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Abstract

Background: Radiotherapy resistance in breast cancer remains a major clinical challenge. The key molecular determinants and
cellular populations driving this resistance are not fully understood.

Methods: A radiotherapy resistance (RR) gene panel was identified from TCGA-BRCA and GSE120798 cohorts. Single-cell and
spatial transcriptomics characterized RRhigh epithelial cells (RRhighepi). A prognostic model, named SuperPC and StepCox-based
Radiotherapy Resistance model (SSRR), was built via machine learning and Mendelian randomization. Functional roles of Prolyl
4-Hydroxylase Subunit Alpha 2 (P4HA2) were validated in vitro.

Results: The RR gene panel was upregulated in tumors and enriched for cell cycle pathways. RRhighepi cells exhibited elevated
stemness, activated cell cycle and metabolic programs, and enhanced DNA damage repair. RRhighepi represented a developmental
origin and communicated with endothelial cells. The SSRR model stratified patients into high-risk groups with poorer survival and
distinct therapeutic responses. P4HA2, a key model gene, was upregulated in multiple cancers. P4HA2 knockdown suppressed
proliferation, invasion, and colony formation, and synergized with radiotherapy to reduce stemness and enhance DNA damage.
WGCNA confirmed co-module membership of P4HAZ2 and the RR panel.

Conclusions: This study, through multi-omics analysis, proposes a potential mechanistic model associated with radiotherapy
resistance in breast cancer. P4HA2 is a potential therapeutic target that sensitizes breast cancer to radiotherapy. The RR gene panel
and SSRR model provide insights into resistance mechanisms and prognostic stratification.
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Introduction

Radiotherapy resistance in breast cancer remains
a critical concern in clinical oncology, both in terms of

individuals and those with longer latency periods [1].
Variations in reported incidence across studies may

incidence and evolving epidemiological trends. A
population-based study utilizing the Surveillance,
Epidemiology, and End Results (SEER) database
analyzed 374,993 patients, of whom 154,697 received
radiotherapy. With a median follow-up of 8.9 years,
13% of patients developed second primary
malignancies. The incidence of secondary cancers was
significantly higher in those who underwent
radiotherapy,  particularly = among  younger

be attributable to differences in patient cohorts,
radiotherapy protocols, and evaluation criteria. A
separate investigation involving 1,003 breast cancer
patients revealed subtype-specific differences in
radiotherapy response following breast-conserving
surgery. Human epidermal growth factor receptor
2-positive (HER2+) tumors exhibited the highest level
of radioresistance, whereas patients with triple-
negative breast cancer (TNBC) derived the greatest
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reduction in breast cancer-specific mortality from
radiotherapy [2].

Aberrations in cell cycle regulation are closely
associated with clinical outcomes in breast cancer.
Numerous studies have demonstrated that
dysregulation of cell cycle-associated proteins and
their encoding genes significantly influences disease
progression and patient survival. For example,
overexpression of cyclin D1 mRNA 1is strongly
correlated with poor prognosis in estrogen
receptor-positive (ER+) breast cancer. In a study of
253 primary breast cancer cases, elevated cyclin D1
mRNA levels in ER+ tumors were significantly
associated with increased risk of recurrence (P =
0.0016), local relapse (P = 0.025), distant metastasis (P
= 0.019), and mortality (P = 0.025), whereas no such
association was observed in ER-negative tumors [3].
Similarly, low expression of F-box and WD repeat
domain containing 7 (FBXWW?7), a gene involved in cell
cycle regulation, correlates with adverse prognosis.
Specifically, FBXW7 mRNA levels were markedly
reduced in high-grade tumors and hormone
receptor-negative subtypes, with lower expression
predicting poorer breast cancer-specific survival [4].
Elevated Cullin 7 expression has also been associated
with advanced pathological stage (P = 0.013), lymph
node metastasis (P = 0.022), and decreased overall
survival (P = 0.037). Knockdown of Cullin 7 inhibited
breast cancer cell proliferation and invasion, likely
through modulation of cell cycle-associated proteins
[5]. Collectively, these findings underscore the
prognostic significance of cell cycle dysregulation and
highlight related molecules as candidate biomarkers
and therapeutic targets.

