spectrum of hepatic conditions from steatosis to
steatohepatitis (MASH), fibrosis, and cirrhosis, and
may ultimately progress to hepatocellular carcinoma
(HCC) [1]. Similarly, ALD evolves through stages of
fatty liver, steatohepatitis (ASH), fibrosis, and
cirrhosis, with a substantial risk of HCC in advanced
disease stages, often compounded by episodes of
acute-on-chronic liver injury [1]. Indeed, patients with
underlying ASH or cirrhosis and recent excessive
alcohol consumption can develop alcohol-associated

hepatitis (AH). Although MASLD and ALD originate
from distinct etiologies-metabolic versus toxic-their
downstream pathological mechanisms, including
lipid accumulation, mitochondrial dysfunction,
inflammation, fibrogenesis, and carcinogenesis, share
striking similarities (Figure 1).

In the context of the search for common
regulatory  mechanisms, 5-HT has gained
considerable attention for its emerging role in liver
physiology and disease [2,3]. While classically studied
as a central neurotransmitter involved in mood,
appetite, and behavior, over 90% of total body 5-HT is
actually produced in the periphery, primarily by
enterochromaffin cells of the gastrointestinal tract [4].
Once synthesized, gut 5-HT is released into the
bloodstream where it is stored in platelets and acts on
several organs [5], including the liver [6]. This dual
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origin, central and peripheral, adds a layer of
complexity to 5-HT signaling, particularly in the
context of MASLD and ALD.

Further complexity arises from the broad
diversity of 5-HT receptors, with at least 14 subtypes
grouped into seven families (5-HT; to 5-HT7) [7].
These receptors are variably expressed across liver
cell types, including hepatocytes, hepatic stellate cells
(HSC), cholangiocytes, endothelial cells, and immune
cells, and mediate a wide range of effects from lipid
metabolism and cell proliferation to inflammation,
fibrogenesis, and even tumor progression [2].
Growing evidence also implicates serotonergic
signaling in the tumor microenvironment, supporting
angiogenesis and cell proliferation in HCC [8]. In
parallel, central 5-HT, by acting through
neuroendocrine and autonomic pathways, indirectly
influences liver function, particularly in the context of
energy homeostasis and metabolic control [9,10]. This
connection to the autonomic nervous system (ANS) is
particularly important as the liver is densely
innervated by both sympathetic and parasympathetic
fibers [11]. The ANS governs a wide array of hepatic
functions, such as glucose production, bile secretion,
and immune surveillance through efferent signals
from the central nervous system [11]. Central 5-HT
modulates the activity of hypothalamic and brainstem
nuclei that control autonomic output [12], thereby
influencing liver physiology. Conversely, afferent
vagal signaling from the liver to the brain contributes
to central sensing of metabolic status [13], creating a
bidirectional communication axis.

Altogether, 5-HT serves as a key integrator of
gut, brain, and liver functions, acting both locally and
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systemically through an intricate network of
serotonergic and autonomic pathways. Disentangling
the respective contributions of peripheral versus
central 5-HT, and their interaction with the ANS, are
critical to understanding how  serotonergic
dysregulation contributes to the pathogenesis of
MASLD and ALD. In this review, we aim to unravel
the complex role of 5-HT in liver physiology and
pathology, with a particular emphasis on its
integration within the gut-liver-brain axis and its
interconnection with other metabolic organs. We
review the distinct sources of 5-HT, laying the
necessary groundwork to differentiate the respective
contributions of central versus peripheral 5-HT in the
regulation of liver functions. This framework allows
us to explore how disruptions in 5-HTergic signaling,
from synthesis, degradation, receptor expression, to
downstream pathways, can contribute to the onset
and progression of chronic liver diseases, such as
MASLD and ALD.

I. Multiple sources of 5-HT

In mammals, the vast majority of 5-HT is
produced in the gastrointestinal tract by
enterochromaffin (EC) cells, in response to gut
mechanical stimuli, nutrients (e.g., glucose, amino
acids, short-chain fatty acids) or microbiota
metabolites [4]. It has been evaluated that 90% of 5-HT
is synthesized in EC cells, by the rate-limiting enzyme
tryptophan hydroxylase 1 (TPH1) [14], which
converts tryptophan into 5-hydroxytryptophan,
further converted to 5-Hydroxytryptamine by the
aromatic amino acid decarboxylase (AADC). Gut
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Figure 1: Progression of steatotic liver diseases. Steatotic liver diseases are associated with metabolic dysfunction (MASLD, blue) (Worldwide prevalence of 32.4%),
chronic alcohol use (ALD, red) or both (MetALD), characterized by the progression from healthy liver to steatosis, steatohepatitis, and/or alcoholic hepatitis, that can both
evolve in mild to severe fibrosis (cirrhosis) and ultimately lead to hepatocarcinoma (HCC). Blue percentages indicate estimated incidence of progression for MASLD, red for
ALD. Double arrows show potential reversibility in the progression of the pathology. Created with BioRender.com.
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microbiota influences TPH1 activity and 5-HT
production in the gut through multiple mechanisms
[15]. While certain microbial species can upregulate
the expression of TPH1 and enhance local 5-HT
synthesis - particularly through metabolites such as
short-chain fatty acids (SCFAs) including acetate,
butyrate, and propionate - others can suppress TPH1
expression via the production of secondary bile acids
or tryptamine derivatives, thereby reducing mucosal
5-HT synthesis [16-19]. Other microbial species can
synthesize tryptophan (providing more substrate for
TPH1-mediated 5-HT synthesis), or express the
AADC, hence contributing to 5-HT production [20].
Through these actions, the microbiota plays a pivotal
role in modulating 5-HT availability in the inflamed
gut and/or in a context of obesity [21]. In turn, by
modulating the growth of certain bacteria, or
reducing tryptophan availability due to its synthesis,
5-HT may shape gut microbiota composition to
stimulate inflammatory and immune responses [22].
Once secreted by EC cells, 5-HT is either acting locally
in a para- or autocrine manner or it is released into the
systemic circulation, as a hormone. In the
bloodstream, most of the 5-HT is stored in blood
platelets [23]. Upon platelet activation, 5-HT is
released into various organs, including the liver,
pancreas, and adipose tissue, thereby regulating their
homeostasis or metabolic activity [24] through
activation of multiple 5-HT receptors (Figure 2). Cells
expressing TPH1 and capable of synthesizing 5-HT
are also found in the liver (i.e., stellate cells and
cholangiocytes) [25,26], pancreas (p-cells) [27], and
adipose tissue (adipocytes) [28], suggesting an
additional local source of 5-HT in those organs
(Figure 3).

Another important source of 5-HT is the nervous
system, where it is synthesized by the tryptophan
hydroxylase 2 (TPH2) in lower relative quantities and
serves as a neurotransmitter. 5-HT is present in the
enteric neurons (ENS) of the peripheral nervous
system (PNS), where it regulates intestinal motility
and anxiety [29,30], and in the raphe neurons of the
brainstem within the central nervous systems (CNS),
where it regulates a wide range of physiological,
psychological, and cognitive functions such as
appetite, sleep, mood, fear, reward, learning, and
memory [31].

From these different sources, 5-HT can further
influence most of the metabolic functions controlled
by the autonomous nervous system. 5-HT regulates
glucose and lipid homeostasis, appetite and satiety,
energy  expenditure, and thermogenesis by
modulating the sympathetic and parasympathetic
activity in the liver, the pancreas or the adipose
tissues [9]. For instance, 5-HT neurons from the rostral
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medullary raphe (rMR) indirectly project to the
coeliac (CG) and superior mesenteric (sMG) ganglions
that relay sympathetic innervation to the liver [32-34],
pancreas [32,35], and adipose tissues [32,36]. There is
also evidence showing that 5-HT immunoreactive
axons are detectable within sympathetic nerves and
could directly innervate sympathetic ganglions [37-
43] to modulate sympathetic outflow [44,45]. In
addition, the descending parasympathetic (efferent)
transmission of the vagal nerve, which originates
from the dorsal motor nucleus of the vagus (DMV)
and innervates various organs, is also facilitated by
5-HT, an effect probably mediated by 5-HTj; receptors
located on vagal nerve terminals [46,47]. The resulting
stimulation of both descending sympathetic [48,49]
and parasympathetic [50,51] pathways can modulate
the activity of ENS 5-HT neurons, which would
facilitate 5-HT release from EC cells [52] (Figure 3). In
turn, circulating 5-HT may stimulate the sympathetic
(spinal) and parasympathetic (vagal) sensory
afferents, thereby forming a feedback loop within the
brain-gut axis [53]. Furthermore, 5-HT neurons from
the dorsal raphe nuclei (DRN) directly project to the
nucleus of the tractus solitary (NTS) [54,55] in the
medulla to further modulate the ascending
parasympathetic (afferent) transmission of the vagal
nerve coming from the liver [32,34], pancreas [32,35]
and adipose tissues [56-59] (Figure 3). Interestingly,
5-HT producing neurons have been found within the
sensory nodose ganglion (NG) of the vagus nerve
[60,61] and the NTS [62], with a population of 5-HT
immunoreactive neurons projecting from the nodose
ganglion to the NTS [63,64], although it is unclear
whether they release 5-HT in a physiologically-
relevant manner [65]. This suggests that 5-HT
innervation is found along both the sympathetic and
parasympathetic systems to modulate the autonomic
afferent and efferent signaling from and to various
organs. Finally, some evidences have demonstrated
sparse 5-HT innervation in liver, around the portal
vein, portal artery, bile duct, and within hepatic
lobules [66-68], suggesting that 5-HT regulates
hepatic blood flow [69,70] but could also modulate
hepatocellular functions.