Metabolic reprogramming plays a pivotal role in
radiotherapy resistance in breast cancer. Hallmark
metabolic alterations, such as the Warburg effect and
enhanced lipid biosynthesis, are linked to
chemotherapy failure, and the distinct metabolic
profiles of metastatic lesions contribute to resistance
to both targeted and immune therapies [6]. Multiple
mechanisms underlie this phenomenon. For instance,
Pyruvate dehydrogenase kinase 1 (PDK1)-dependent
metabolic reprogramming has been shown to drive
metastatic potential. Liver metastases of breast cancer
display unique metabolic adaptations characterized
by elevated PDK1 expression, which is essential for
metabolic fitness and hepatic colonization [7]. In
TNBC, Retinoic acid receptor responder 2 (RARRES?2)
mediates brain metastasis via lipid metabolism
reprogramming. Downregulation of RARRES2 is
associated with brain tropism and modulates the
PTEN-mTOR-SREBP1 axis to alter glycerophospho
lipid and triglyceride levels, thereby promoting tumor
cell survival in the brain microenvironment [8].
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The tumor microenvironment (TME) also exerts
critical influence on radiotherapy resistance in breast
cancer. Radiotherapy induces profound alterations in
the vascular, stromal, and immune components of the
TME, potentially facilitating tumor recurrence and
resistance [9]. Specific TME constituents, including
cancer-associated  fibroblasts = (CAFs),  tumor-
associated macrophages (TAMs), and myeloid-
derived suppressor cells (MDSCs), modulate immune
evasion and contribute to therapeutic resistance [10].
Fibroblast Growth Factor 2 (FGF2), a secreted factor
within the TME, confers resistance to various
therapies in ER+ breast cancer. Mechanistically, FGF2
activates ERK1/2 signaling via FGFRs, leading to
upregulation of Cyclin D1 and downregulation of
Bim. Inhibition of FGF2 or its receptors reverses
therapeutic resistance, and transcriptional signatures
of FGF2 signaling can predict relapse-free survival
[11].

In this study, we integrated bulk RNA
sequencing data from TCGA-BRCA and GSE120798 to
identify a gene panel associated with radiotherapy
resistance in breast cancer. Through differential
expression analysis and downstream validation using
single-cell and spatial transcriptomics, we delineated
the expression patterns and potential functional roles
of these genes within malignant epithelial cells.
Particular attention was paid to the role of tumor
epithelial cells in cell cycle regulation, metabolic
reprogramming, and intercellular communication
with endothelial cells, elucidating their central
function in mediating radiotherapy resistance.

Additionally, we identified P4HA?2 as a potential
therapeutic target. P4HA2 is highly expressed in
breast cancer and strongly correlates with poor
prognosis. Its knockdown significantly suppressed
proliferation and migration of breast cancer cells,
suggesting a key role in the development of
radioresistance. Taken together, this study presents a
comprehensive multi-omics framework for decoding
the regulatory landscape underlying breast cancer
radioresistance and provides a theoretical foundation

and candidate targets for future therapeutic
interventions.
Methods and Materials

Cell Culture and Transfection Conditions

The HCC1806 and MCF7 cell lines were sourced
from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China) and were maintained in
DMEM medium (Boster, China) supplemented with
10% FBS (HyClone, USA), incubated at 37 °C in a 5%
CO, atmosphere. To suppress P4HA2 expression,
siRNAs were transfected into these cells using
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Lipofectamine 3000. The siRNAs (including the
scrambled negative control), used in this study were
commercially acquired from Shanghai GenePharma
Co., Ltd.

Cell Viability Assay

Cells were digested, centrifuged, and seeded into
96-well plates at a density of 2000-3000 cells per well.
Cell viability was measured using the Cell Counting
Kit-8 (APExXBIO, United States) at 0, 24, 48, and 72 h
after treatment.

Western Blotting (WB)

The cells were lysed in a cold buffer
supplemented with phosphatase and protease
inhibitors. Protein levels were quantified using the
bicinchoninic acid assay. Following separation on
4-12% SDS/PAGE gels, the proteins were transferred
onto PVDF membranes, blocked, and then incubated
with both primary and secondary antibodies.
Immunoreactive proteins were detected using a
chemiluminescent solution. Detailed information on
the antibodies used is provided in Table S1.

Transwell Assays

Cell migration was evaluated using the Boyden
chamber assay, employing an 8-pm pore size. A total
of 1 x 105 cells were suspended in 200 pL of medium
lacking FBS and added to the upper chamber, while
the lower chamber contained 20% FBS medium. After
24 h, cells were fixed and stained, and the number of
cells in six randomly chosen fields was counted.

EdU Assay

Cells were transfected and seeded in 24-well
plates at a density of 5 x 104 cells per well, followed by
overnight incubation. To evaluate EdU incorporation,
the EAU Cell Proliferation Kit, labeled with Alexa
Fluor 488, was employed. EdU-positive cells were
stained using Azide 488 and Hoechst 33342. Images
were captured from three randomly chosen fields,
and the EdU incorporation rate was calculated as:
EdU-positive rate = (number of EdU-positive cells /
(number of EdU-positive cells + number of EdU-
negative cells)) x 100%.

Colony Formation Assay

Cells (8 x 102 to 1 x 103 cells) were seeded into
6-well plates and incubated at 37 °C for 10 to 14 days.
After incubation, colonies were fixed with methanol,
stained with 1% crystal violet for 15 min, and counted
to assess colony formation ability.

Immunofluorescence Staining

Cells were seeded on 18 mm coverslips and
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stabilized overnight at 37 °C. Briefly, the slides were
blocked with 5% bovine serum albumin, followed by
incubation with primary antibodies and fluorescently
labeled secondary antibodies. Nuclei were stained
using DAPI (Thermo). The samples were visualized
using an LSM 880 laser scanning microscope (Zeiss).
Detailed information on the antibodies used is
provided in Table S1.

3D Spheroid Assay

Cells are dissociated with 0.05% trypsin and
quenched with complete medium followed by
centrifugation. The cells were washed twice with PBS
and centrifuged to remove serum before counting. A
total of 5,000 cells are seeded per well in ultra-low
attachment 6-well plates with 2 mL of DMEM/F12
specialized medium for sphere formation. After 2-3
days of culture, 1 mL of fresh medium is
supplemented per well. Sphere growth and size are
recorded after 7-10 days of culture.

Data Sources

Single-cell RNA sequencing data GSE176078 and
spatial transcriptomics data GSM6760695,
GSM6760696, GSM6760697, as well as bulk
transcriptomics data GSE16446, GSE20486, GSE24450,
and GSE21656 were downloaded from the GEO
database. Pan-cancer (including TCGA, ICGC)
transcriptomics, genomics, methylation, and clinical
data were sourced from the UCSC Xena database [12],
GEO database, ArrayExpress database, and ICGC
Data Portal. Immunohistochemical staining data were
obtained from The Human Protein Atlas [13].
Pan-cancer single-cell data were downloaded from
the TISCH database [14, 15].

Single-cell and Spatial Transcriptomics
Processing

Single-cell RNA sequencing (scRNA-seq) data
were processed using the Seurat package (v4.1.3) in R
(v4.2.2) [16]. Quality control measures included: 1)
exclusion of genes present in fewer than three cells; 2)
removal of cells expressing fewer than 50 total genes;
and 3) elimination of cells with more than 5%
mitochondrial gene expression. Data normalization
was performed using the SCTransform method, while
batch effects were corrected using the Harmony
method (v0.1.0) to combine Seurat objects into a
unified dataset. Dimensionality reduction was
conducted via Principal Component Analysis (PCA),
and cell classification was executed using the
FindNeighbors and FindClusters functions. Cell-cycle
scores were computed with Seurat’s CellCycleScoring
function. For visualization, the Uniform Manifold
Approximation and Projection (UMAP) algorithm
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was applied. Cell types were identified through
differential expression analysis with Seurat’s
Find AllMarkers function. The thresholds applied for
marker gene identification were adjusted P-value <
0.05, expression > 0.25, and absolute log2 fold change
> 0.5. SingleR was used for annotation based on
marker gene composition, and validation was done
using the CellMarker database. For cell
communication analysis in single-cell transcriptomics,
the Cellcall algorithm [17] was used to explore tumor
microenvironment interactions in the RR group.
Pseudotime analysis was conducted using the
monocle2 algorithm [18-20] to identify developmental
trajectories in the RR group. The CytoTRACE
algorithm [21] was used to assess stemness features in
the RR group, and transcription factor identification
in single-cell data was performed using the SCENIC
algorithm [22]. Metabolic pathway activity was
assessed using the scFEA algorithm [23] to determine
metabolic differences in the RR group.