Together, this highlights the intricated
connections between central and peripheral 5-HT and
supports the idea that a precise control of 5-HT levels
is essential for liver physiology and related organs’
metabolic functions. For example, traumatic brain
injury and neurodegenerative diseases (Parkinson,
Alzheimer) are associated with reduced peripheral
5-HT signaling [71-73], decreased lipogenesis, lipid
accumulation in liver and adipose tissues, and
alterations in the gut microbiota composition [71,74].
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Figure 2: Expression of peripheral 5-HT receptor subtypes across metabolic and immune systems. The diagram illustrates the cell-specific expression of 5-HT
receptors in key peripheral tissues involved in metabolic regulation: gut (enterocytes), liver (HC, hepatocytes; HSC, hepatic stellate cells; ChC, Cholangiocytes; KC Kupffer
Cells), pancreas (o and B cells), white and brown adipose tissues, and in the immune system (B, B cells; T, T cells and M, macrophages. Multiple 5-HT receptor subtypes (e.g.,
5-HTianponr, 5-HT2an8, 5-HT3, 5-HT4, 5-HT?) are differentially expressed depending on the cell type, highlighting the widespread and pleiotropic roles of serotonin in peripheral

physiology. Created with BioRender.com.

II. Central 5-HT Signaling and Liver
Physiology

a. Regulation of liver physiology by central
5-HT

The main function of the liver is to regulate
metabolism, detoxification, and energy homeostasis.
Hepatic cytochrome P450 (CYP) monooxygenases
play a key role in the metabolism of endogenous
substances such as steroids, fatty acids, and
neurotransmitters, as well as xenobiotics like drugs
and toxins (for review see [75]). Beyond its metabolic
and detoxifying functions, the liver is a major immune
organ responding to exogenous antigens, metabolites,
and molecular patterns. In obesity, sentinel cells such
as liver-resident macrophages (Kupffer cells) and
monocyte-derived macrophages sense the persistent
accumulation of metabolites, antigens, and pattern
molecules. This recognition shifts the liver from an
immune-tolerant to an activated immune state, with
reduced anti-inflammatory cytokines (TGF-f, IL-10)
and increased pro-inflammatory cytokines (IL-1, IL-6,
TNF-a). The resulting interplay between immune

cells and  hepatocytes  sustains low-grade
inflammation in MASH, while liver sinusoidal
endothelial cells (LSECs), macrophages, innate

lymphoid cells (ILCs), and neutrophils further
contribute to disease progression and fibrosis (for
review see [76]). A fine regulation of these hepatic
functions must therefore be in place, in part through
the nervous system, to coordinate appropriate
responses.

The regulation of hepatic CYP enzymes is
primarily controlled by endocrine signals, particularly
growth hormone (GH), glucocorticoids (GR), thyroid
hormones, and sexual hormones that act via nuclear
receptors to modulate CYP gene expression [77]. The
brain 5-HTergic system seems to play a significant
role in the neuroendocrine regulation of hepatic CYP
activity. Indeed, 5-HT projections from the DRN and
median raphe nuclei (MRN) innervate the
paraventricular (PVN) and arcuate (ARC) nuclei of
the hypothalamus, key centers for hormone
regulation [77,78]. Selective depletion of 5-HT
innervation in the ARC or PVN by neurotoxic
lesioning, which reduces 5-HT levels in these areas,
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produces opposite effects, with ARC-5-HT depletion
decreasing, and PVN-5-HT depletion increasing
CYP2C11 expression and function [79]. This data
suggests that 5-HT exerts an opposite, region-specific
effect on liver CYP enzymes, depending on the
hypothalamic nucleus involved. Interestingly,
depletion of central 5-HT in DRN and MRN by
genetic ablation, neurotoxic lesioning or following a
tryptophan-deficient  diet, increases the liver
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expression and activity of CYP1A1/A2, CYP2C11,
and CYP3A1l [80-82], suggesting that 5-HT acts
predominantly as a negative regulator of these
enzymes. In line with this, stimulation of brain 5-HT
by chronic intracerebroventricular administration of
its precursor 5-HTP decreases the expression and
activity of liver CYP1A2, CYP2A2, CYP1B, CYP2C11,
and CYP3A1/2 [78].
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Figure 3: Central and peripheral sources of 5-HT in the regulation of metabolic functions. In the central nervous system, 5-HT is synthesized in the raphe nuclei
(dorsal raphe, DR; median raphe, MR; rostral median raphe, rMR) by the tryptophan hydroxylase 2 (TPH2). 5-HTergic raphe (5-HT), noradrenergic locus coeruleus (LC), and
subfornical organ (SFO) neurons are interconnected with the hypothalamic paraventricular nucleus (PVN) and the arcuate nucleus (ARC) to modulate autonomic sympathetic
(rostral ventrolateral medulla, RVLM; Noradrenaline, NA) and parasympathetic preganglionic neurons (nucleus of the solitary tract, NTS; dorsal motor nucleus of the vagus,
DMV; Acetylcholine, ACh) in the brainstem. RVLM and rMR neurons project through the spinal cord via the intermediolateral nucleus (IML) to the sympathetic coeliac (CG) and
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superior mesenteric ganglions (sMG), that innervate the different organs, including the liver, pancreas, adipose tissue, and gut. DMV neurons project to various parasympathetic
ganglions, including hepatic ganglia (HG) via the descending vagal nerve. 5-HT can modulate the descending and ascending (afferents, sensory) sympathetic and parasympathetic
branches via 5-HT receptors (5-HTR). In the gut, 5-HT is synthesized in EC) cells by the TPHI, which hydroxylates the tryptophan (TRP) coming from the lumen into
5-hydroxytryptophan (5-HTP), further converted to 5-HT. The gut is also innervated by the enteric nervous system (ENS) that expresses TPH2. Enterocytes express the
serotonin transporter (SERT) so they can uptake and release 5-HT from and to the lumen or lamina propria. Once released, 5-HT can reach the blood where it is uptaken by the
platelets that also express the SERT. Upon activation, platelets can release 5-HT to the organs. By influencing 5-HT synthesis and transport, the gut microbiota (MB) can modulate
the levels of 5-HT produced by the gut. The pancreas expresses TPH1 and releases 5-HT together with insulin (Ins). Adipocytes also express TPHI and synthetize 5-HT. Ins and
5-HT regulate lipolysis in the adipose tissues, which release lipid droplets that can accumulate in the liver. In the liver, only hepatic stellate cells (HSC) and cholangiocytes (ChC)
produce 5-HT as they express the TPH1. Hepatocytes (HC) can store 5-HT as they express the SERT. Created with BioRender.com.
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Figure 4: Central 5-HT modulation of hepatic cytochrome activity orchestrates the balance between liver regeneration and metabolic processes.
Together with their interplay with the brainstem adrenergic locus coeruleus (LC), the 5-HTergic raphe nuclei (RN) regulate both the hypothalamic paraventricular nucleus (PVN)
via 5-HTa receptors to inhibit hepatic metabolism during liver regeneration, and the arcuate nucleus (ARC) via the 5-HT2c to stimulate hepatic metabolism in response to stress.
5-HTa signaling in the PVN reduces, while 5-HTyc signaling in the ARC stimulates CYP1AI, CYPI1A2, CYP2CI11, CYP3AI, and CYP3A2 expression or activity. Created with

BioRender.com.

Bidirectional 5-HTergic control of CYP function
is likely mediated by 5-HTa receptors in the PVN and
5-HT»c receptors in the ARC. Stimulation of 5-HTac
receptors (excitatory) in the ARC increases the activity
and expression of CYP2Cl11, CYP3A1/23, and
CYP3A2, and is associated with an increase in the
pituitary  growth  hormone-releasing hormone
(GHRH) and serum GH levels [83]. Conversely,
stimulation of the 5-HT1a receptors (inhibitory) in the
PVN suppresses GH secretion, leading to a reduction
in the expression and activity of CYP2Cl1 and
CYP3A1 in the liver [77]. This effect is attributed to
5-HT-mediated stimulation of somatostatin release in
the hypothalamus, which inhibits GH secretion and
downregulates GH-dependent CYP enzymes [78].
Together, these data suggest that 5-HT exerts an
opposite and region-specific regulatory effect on liver
CYP enzymes, depending on the hypothalamic
nucleus involved.

Noradrenaline (NA) plays a complementary role
in hepatic CYP regulation, with the locus coeruleus
(LC, the major noradrenergic center) projecting to the
PVN and ARC nuclei influencing GH and other
pituitary hormones [84]. Lesioning of the LC, which
reduces NAergic input, alters GH secretion and
increases hepatic CYP2C11 expression [84]. These
findings indicate that, like serotonin, norepinephrine
modulates CYP activity through neuroendocrine
mechanisms. Using a combination of anatomical
tracing and “chemogenetics”, a recent report has
identified a brain-to-liver neural circuit that inhibits
liver regeneration following chronic stress. This

pathway involves NA neurons in the locus coeruleus
(LC) projecting to 5-HT neurons in the medullary
raphe nucleus (mRN), which modulates sympathetic
innervation to the liver. This circuit becomes
hyperactive under chronic stress, leading to sustained
NE release in the liver, which suppresses
pro-inflammatory macrophage activation and inhibits
hepatic regenerative processes [85]. These findings
suggest that brain 5-HT signaling could mediate the
inhibitory action of stress on hepatic regeneration.
Interestingly, an upregulation of most CYP isozymes
and hepatic metabolism is also observed following
chronic exposure to psychological stress (for review
see [86,87]), whereas CYP downregulation is observed
during liver regeneration [88]. Taken together, this
data suggests that central 5-HT (together with the
interplay with central NE) could regulate the balance
between the metabolic and the regenerative activity of
the liver [89,90], by adapting liver function to
physiological demands, stress, and injury [91,92].
Since transient hepatic lipid accumulation (steatosis)
is shown to be essential for regeneration after
hepatectomy, it supports the idea that central 5-HT
signaling could modulate the regenerative process by
controlling hepatic lipid metabolism [93] (Figure 4).

b. Role of central 5-HT in the regulation of
metabolic hormones

Beyond its classical role in the brain, central
5-HT plays a pivotal role in systemic metabolic
regulation, in part through its intricate interactions
with a range of key metabolic hormones-including
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insulin, leptin, ghrelin, glucagon, glucagon-like
peptide 1 (GLP-1), glucocorticoids, and thyroid
hormones-which collectively influence liver function
and energy homeostasis (Figure 5).

Insulin is the hormone secreted by pancreatic
[-cells in response to high blood glucose levels. Once
secreted by the pancreas in response to food intake,
insulin stimulates the storage of glucose and lipid in
the liver [94,95] and suppresses appetite by
stimulating pro-opiomelanocortin neurons on the
ARC. Insulin can further increase the firing activity of
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and systemic (muscle) sensitivity to insulin [93,97].
This therefore suggests a potential role of central 5-HT
deficiency in insulin resistance and metabolic
dysfunctions [98].

Leptin is a satiety hormone primarily produced
by adipose tissues in response to increased lipid
storage, which signals the hypothalamus to reduce
appetite and to increase energy expenditure. Leptin
can act directly or indirectly (by stimulating
hypothalamic PVN [99]) on the liver to inhibit
gluconeogenesis, stimulate glycogenolysis, increase

DRN 5-HT neurons by direct activation of insulin
receptors located on 5-HT neurons [96]. In turn,
chronic DRN neuron activation or chronic intranasal
administration of 5-HT improves hepatic lipid
metabolism, reduces liver steatosis, and ameliorates
systemic (muscle) tolerance to glucose, and hepatic

insulin  sensitivity, inhibit lipogenesis, reduce
triglyceride secretion, and stimulate fatty acid
oxidation [100-103]. By preventing lipid accumulation
in the liver, leptin is considered an anti-steatotic
hormone [100,101,104] although exerting a pro-
fibrotic action [105]. Hence, leptin resistance may
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Figure 5: Modulatory role of central 5-HT on hypothalamic metabolic hormones, food intake and liver function. Within the hypothalamus, the arcuate nucleus
(ARC) and the paraventricular nucleus (PVN) are interconnected to regulate food intake via the orexinergic pathway (light red) and satiety via the anorexinergic pathway (light
blue). Pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) neurons release a-melanocyte-stimulating hormone (a-MSH), which activates
melanocortin 4 receptors (MC4R) in the PVN to promote satiety and suppress food intake. In contrast, ARC orexinergic neurons release neuropeptide Y (NPY), agouti-related
peptide (AgRP), and gamma-aminobutyric acid (GABA), which inhibit the anorexigenic effects of POMC neurons on the PVN, thereby suppressing satiety signals and promoting
feeding. These effects are mediated through inhibitory GABA receptors (GABAR) and NPY receptors (Y1 and Y5) on POMC and PVN neurons. Food intake activates the DRN
and MRN, leading to the release of 5-HT in the ARC and PVN. This serotonergic input inhibits feeding via activation of NPY-5-HT s receptors and promotes satiety via
stimulation of POMC-5-HT>c and PVN-5-HT2a6 receptors. Conversely, in the absence of food, DRN/MRN activity is suppressed through 5-HTa receptor signaling, leading to
reduced 5-HT release in the ARC and PVN, thereby lifting the inhibition on feeding. Peripheral metabolic hormones also modulate these central circuits: insulin, leptin, and GLP-1
exert anorexigenic effects through their respective receptors (InsR, LepR, and GLP-1R) located on DRN/MRN, ARC, or PVN neurons. In contrast, ghrelin exerts orexigenic
effects by stimulating its receptor (GHSR) on NPY neurons. This complex interplay between central serotonergic pathways, hypothalamic feeding circuits, and peripheral
metabolic hormones enables fine-tuned regulation of feeding and satiety, while also contributing to the homeostatic control of liver function in response to nutritional states.
Created with BioRender.com.
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occur rapidly and be exacerbated in MASLD
[100,106]. DRN 5-HT neurons projecting to the ARC
express the leptin receptor and the resulting
activation of DRN-ARC by leptin inhibits feeding
behaviors [107]. Conversely, DR 5-HT depletion
prevents the effect of leptin on the reduction of food
intake [108].

Ghrelin is an appetite stimulating hormone
released by the empty stomach that acts through its
receptor, growth hormone secretagogue receptor
(GHSR), on liver and PVN neurons to promote food
intake, stimulate hepatic glucose production, and
inhibit insulin signals [109]. Whether ghrelin
stimulates [110,111] or inhibits [112,113] 5-HT neurons
activity is not clearly established yet. However, it is
likely that ghrelin and 5-HT have opposite effects on
food intake. Hence, intra-PVN injections of 5-HT
antagonize the orexinergic effect of ghrelin [114],
probably via activation of 5-HTxc receptors on
pro-opiomelanocortin  (POMC) neurons [115].
Conversely, inhibition of MRN activity by the
stimulation of 5-HTia receptors potentiates the
orexinergic effect of ghrelin injection into the PVN
[116]. This suggests that 5-HT and ghrelin could exert
an opposite action on liver metabolic functions.

Glucocorticoids (GC) are secreted by the adrenal
cortex and delivered to the liver via the bloodstream.
Through activation of the glucocorticoid receptor
(GR), GC influence many important liver functions
such as gluconeogenesis, glucose uptake and
utilization [117], de novo lipogenesis, lipid export,
fatty-acid oxidation [118], and insulin sensitivity
[119]. Thus, it has been suggested that chronic
alterations in GC/GR signaling could lead to MASLD
[120]. The role of 5-HT as an activator of the
hypothalamus-pituitary-adrenal axis (HPA) and the
subsequent release of adrenal GC is well established
[121,122]. As part of a negative feedback loop, GC
reduces 5-HT release in the PVN [123]. This suggests
that dysregulation of the 5-HT/GC loop could be
associated with alterations in liver functions.

Glucagon is a hormone released by pancreatic
a-cells in response to low blood glucose levels to
mobilize energy. By acting directly on the liver,
glucagon promotes hepatic glucose production
through stimulation of glycogenolysis and
gluconeogenesis, while inhibiting glycolysis [124]. It
also reduces hepatic lipid accumulation and secretion,
adiposity, and body weight [125-128]. Glucagon may
therefore reduce liver steatosis, and glucagon receptor
agonists are currently being developed as a
therapeutic strategy for MASH/MASLD [129]. The
release of glucagon by the pancreas seems to be
controlled by glucose-sensing neurons in the
hypothalamus and the brainstem through the

2291

autonomic nervous system (ANS) [130,131]. In turn,
the glucagon released by the pancreas reaches the
brain to regulate hypothalamus and brainstem
functions to lower hepatic glucose production and
decreases food intake [132-134]. Although the
interconnection between glucagon and central 5-HT
has not been established yet, it could occur via their
respective signaling in the hypothalamus and/or the
brainstem. Locally in the liver, both synergic and
opposite cross-talks exist between glucagon and 5-HT
receptors: 5-HT and 5-HT7; receptors potentiate
glucagon’s hyperglycemic action by promoting
gluconeogenesis, whereas 5-HTia and 5-HTaa
receptors antagonize glucagon’s hyperglycemic action
by stimulating glycogenesis.

Glucagon-like peptide 1 (GLP-1) is an incretin
hormone produced from the same precursor as
glucagon (proglucagon) by the intestine and the
nucleus of the solitary tract (NTS) in the brainstem, in
response to glucose and lipid. Intestinal GLP1 can
either be secreted to reach hypothalamus via the
blood circulation [135], act locally to stimulate gut
5-HT release [136] or activate the enteric nervous
system that projects to NTS preproglucagon neurons
which releases GLP1 in the hypothalamus. This
combined effect modulates the autonomic nervous
system to stimulate insulin secretion, which lowers
hepatic glucose production [137], enhances hepatic
glycogen storage [138], negatively regulates food
intake, and reduces body weight [139]. Therefore,
GLP1 receptor agonists have been proposed in the
treatment of MASLD [140-144]. NTS GLP1 neuron
activity is modulated by central 5-HT via 5-HT1a and
5-HT>c receptors [145]. Interestingly, the hypophagic
effect of 5-HTxc receptor agonists is mediated by NTS
GLP1 neurons [146]. In turn, GLP1 acts in the DRN to
modulate central 5-HT release and reduce appetite
and body weight [147,148].

Insulin-like growth factor 1 (IGF-1), is a
hormone produced by the liver, with a molecular
structure similar to insulin, that plays important roles
in the development and growth during childhood,
and has, to a lesser extent, metabolic effects such as
stimulation of glucose uptake and lipid metabolism,
and reduction of blood glucose in adults. In the liver,
IGF-1 likely reduces steatosis, fibrosis, and the overall
severity of MASLD [149]. 5-HT and IGF-1
bidirectionally interact within the brain, particularly
in regions such as the hypothalamus, including the
ARC and PVN. On one hand, 5-HT positively
regulates IGF-1 by stimulating hypothalamic GHRH,
which promotes growth hormone (GH) secretion
from the anterior pituitary, thereby enhancing hepatic
IGF-1 synthesis [150]. On the other hand, IGF-1
influences 5-HT neurotransmission, by stimulating
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serotonergic input from the DRN to the
hypothalamus, particularly in the PVN and ARC,
potentially influencing appetite, energy balance, and
stress responses [151].

T3 and T4 thyroid hormones (TH) release from
the thyroid gland is controlled by the thyroid
stimulating hormone (TSH) secreted by the pituitary,
itself under the control of the thyrotropin-releasing
hormone (TRH) produced by the PVN. T3 and T4
exert negative feedback on both TSH and TRH
secretion. By acting directly on the liver and indirectly
via the PVN, TH regulates lipid and glucose
homeostasis, through cholesterol modulation and
fatty acid synthesis, increased lipolysis, lipid droplets
formation, free fatty acid uptake, glucose production,
and reduced insulin sensitivity [152]. In turn, T3
suppresses both hypothalamic 5-HT activity and TSH
secretion, indicating direct negative feedback at the
hypothalamic level and suggesting that the 5-HT/
thyroid interplay regulates liver physiology.

c. Role of the autonomic nervous system in the
regulation of liver functions and diseases:
potential modulation by 5-HT

The autonomic nervous system, comprising the
sympathetic and parasympathetic branches, serves as
a crucial interface between the brain and peripheral
organs, orchestrating the regulation of systemic
metabolism through dynamic neural control of energy
balance, inflammation, and organ-specific functions.

The sympathetic nervous system (SNS) plays a
pivotal role in hepatic lipid and glucose metabolism,
especially under metabolic stress conditions. High-fat
diet challenge, liver steatosis, aging, and metabolic
syndrome are associated with altered liver
sympathetic tone, leading to changes in intrahepatic
noradrenaline (NA) signaling [153-165]. This
adrenergic  signaling upregulates fatty acid
transporters (CD36) and lipogenic enzymes (DGAT1
and DGAT2) [166], which accelerates hepatic
triglyceride accumulation and steatosis [153].
Notably, liver sympathetic denervation is shown to
reverse obesity-induced hepatic steatosis, supporting
the role of the SNS in lipid accumulation [166,167].
Beyond lipid metabolism, NA also exerts significant
control over glucose handling in the liver. It
stimulates gluconeogenic pathways through p2-

adrenergic  receptor-mediated  activation  of
glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase, while suppressing glycogenesis

[168,169]. These effects promote hepatic glucose
output, contributing to hyperglycemia and the
development of liver insulin resistance, which in turn
exacerbates de novo lipogenesis and steatosis [170,171].
In addition, the SNS negatively regulates liver
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regeneration by preventing hepatocyte priming and
the entry into the cell cycle after partial hepatectomy
[172].

In parallel, sympathetic input enhances the
pro-inflammatory state by promoting Kupffer cell
cytokine production, particularly tumor necrosis
factor-alpha (TNF-a) and interleukin-6 (IL-6), thereby
pushing the progression from steatosis to
steatohepatitis [173,174]. Furthermore, the SNS
directly contributes to liver fibrogenesis. NA and
neuropeptide Y (NPY) activate HSC through a- and
B-adrenergic receptors, triggering PI3K/MAPK
pathways that drive HSC proliferation, a-smooth
muscle actin (a-SMA) expression, and extracellular
matrix synthesis [175-177]. Clinically, elevated
plasma NA and increased sympathetic tone are
observed in cirrhotic patients, correlating with portal
hypertension and fibrosis severity [178]. However,
sympathetic integrity also appears essential for
adequate liver repair and regeneration, with loss of
hepatic sympathetic fibers being associated with
metabolic dysfunction and impaired regenerative
capacity [176,177,179,180].

Conversely, the parasympathetic nervous
system (PNS), via the vagus nerve, plays a largely
protective role in liver inflammation and metabolism
[181,182]. Acetylcholine (ACh) released from vagal
efferents binds to a7-nicotinic ACh receptors
(a7nAChRs) on Kupffer cells and hepatocytes,
suppressing NF-xB activation and downstream
transcription of pro-inflammatory cytokines such as
TNF-a, IL-1p, and IL-6 [183-185]. This cholinergic
anti-inflammatory effect has been shown to reduce
steatohepatitis in multiple murine models [182].
Pharmacological enhancement of vagal tone using
galantamine, an inhibitor of the ACh degradation
enzyme (acetylcholine esterase, AChE), reduces
hepatic inflammation, steatosis, and systemic insulin
resistance [186,187]. Conversely, selective hepatic
vagotomy results in exacerbation of steatohepatitis,
with increased inflammatory cytokine expression,
and a concomitant decrease in peroxisome
proliferator-activated receptor alpha (PPARa) activity
leading to the aggravation of liver steatosis [185]. As a
result, the PNS enhances liver insulin sensitivity and
suppresses hepatic glucose output, serving as a
metabolic counter-regulator to the SNS [170,188].

There is also some evidence supporting a
fibrogenic role of parasympathetic innervation. For
instance, parasympathetic modulation in vitro appears
pro-fibrogenic  with ACh  promoting HSC
proliferation and collagen I transcription via
muscarinic M2 receptors [189,190]. Hence, hepatic
vagotomy reduces HSC proliferation [191] and
fibrogenesis [192] in diet- and toxin-induced mouse
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models of liver fibrosis. Nevertheless,
parasympathetic signals are implicated in liver
regeneration, particularly through vagal efferents that
modulate  hepatocyte  proliferation and liver
progenitor activation [193,194].

Collectively, these findings highlight a vicious
cycle wherein sympathetic overactivation promotes
hepatic steatosis, insulin resistance, inflammation,
and fibrosis, while parasympathetic activity mitigates
these processes and supports regenerative outcomes.
Disruption of this autonomic balance, promoting
sympathetic tone and vagal stillness, may increase the
risk of the onset and progression of chronic liver
diseases [195,196]. Interestingly, serotonin (5-HT)
appears to mirror and potentially amplify the
pathological actions of the sympathetic nervous
system on liver metabolism and inflammation. Similar
to noradrenaline, 5-HT exacerbates insulin resistance
by stimulating hepatic glucose output and impairing
insulin signaling [197], enhances liver steatosis via
5-HT»a receptors on hepatocytes [198,199], and
fibrogenesis (upregulation of a-SMA, TGF-p1, and
extracellular matrix components) through activation
of 5-HT2a and 5-HTz receptors on hepatic stellate
cells [200]. In addition, 5-HT has emerged as a key
modulator of liver regeneration, particularly via
platelet-derived 5-HT which primes hepatocytes for
cell cycle entry and regeneration following partial
hepatectomy [201]. 5-HT may also directly modulate
autonomic nerve terminal activity within the liver
since a large body of evidence demonstrates that 5-HT
influences autonomic efferent activity by acting on
various prejunctional 5-HT receptors, to either inhibit
or facilitate autonomic neurotransmitter release,
thereby affecting processes like heart rate, blood
pressure, and gastrointestinal motility (for review see
[202]).  Although such mechanisms remain
unexplored in the liver, the dense autonomic
innervation and the presence of multiple 5-HT
receptor subtypes in liver raise the hypothesis that
5-HT could shape its function not only via
hepatocytes or immune targets but also by
modulating the activity of sympathetic and
parasympathetic fibers. This putative serotonergic-
autonomic interface may constitute a critical
amplification loop.

Recent findings also highlight the pivotal role of
brain-derived neurotrophic factor (BDNF) and its
receptor TrkB in the maintenance of hepatic
autonomic innervation, overall liver homeostasis, and
insulin sensitivity [203-205]. In humans and rodents,
BDNF deficiency is associated with increased appetite
and weight gain, higher glucose levels, and elevated
risk of liver steatosis and steatohepatitis [206-209]. In
models of metabolic stress, such as HFD-induced
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MASH, liver tissue undergoes selective sympathetic
neuropathy, driven by TNF-a-induced axonal
degeneration [171]. This neuropathic loss impairs
noradrenergic tone and disrupts sympathetic
regulation of hepatocyte function, contributing to
metabolic imbalance and liver inflammation [171]. On
the other hand, BDNF levels are elevated in fibrotic
liver tissues and appear to participate in both
neuronal and fibrogenic signaling [210]. Notably, by
acting on its TrkB receptor, BDNF can activate hepatic
stellate cells and the upregulation of pro-fibrogenic
markers [210]. In the meantime, it also plays a
protective neurotrophic role via TGF-f/SMAD
signaling [211], which may be essential for preserving
liver innervation [212]. Loss of neurotrophic support
may therefore not only facilitate inflammation and
fibrosis but also hinder the neuronal plasticity and

reinnervation necessary for effective liver
regeneration.
5-HTergic signaling and BDNF may also

cooperate in regulating hepatic autonomic nerve
plasticity and/or degeneration, as observed in the
brain [213,214]. Therefore, the progressive loss of
autonomic nerve fibers observed in chronic liver
disease may not only reflect neurodegeneration but
also a failure of trophic and regenerative support,
with 5-HT-BDNF co-signaling representing a key
modulator in this process.

III. Role of Peripheral Serotonin in
Metabolic and Liver Diseases

a. Obesity

Obesity is the most prevalent metabolic disease
worldwide, affecting over 1 billion children and
adults, approximately 13% of the global population
and its prevalence continues to rise [215]. It is a major
driver of a wide range of metabolic disorders,
including type 2 diabetes, cardiovascular disease, and
MASLD. Peripheral 5-HT is an important pathogenic
contributor to obesity and associated dysglycemia
[216] and dyslipidemia [217]. Human obesity is
characterized by increased production and release of
gut-derived 5-HT, which is strongly linked to
abnormal glycemic control, altered lipid levels, and
higher body mass [218]. Similarly, increased 5-HT
levels and TPH1 activity are consistently observed in
animal models of obesity [28,219-224].

In mice fed a high-fat diet (HFD), the
pharmacological blockade of 5-HT synthesis with
TPH inhibitors, either parachlorophenylalanine
(PCPA) or LP-533401, decreases body weight gain,
improves glucose tolerance, and lowers adiposity
[219,225]. These effects are likely mediated by
peripheral TPH1 because opposite effects (weight and
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body fat gain) are observed when inhibiting TPH2 by
intracerebroventricular injections of PCPA [226]. The
link between 5-HT synthesis and obesity has been
confirmed genetically. Mice depleted for TPHI1
(Tph1-/-) are protected from HFD-induced obesity and
related metabolic dysfunctions, showing less weight
gain, lower adiposity, reduced insulin resistance, and
liver steatosis compared to control mice [227]. This
work suggests that 5-HT-mediated obesity and
metabolic dysfunction could be linked to local 5-HT
synthesis by adipose tissues (AT). In mice fed an
obesogenic diet, TPH1 expression and tissue 5-HT
levels are augmented in white (W) and brown (B) AT
[219,227]. Selective ablation of TPH1 in adipose
tissues reduces weight gain and improves glucose
tolerance and insulin sensitivity after HFD
[28,219,223]. Reduced adiposity in epididymal and
inguinal WAT and increased energy expenditure by
BAT are also observed, similarly to PCPA-treated
mice [219]. This suggests that adipocyte-derived 5-HT
promotes energy storage in WAT while inhibiting
energy expenditure in BAT.

The effect of 5-HT on adipose tissues is likely
mediated by various 5-HT receptors, including 5-HT3,
5-HT2a, and 5-HTp receptors. Mice genetically
depleted for 5-HTj3 receptors show reduced body gain,
improved glucose tolerance, and increased BAT
activity upon HFD challenge, suggesting a potential
role of 5-HTs receptors in thermogenesis [219].
Increased mRNA expression of 5-HT:2a and 5-HTzs
receptors is observed in the visceral adipose tissue
(VAT) of human patients and WAT of mice (leptin
deficient ob/ob, HFD) suffering of obesity [228],
suggesting that alterations in the expression of these
receptors contribute to AT expansion. Indeed, mice
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with selective knockout of 5-HTa receptors in
adipose tissues have reduced de novo lipogenesis in
WAT, improved glucose tolerance, and are resistant
to HFD-induced obesity [228]. On the other hand,
5-HT2sp receptors seem involved in fatty acids lipolysis
and free fatty acid (FFA) release [197].
Pharmacological inhibition or selective deletion of
5-HT2s receptors in adipose tissues reduces
HFD-induced AT lipolysis, lowers the subsequent
release of FFA in the blood circulation, and improves
insulin sensitivity and glucose tolerance [197,228]. In
addition, 5-HT»s receptor activation leads to reduced
energy expenditure in BAT by suppressing the
uncoupling protein 1 (UCP1), which promotes energy
storage and weight gain [229].

Together, these data suggest that elevated levels
of peripheral 5-HT might facilitate the development of
metabolic dysfunction and obesity. In line with this,
patients treated with selective serotonin reuptake
inhibitor (SSRI) antidepressants, medications that
increase 5-HT availability by blocking its reuptake
through the serotonin transporter (SERT), show
reduced BAT thermogenesis [229], which could
contribute to SSRI-induced weight gain and metabolic
dysfunction, although some of these effects may occur
independently of 5-HT signaling [230]. Similarly, mice
genetically deleted for the SERT (Sert/-) exhibit
metabolic dysfunctions such as glucose intolerance,
insulin resistance, and obesity [231-233]. Overall,
these data support the involvement of 5-HT in the
regulation of energy expenditure [234,235] and
suggest that targeting peripheral 5-HT may constitute
a therapeutic strategy for the treatment of obesity and
associated metabolic dysfunctions.

Table 1: List of hepatic cytochromes regulated by central 5-HT signaling, their function, and the links to liver physiology, metabolism

dysregulation, and liver diseases.

Name Functions Link with chronic liver diseases Ref
CYP1A1 -generation of ROS -lipid deposition, cholesterol accumulation, fatty liver [381-385]
-cholesterol, arachidonic acid and glucose metabolism -steatohepatitis, neutrophil infiltration
-immune response -proliferation and differentiation of HSC
-fibrosis
-HCC
CYP1A2 -generation of ROS -metabolic dysfunction [383,386]
-cholesterol metabolism and lipid peroxidation -neutrophil infiltration
-cirrhosis
-HCC
CYP1B -steroid hormone - insulin sensitivity [387]
-lipid, glucose, and vitamin D metabolism
-fat synthesis
CYP2A -steroid metabolism -hepatitis [388]
-cirrhosis
CYP2C11 -steroid hormone, vitamin D, antidepressants, and - liver injury [389-391]
antipsychotics metabolism - alcohol-related liver disease
- fibrosis
CYP2D6 -immune functions -autoimmune liver diseases [392]
-promotes 5-HT synthesis
CYP3A -bile acid metabolism -fibrosis [393]

-inflammatory cytokine release

~cirrhosis

https://lwww.thno.org



Theranostics 2026, Vol. 16, Issue 5

b. Diabetes

Diabetes mellitus refers to a group of metabolic
disorders characterized by impaired glucose
homeostasis. Type I (insulin-dependent) and Type 11
(insulin-resistant) diabetes are among the most
clinically significant metabolic diseases, with Type II
accounting for most cases [236]. Accumulating
evidence implicates both central and peripheral 5-HT
signaling in the regulation of insulin signaling and
glucose homeostasis, with dysregulations of 5-HT
levels being associated with impaired insulin function
and diabetes development [237].

Postprandial insulin secretion inhibits the
breakdown of stored fat into FFA (lipolysis) and,
instead, promotes the synthesis of fatty acids and their
storage as triglycerides in fat cells (lipogenesis).
Importantly, B-cells also express TPH1 (and TPH2)
[238,239], produce 5-HT, and store 5-HT in the same
vesicles as insulin [240]. Upon glucose stimulation,
5-HT is co-released with insulin and acts in an
autocrine and paracrine manner to potentiate insulin
secretion-primarily via 5-HT»s and 5-HTj3 receptors on
B-cells [27,241-243], and 5-HT;r receptors on a-cells to

suppress glucagon [240]. In addition, 5-HT can
directly promote insulin granule exocytosis via
receptor-independent  serotonylation  [244], a
post-translational =~ modification = mediated by
transglutaminase 2 (TGM2), which covalently links
5-HT to target proteins such as Rab GTPases [245].
This could alter cytoskeletal dynamics and
intracellular signaling and enhance cellular motility
and proliferation.

It is well established that patients with diabetes,
both type I and II, exhibit elevated levels of plasma
5-HT, which correlate with their increased blood

glucose levels [246-250]. This elevation is
accompanied by a decrease in platelet 5-HT storage
[249] due to reduced basal uptake and enhanced
spontaneous release of 5-HT [247,249]. Rodent models
such as streptozotocin-induced p-cell depletion
mirror these findings, with elevated plasma [251] and
gut [252,253] 5-HT levels, increased density of enteric
5-HTergic neurons [254,255], and restoration of these
changes following insulin treatment. In contrast,
central 5-HT signaling is generally reduced in diabetic
rodents, with decreased levels of 5-HT and TPH in the
brainstem, lower density of 5-HT neurons,
downregulated SERT, altered 5-HTia and 5-HT»
receptor expression [256-258], and diminished 5-HT
release in the hypothalamus and cortex [257,259]-most
of which are also corrected by insulin therapy.

A key regulator of postprandial insulin secretion
is GLP-1, an incretin hormone secreted by
enteroendocrine L-cells in response to nutrient intake.
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GLP-1 acts on GLP-1 receptors (GLP-1R) expressed on
pancreatic P-cells to enhance insulin release and
suppress glucagon effects. GLP-IR is the target of
widely used GLP-1 receptor agonists for the
management of obesity, type 2 diabetes and, in the
near future, MASLD [144]. GLP-1 agonists also
increase TPH expression in -cells and stimulate 5-HT
synthesis and its co-release with insulin [239]. In the
gut, GLP-1R is highly expressed in EC cells, where its
activation robustly stimulates 5-HT secretion,
establishing GLP-1 as an upstream regulator of 5-HT
signaling [136]. Conversely, 5-HT itself, through
stimulation of 5-HT4 receptors on enteric neurons and
L-cells, enhances GLP-1 release, forming a
bidirectional feedforward loop [260]. Moreover,
stimulation of 5-HT; receptors improves intestinal
barrier integrity and glucose tolerance in models of
Type 1 diabetes [261] and HFD-induced metabolic
dysfunction [262], respectively, paralleling GLP-1's
protective effects [263].

GLP-2, co-secreted with GLP-1, complements its
effects by maintaining mucosal integrity, promoting
intestinal growth, and enhancing nutrient absorption
through actions on GLP-2R, which are expressed on
EC 5-HT cells and 5-HT-sensitive enteric neurons
[264,265], further linking GLP-2 activity to 5-HTergic
modulation of gut motility and epithelial function.
GLP-2 thereby indirectly influences 5-HT availability
and function, potentially enhancing both GLP-1 and
5-HT secretion. Meanwhile, 5-HT, receptors,
expressed on epithelial and neuronal compartments,
mediate mucosal repair, anti-inflammatory effects,
and promote peristalsis, functions that both overlap
with and potentiate GLP-2's reparative actions.

This network of signaling reveals a tightly
integrated endocrine and paracrine system wherein
GLP-1, GLP-2, and 5-HT mutually regulate each
other’s release and downstream effects through
synergistic receptor pathways. Disruption of any
component can impair insulin secretion, contributing
to the pathophysiology of diabetes. Collectively, these
findings highlight a complex and bidirectional
relationship between 5-HT and insulin in the
regulation of glycemic levels and the pathophysiology
of diabetes.

c. Metabolic dysfunction-associated steatotic
liver diseases

MASLD is the most common chronic liver
disease worldwide, affecting 34-38% of adults in the
global population. Associated with obesity, insulin
resistance, and other features of metabolic syndrome,
MASLD represents a growing public health challenge
due to the potential progression of liver steatosis to
steatohepatitis, fibrosis, cirrhosis, and hepatocellular
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carcinoma [266]. MASLD is characterized by
dysregulations of nutrient metabolism, notably lipids
and carbohydrates, resulting from a combination of
excessive dietary intake and impaired hepatic
metabolic functions [76,144,267-273].

The presence of nutrients in the stomach
stimulates 5-HT synthesis by TPH1 within the
gastrointestinal tract, leading to elevated platelets
levels of 5-HT in the bloodstream. The liver, being the
first organ to receive blood from the gut via the portal
vein, is exposed to these increased platelets 5-HT
concentrations, at levels high enough to exert
systemic, hormone-like effects on liver functions.
Patients with obesity have increased basal TPH1
activity in the gut, resulting in a two-fold increase in
plasma levels of 5-HT potentially reaching the liver
[218]. Consistently, in mice, genetic deletion of the
serotonin transporter (SERT), which increases
extracellular 5-HT levels, results in weight gain and
liver steatosis [233].

Obesity associated with HFD induces liver
steatosis and inflammation, increases platelet number
and aggregation in the liver sinusoids [274], and
increases TPHI1 activity in the gut (duodenum,
jejunum, and colon), which augments 5-HT release
from the gut [222] and platelet-derived 5-HT to the
hepatic portal vein [198]. This elevation in TPH1
activity, as well as the subsequent elevation in 5-HT
reaching liver, is likely implicated in the pathogenesis
of metabolic liver diseases, as pharmacological
inhibition of TPH1 reduces weight gain and adiposity,
improves insulin sensitivity, and ameliorates liver
steatosis in mice fed a HFD [199,219,224,225,275,276].
Since several peripheral organs express TPHI1 as
mentioned above, the potential therapeutic effect of
TPH1 inhibitors could thus result from combined
effects on these organs.

Selective depletion of gut-derived 5-HT by
genetic ablation of gut TPHI1 (villin-cre: tphlf/f)
improves  HFD-induced liver steatosis and
triglyceride accumulation, but does not affect other
systemic energy metabolism features, such as body
weight, plasma cholesterol and triglycerides, glucose
tolerance, and adiposity, suggesting that gut-derived
5-HT is specifically involved in liver lipogenesis [198].
This effect is likely mediated by 5-HT»a receptors
located on hepatocytes, as their selective ablation
(5-HT2a cKO, Albumin-Cre: Htr2af/fl) protects against
HFD-induced steatosis independently of systemic
energy homeostasis [198]. Not only is steatosis
diminished, but the inflammatory and fibrogenic
responses are abolished in 5-HT2s-cKO mice upon
HFD challenge, suggesting that 5-HT»a antagonists
could represent a treatment strategy for
steatohepatitis and liver fibrosis [198,277,278].
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Similarly, pharmacologic blockade of 5-HTj, receptors
(GR113808) prevents weight gain, insulin resistance,
hepatic steatosis and inflammation induced by HFD
in mice [279].

On the other hand, hepatocytes express 5-HT2s
receptors that do not seem to participate in liver
steatosis development as no changes were observed in
mice selectively ablated for 5-HT»s receptors in
hepatocytes (Albumin-Cre: Htr2b/f) [198]. Instead,
hepatocytic 5-HT2p receptors likely regulate glucose
homeostasis by promoting gluconeogenesis through
the stimulation of the two rate-limiting gluconeogenic
enzymes:  fructose-1,6-bisphosphatase  and  the
glucose-6-phosphatase, and by inhibiting glucose uptake
[197]. In addition, 5-HT2p receptors expressed in HSC,
exert an inhibitory effect on liver regeneration by
stimulating TGFp expression, which also stimulates
fibrogenesis [200]. Interestingly, 5-HT»s receptor
expression in HSC is upregulated in fibrotic liver,
suggesting its important role in the fibrogenesis
process [200,280]. In line with this, pharmacological
inhibition or genetic deletion (Htr2b7) of 5-HTos
receptors reduces liver fibrosis, promotes hepatocyte
growth, and improves liver function in a mouse
model of liver fibrosis (carbon tetrachloride
(CCl4)-induced liver fibrosis mouse models) [200].
Together, these data suggest that antagonizing 5-HT2a
receptors in hepatocytes and/or 5-HT2s receptors in
HSC could dampen the MASLD progression. A
similar protection against HFD-induced hepatic
steatosis was also observed in mice ablated for TPH1
or 5-HTzs in adipocytes (adiponectin-cre; Tphl#f or
Htr2bM) or mice genetically deleted for the 5-HT3,
receptor (Htr3a”/-) [225,228].

5-HT could also exert its pathogenic effects
indirectly, via 5-HT2a receptor mediated upregulation
of its degradation enzyme [281-284], the monoamine
oxidase (MAO), located on mitochondria. Being the
most exposed organ to gut-derived 5-HT, the liver is
also the primary site of 5-HT metabolism with a high
expressing of MAO [285]. Higher 5-HT degradation
may lead to overproduction of reactive oxygen
species (ROS) and formation of free radicals, which
could contribute to increased oxidative stress, causing
lipid peroxidation, cellular damages, and liver
inflammation  [281-284]. By stimulating the
phosphorylation of c-Jun N-terminal kinase (JNK),
p38 mitogen-activated protein kinase (p38 MAPK),
signal transducer and activator of transcription 3

(STAT3) and NF-KB, the 5-HT degradation system
can upregulate pro-apoptotic factors such as Bcl-2
Associated X-protein (Bax), cleaved-caspase 3 and
cleaved-caspase 9, and downregulate anti-apoptotic
factors like Bcl-2, which ultimately results in
apoptosis, secretion of TNF-a and IL-1B, and the
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progression of liver diseases [281,282]. Blocking
5-HT>a receptors with the selective antagonist
sarpogrelate has been shown to prevent MAO
upregulation and reduce the resulting increase ROS
byproducts, which further prevent the JNK/p38
MAPK/STAT3 cascade activation, and reduced
inflammation and apoptosis, thereby preventing
carbon tetrachloride (CCl4)-induced hepatotoxicity in
vitro and in vivo [281,282].

The progression of liver fibrosis is closely linked
to both portal fibrosis and angiogenesis, two
interconnected processes that result from the
activation of portal myofibroblasts. These cells
originate from various sources, including resident
portal fibroblasts, perivascular mesenchymal cells,
and  potentially  cholangiocytes  undergoing
transdifferentiation. In response to chronic injury and
inflammation, they accumulate within the portal
regions, where they drive extracellular matrix
deposition and contribute to the formation of fibrotic
septa that eventually bridge neighboring portal tracts.
In the meantime, activated portal myofibroblasts
release pro-angiogenic signals such as VEGF, PDGF,
and Angiopoietin-2, promoting the growth of new
capillary networks within the expanding fibrotic
tissue. This close relationship between fibrogenesis
and angiogenesis creates a self-reinforcing cycle that
not only sustains the progression of fibrosis but also
alters hepatic microcirculation by diverting blood
flow and exacerbating portal hypertension, which
may further amplify the fibrogenic response [286].
5-HT may not only modulate portal hypertension
through the activity of 5-HT1a and 5-HT2a receptors
[69,70,287,288], but could also regulate angiogenesis
by modulating endothelial cells function through
VEGF-dependent or -independent  manners,
involving various 5-HT receptors such as 5-HTis,
5-HT2a, 5-HT,4 or 5-HT7 [289-293].

Both alterations in blood and bile flow can also
promote liver disease, mnotably through the
development of cholestasis, a condition characterized
by the intrahepatic accumulation of bile acids, which
can induce hepatocellular injury, inflammation and
fibrosis. In response to sustained biliary stress, the
liver undergoes bile duct remodeling, characterized
by ductular reaction, proliferation of cholangiocytes
(the epithelial cells lining the bile duct), and
periductal fibrosis, which further perpetuate portal
inflammation and fibrosis. Cholangiocytes express
both TPH1 and TPH2, enabling local production of
5-HT [25,26]. This locally produced 5-HT acts in an
autocrine  fashion to inhibit cholangiocyte
proliferation via the activation of 5-HTia receptors
[26]. In rodent models of cholestasis induced by bile
duct ligation (BDL), TPH1 & 2 expression is
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upregulated while MAO expression  is
downregulated, leading to increased intra-biliary
5-HT level [26]. Genetic ablation of TPH2 results in an
~80% reduction in biliary 5-HT, promoting excessive
proliferation of cholangiocytes and hepatocytes,
expansion of immature ductules, and increased
recruitment of liver progenitor cells. This aberrant
proliferative response promotes extensive ductular
remodeling and exacerbates liver fibrosis [26]. 5-HT
secreted by cholangiocytes also acts in a paracrine
manner on HSC to stimulate their trans differentiation
into myofibroblasts and augment TGF-1 secretion. In
turn, TGF-p1 suppresses TPH2 expression in
cholangiocytes, relieving the inhibitory effect of 5-HT
on ductular proliferation and reinforcing a
feedforward loop that perpetuates both fibrogenesis
and ductular expansion [26]. BDL also upregulates
5-HT2a, 28, 2c receptors expression in both
cholangiocytes and HSC [25]. Stimulation of these
receptors by 5-HT further enhances bile duct mass,
collagen deposition, proinflammatory cytokine
production, and secretion of senescence-associated
secretory phenotypes (SASPs), whereas their
antagonism significantly reduces these responses and
attenuates liver fibrosis [25].

Together, these findings highlight the complex
role of 5-HT signaling in regulating hepatic
metabolism, inflammation, cholangiocyte
proliferation, biliary remodeling, and fibrogenesis.
Through distinct receptor pathways and tissue-
specific effects, 5-HT therefore acts as a pivotal
modulator in the progression of MASLD (and
cholestatic liver diseases).

d. Alcohol associated liver diseases

While the role of central 5-HT signaling in
alcohol use disorders and associated mood
dysregulations have been extensively investigated,
showing that chronic alcohol consumption enhances
brain 5-HT innervation and signaling, with 5-HTia
receptors playing a key role in binge-alcohol drinking
behavior [294-301], little is known regarding the
potential role of peripheral 5-HT signaling in ALD.

Nevertheless, elevated blood and urine levels of
5-HT have been reported in patients with severe
alcohol-associated cirrhosis and in corresponding
animal models [302-304], likely resulting from
elevated expression of intestinal TPH1 [304] and
reduced storage of 5-HT in blood platelets [305-307].
Notably, mice genetically deleted for intestinal TPH1
are protected against alcohol-induced liver steatosis,
inflammation, and alterations in lipogenesis
pathways, probably by preventing neutrophil
mobilization into the liver [308] and nuclear
translocation of Sterol Regulatory Element-Binding
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Protein 1 (SREBP1) [304]. Similarly, hepatocyte-
specific knockout of 5-HT»a receptors confers
protection against alcohol-associated steatosis, and
SREBP1 activation, thereby attenuating liver
endoplasmic reticulum stress and inflammation [304].
Together, these findings suggest that intestinal 5-HT,
acting through 5-HT2a receptors, contributes, at least
in part, to the early stages of ALD. However, further
studies are warranted to clarify the respective role of
intestinal and liver-secreted 5-HT in the progression
towards more advanced stages of the liver disease.

e. Hepatocellular carcinoma

5-HT likely exerts a potent pro-tumorigenic
factor in HCC, influencing both disease progression
and prognosis through multiple intertwined
mechanisms. Elevated systemic and intraplatelet
levels of 5-HT have been consistently reported in
patients with HCC compared to cirrhotic controls,
with plasma 5-HT concentrations emerging as a
potentially sensitive and non-invasive biomarker for
early-stage HCC detection across various underlying
etiologies [8,309,310]. Moreover, elevated levels of
5-HT storage in platelets have been associated with
increased risk of tumor recurrence, early relapse, and
poor overall survival, suggesting that platelet-derived
5-HT acts as both a systemic marker and a local driver
of tumorigenesis [311-316]. Mechanistically, 5-HT
promotes hepatic cancer cell proliferation, invasion,
and metastasis primarily via receptor-mediated
signaling, notably through the 5-HT2p receptor, which
is highly upregulated in HCC tissues [317-319].
Activation of 5-HT2p by 5-HT enhances the expression
and nuclear activity of YAP (Yes-associated protein), a
central effector of the Hippo pathway, thereby driving
tumor growth through downstream ERK and YAP
phosphorylation [319]. Interestingly, high levels of
both intraplatelet 5-HT and YAP are independently
associated with poor clinical outcomes, reinforcing
the functional significance of the 5-HT-YAP axis in
HCC pathogenesis [315,316].

Beyond 5-HTzs, HCC tissues show a distinct
remodeling of 5-HT  receptor  expression.
Upregulation of 5-HT1s, 5-HT1p, and 5-HT?7 receptors,
and downregulation of 5-HT2a and 5-HTs receptors
have also been observed in tumors [317,318].
Antagonism at 5-HT7 receptors significantly reduces
tumor size in vivo, suggesting a proliferative or
survival role of this receptor in liver malignancy [318].
5-HT1p and 5-HTip, similarly overexpressed in HCC,
have been involved in the regulation of epithelial-
mesenchymal transition and cell invasiveness in
pancreatic cancer, pointing to a potential role in HCC
progression, yet their exact contribution remains
unclear in liver tissue.
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5-HT also exerts tumor-promoting effects
independently of receptor activation, through

serotonylation. In HCC, elevated TGM2 expression
correlates with poor differentiation, high levels of the
HCC marker alpha-fetoprotein (AFP), and advanced
tumor stage, with pharmacological inhibition of
serotonylation suppressing tumor growth [321]. These
findings suggest that serotonylation may contribute to
tumor aggressiveness in HCC.

Collectively, these studies depict 5-HT as a
potential modulator of HCC, acting through
platelet-derived paracrine mechanisms, receptor-
specific signaling, and epigenetic modifications. This
positions 5-HT not only as a biomarker for early
detection and prognosis but also as a promising target
for therapeutic intervention in hepatocellular
carcinoma.

f. Cardiovascular diseases

Cardiovascular diseases (CVD) represent major
comorbidities of metabolic dysfunction and chronic
liver disorders such as MASLD and HCC, reflecting
their convergence within a shared cardiometabolic
continuum. Beyond its hepatic and metabolic roles,
5-HT functions as a potent vasoactive mediator that
regulates vascular tone, endothelial function, platelet
aggregation, and myocardial remodeling. More than
95 % of circulating 5-HT is synthesized peripherally
by enterochromaffin cells and stored in platelets, from
which it is released upon activation during thrombus
formation or acute inflammation [322].
Physiologically, 5-HT contributes to vascular
homeostasis through the balanced activation of
vasoconstrictive 5-HT2a,28 and vasodilatory 5-HTg/7
receptors  [322,323]. Under metabolic stress,
hyperlipidemia and insulin resistance disrupt this
equilibrium, promoting endothelial dysfunction,
oxidative stress, and thrombosis [237,324].

Clinical and experimental data demonstrate that
platelet-derived 5-HT contributes to atherogenesis,
vascular inflammation, and myocardial injury.
Elevated plasma 5-HT and reduced platelet storage
are reported in obesity, diabetes, and MASLD,
correlating with vascular stiffness, carotid intima-
media thickness, and coronary artery calcification
[325,326]. During coronary artery disease, platelet
activation within the ischemic microenvironment
triggers massive 5-HT release, which acts as a
chemoattractant and activator of neutrophils [308]. In
TPH1/" mice or following chronic SSRI treatment,
depletion of platelet-derived 5-HT markedly reduces

neutrophil recruitment, degranulation, and
myocardial injury [308,327,328]. Mechanistically,
5-HT signaling through 5-HT7 receptors on

neutrophils increases intracellular calcium, promoting
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CD11b externalization, myeloperoxidase (MPO)
release, and reactive oxygen species (ROS)
production, which enhance neutrophil adhesion to
platelets and injured endothelium, aggravating
reperfusion injury [308,328]. Conversely,
pharmacological depletion of platelet 5-HT or
long-term SSRI  administration mitigates this
inflammatory cascade and confers protection against
ischemia/reperfusion injury [329]. In humans, plasma
5-HT levels correlate positively with neutrophil
CD11b and MPO expression in acute coronary
syndrome, whereas SSRI therapy suppresses both
markers [328]. Consistently, patients treated with
SSRIs display a reduced risk of first myocardial
infarction, consistent with decreased platelet 5-HT
uptake and aggregation [330]. At the cardiac level,
5-HTp receptor activation in cardiomyocytes and
fibroblasts triggers ERK1/2- and TGF-f-dependent
remodeling, leading to hypertrophy and diastolic
dysfunction [331]. Notably, similar 5-HT2p-driven
fibrogenic programs operate in hepatic stellate cells
during fibrosis [200], suggesting shared serotonergic
mechanisms underpinning cardiac and hepatic
remodeling. Elevated circulating and hepatic 5-HT
levels observed in cirrhosis and HCC correlate with
systemic and portal hypertension [303,332-334],
further linking hepatic 5-HT dysregulation to
extrahepatic vascular pathology. Recent findings also
implicate intestinal tryptophan (Trp) metabolism in
the regulation of systemic 5-HT levels and
cardiovascular risk. Hence, dietary Trp is catabolized
via three main pathways: (1) the kynurenine (Kyn)
pathway in intestinal epithelial cells through
indoleamine 2,3-dioxygenase 1 (IDO1) or in the liver
via Trp 2,3-dioxygenase (TDO); (2) the microbial
indole pathway, which converts Trp into indole
metabolites; and (3) the 5-HT synthesis pathway EC
cells via the TPH1 [329]. In mice lacking intestinal
IDO1 or deprived of dietary Trp, the Kyn pathway
blockade redirects metabolism toward 5-HT
synthesis, elevating gut-derived and circulating 5-HT,
compromising barrier integrity, and promoting
systemic inflammation and atherosclerotic plaque
formation [329]. Pharmacological inhibition of TPH1
normalizes these effects by reducing gut
inflammation and plaque burden, whereas exogenous
5-HT supplementation aggravates vascular lesions
[329]. At the cellular level, these deleterious effects are
orchestrated through endothelial 5-HTig/2a/28
receptors, which regulate vascular tone and
inflammatory signaling, and macrophage 5-HT2a,28/7
receptors,  which  drive  cytokine  release,
inflammasome activation, and leukocyte recruitment
during atherogenesis and ischemic injury [292,335-
338].
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Collectively, these findings identify 5-HT as a
unifying molecular link between metabolic, hepatic,
and  cardiovascular  disorders. = Dysregulated
peripheral 5-HT not only promotes hepatic steatosis,
fibrosis, and tumor progression but also drives
vascular inflammation and myocardial remodeling,
amplifying morbidity and mortality across the
metabolic syndrome. Understanding 5-HT signaling
within this integrated liver-gut-cardiovascular axis
may thus reveal therapeutic opportunities capable of
concurrently mitigating hepatic and cardiovascular
complications.

IV. Conclusion and Clinical
Considerations

Extensive evidence suggests that 5-HT exerts
context-dependent effects on metabolic and liver
health, mediated through both central and peripheral
pathways. Elevated peripheral 5-HT levels are
generally associated with deleterious outcomes,
promoting  hepatic = steatosis,  inflammation,
fibrogenesis, and tumor progression, thereby
contributing to the development of MASLD, ALD,
and HCC. In contrast, physiological 5-HT signaling
can exert beneficial actions by stimulating hepatocyte
proliferation and liver regeneration, particularly
following injury or hepatectomy, creating a
therapeutic paradox. These opposing outcomes likely
depend on the relative contribution of gut-derived vs
locally synthesized 5-HT, each exerting organ- or
tissue-specific effects according to the repertoire of
5-HT receptor subtypes expressed. At the central
levels, 5-HT primarily modulates appetite, energy
expenditure, and autonomic outflow, indirectly
influencing  liver —metabolism and systemic
homeostasis. Although 5-HT cannot cross the blood-
brain barrier, evidence suggests that peripheral 5-HT
levels may inversely influence central 5-HT synthesis,
notably by modulating Trp availability.

This duality highlights the importance of
integrating both central and peripheral 5-HT
signaling when considering therapeutic interventions.
Decreasing overall 5-HT levels using the non-selective
inhibitor of both central and peripheral TPH (PCPA),
was shown to reduce obesity and adiposity, as well as
diet- and alcohol-induced hepatic steatosis and
inflammation [198,219,224,225,304,339]. However,
prolonged brain 5-HT depletion by PCPA is also
known to produce anxiety [340], to impair motivation
[341] and cognitive functions [342], and to increase
aggressivity [343] and vulnerability to stress [344].
While reducing overall 5-HT levels may seem like a
feasible approach to halting the progression of liver
disease, it could also greatly affect emotions and
mood. Resolving this contradiction is essential to
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devise new 5-HT-targeting therapeutics for the
treatment of chronic liver disease. In line with this,
novel TPH1 inhibitors that do not cross the blood
brain barrier have been developed, revealing that
inhibition of peripheral 5-HT synthesis is sufficient to
protect against diet-induced obesity, reduce blood
glucose levels, adiposity, and prevent diet-induced
liver steatosis [199,275].

Conversely, this suggests that drugs elevating
5-HT levels, such as selective serotonin reuptake
inhibitors (SSRIs) or MAO inhibitors (MAOI)
antidepressants may aggravate liver steatosis and
steatohepatitis. For instance, 5-HTergic medications,
particularly SSRIs, have been consistently associated
with adverse metabolic and hepatic effects [345-350].
Chronic exposure to SSRIs such as sertraline,
fluoxetine, and citalopram induces hepatotoxicity by
impairing the liver’s ability to metabolize drugs and
fatty acids [351,352]. In epidemiological studies,
antidepressants with high affinity for the serotonin
transporter have been linked to elevated serum LDL
cholesterol levels [353], while clinical trials in anxiety
or depressive disorders reveal divergent effects across
molecules. For instance, fluoxetine was associated
with reductions in body weight and lipid markers,
whereas paroxetine, citalopram, and sertraline were
linked to increased weight, waist circumference, and
systemic glucose, LDL, and triglycerides [354].
Long-term use of SSRIs or tricyclics has further been
correlated with an increased risk of diabetes mellitus
[355], and several reports confirm that fluoxetine,
sertraline,  venlafaxine, and related agents
unfavorably impact lipid profiles, with venlafaxine
showing the strongest association with dyslipidemia
[356,357]. Fluoxetine has particularly been implicated
in hepatic lipid accumulation via a dual mechanism,
upregulating the SREBP1c-ACC1-FAS lipogenic axis
through p38 MAPK signaling while suppressing
lipolysis via downregulation of CES1/3 [358]. This is
compounded by fluoxetine-induced increase in
hepatic 5-HT synthesis, which in turn promotes
steatosis, an effect reversed by TPH inhibition [359].
Human and murine studies further confirm that
fluoxetine elevates serum triglycerides and LDL and
increases liver expression of lipogenic genes while
suppressing adipogenic and p-oxidation markers
[360,361]. Similar hepatotoxic effects, such as acute
liver injury, cholestasis, vanishing bile duct
syndrome, chronic fibrosis, Kupffer cell hyperplasia,
glycogen depletion, and nuclear damage have been
reported for sertraline [362-364]. Similarly, MAO
isoforms A and B are critical players in the
intersection between 5-HT and liver diseases. MAO-A
is upregulated in MASH liver and mediates oxidative
stress-induced hepatocellular damage [365]. Similar
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findings in patients with obesity show elevated
MAO-A expression correlating with increased ROS
and vascular dysfunctions [366], while MAO-B levels
are markedly increased in fibrotic liver cells [367].
Blockade of MAO activity using inhibitors (e.g.,
clorgyline, pargyline) has shown beneficial effects on
food intake and obesity markers in mice [368],
suggesting that selective modulation of MAO may
offer therapeutic avenues.

Beyond antidepressants, 5-HT receptor agonists
such as triptans are also associated with
hepatotoxicity. Sumatriptan and rizatriptan, 5-HTip
receptors agonists, have been shown to cause
mitochondrial and lysosomal dysfunctions in
hepatocytes, marked by lipid peroxidation and
oxidative stress [369]. Yet not all serotonergic drugs
are deleterious. Buspirone, a 5-HT1a receptor agonist,
reduces oxidative stress and protects against
CCls-induced liver fibrosis [370], and portal
vein-targeted 5-HT1a modulation has shown promise
in reducing portal hypertension [288]. Several 5-HT
receptors such as 5-HT7, 5-HT2p and 5-HTip have also
been involved in the deleterious effects of 5-HT on
HCC progression in vitro. For instance, 5-HT increases
the proliferation of HCC cells by reducing {3-catenin
degradation and subsequently enhancing Wnt/p-
catenin signaling pathway, a process attenuated by a
5-HT7 antagonist [318]. Pharmacological inhibition of
5-HT»p receptors also reduces the proliferation and
invasiveness of HCC cells by attenuating the
activation of mammalian target of rapamycin (mTOR)
and YAP pathways [319]. Finally, genetic silencing of
5-HTip receptors was shown to inhibit the
proliferation, migration and invasion of HCC cells, by
attenuation Pi3K/ Akt-dependent epithelial-
mesenchymal transition (EMT) [371]. Interestingly,
emerging evidence suggests a paradoxical protective
role of SSRI and tricyclic antidepressants in HCC. By
inducing cancer cell autophagy, inhibiting tumor
growth, and synergizing with anti-cancer agents, such
as sorafenib, SSRIs likely decrease mortality in HCC
patients  [372-379]. Furthermore, by reducing
adiposity, hepatic steatosis, hepatocyte ballooning
and liver fibrosis induced by HFD- or
choline-deficient HFD, 5-HT2a receptor antagonists
have recently emerged as promising therapeutic
candidates for MASH, MASLD and HCC [277,380].

Taken together, these observations highlight the
complex and ambivalent role of 5-HT signaling in
liver health. While some 5-HT targeting therapeutics
show  potential for modulating metabolic,
inflammatory, or neoplastic processes within the liver,
the unintended consequences of chronic 5-HTergic
modulation-particularly =~ through  SSRIs  and
MAGOQI-raise significant safety concerns. These include
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disruptions in lipid and glucose homeostasis,
exacerbation of steatosis, hepatocellular injury, and
fibrosis. The liver’s central role in drug metabolism
renders it especially vulnerable to sustained 5-HT
input, whether via enhanced serotonin levels, altered
degradation pathways, or receptor overstimulation.

These findings highlight the temporal and
receptor-specific duality of 5-HT signaling in chronic
liver disease. Although 5-HT contributes to
fibrogenesis and cirrhosis development, it may also
participate in limiting tumor aggressiveness or
supporting hepatic regeneration under specific
conditions. Therapeutic strategies aiming to modulate
serotonergic pathways in chronic liver disease must
therefore consider both the disease stage and the
cellular targets involved in 5-HT signaling. As such,
repositioning serotonergic drugs for the treatment of
chronic liver diseases demands a highly cautious,
mechanism-guided approach. It will be essential to
discriminate  between receptor-specific effects,
distinguish central versus peripheral actions, and
identify patient profiles most likely to benefit from
such interventions.
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