ST data were processed and visualized using
Seurat. The data were standardized using the SCT
method, and integration was performed using
SelectIntegrationFeatures, PrepSCTIntegration,
FindIntegrationAnchors, and IntegrateData functions.
Unsupervised clustering methods were applied to
group similar ST regions. Cell group annotations were
based on hematoxylin and eosin (HE) stained sections
and significantly variable genes within each group.
Spatial transcript and feature plots (SpatialDimPlot
and SpatialFeaturePlot) were used for data
visualization. For cell-type decomposition of spatial
transcriptomics ~ data, = Robust  Cell  Type
Decomposition (RCTD) was used to align reference
scRNA-seq cell types with spatial transcriptomics
data. Cell type marker genes were identified using
Seurat’s FindAllMarkers function, with positive log2
fold change as the selection criterion. The standard
RCTD analysis pipeline was applied, concentrating on
reference data and Visium spatial transcriptomics
data, with the dual-mode configured to full.
Trajectory evolution in spatial transcriptomics was
analyzed using the stLearn algorithm [24] to identify
developmental trajectory differences in the RR group.
MISTy [25] in mistyR (v1.2.1) was utilized to evaluate
how the abundance of primary cell types influences
the prevalence of other major cell types.

Enrichment Analysis

The Metascape online analysis tool [26] was used
to perform enrichment analysis of radiation resistance
gene panels. Multiple gene lists were uploaded, and
the top 20 pathways were selected for further
analysis. Enrichment analysis for single-cell and
spatial transcriptomics was performed using the
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irGSEA package [27]. Gene sets were downloaded
from the Molecular Signatures Database [28-30].

Survival Analysis

To investigate risk models and the role of P4HA?2
in clinical diagnosis and prognosis, survival analysis
was performed on pan-cancer transcriptomic cohorts,
including BRCA, using the Survival (v3.2-10) and
Survminer (v0.4.9) packages. The median value was
used to divide patients into high or low categories,
and Kaplan-Meier survival curves were generated
using the survfit function.

Immunotherapy Efficacy and Drug Sensitivity
Prediction

Cohorts for immunotherapy analysis were
sourced from the TIGER database [53]. Drug
sensitivity data for cell lines were obtained from the
Cancer Therapeutics Response Portal (CTRP v.2.0,
released October 2015, https:/ /portals.broadinstitute
.org/ctrp) and PRISM Repurposing dataset (1904,
released December 2019, https://depmap.org/

portal/prism/).
Statistical Analysis

Data are presented as mean =+ standard
deviation. The chi-squared test was employed to
evaluate differences in categorical variables, such as
clinical characteristics across subgroups. A P-value of
< 0.05 was considered statistically significant. The
Benjamini-Hochberg method was applied to adjust
P-values for multiple comparisons. Data processing,
statistical analysis, and visualization were performed
using R software (version 4.1.3).

Results

Determination of Radiotherapy Resistance
Gene Panel

The study design is depicted in Figure 1. We
began by analyzing the TCGA-BRCA and GSE120798
cohorts (Figure 2A), with the corresponding sample
details provided in Figure 2B. Differential expression
analysis was conducted for both cohorts, and the
overlap of upregulated genes in tumor tissues and
radiotherapy-resistant groups was identified (Figure
2C, Table S1). Using a threshold of meta_FDR < 0.05
and |meta_Hedges| > 0.7, we obtained a set of
significantly differentially expressed genes, which
was designated as the "radiotherapy resistance gene
panel" (Table S2). Enrichment analysis performed
using the Metascape database revealed that this gene
panel is predominantly associated with cell
cycle-related pathways, including R-HSA-1640170,
GO:0000278, and GO:0045787 (Figure 2D). Tissue
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specificity analysis indicated the highest expression in
breast tissue (Figure 2E). Additionally, cell-type
specificity analysis using the WebCESA database
demonstrated that the gene panel is most prominently
expressed in breast epithelial cells, endothelial cells,
and smooth muscle cells (Figure 2F). Furthermore, we
found that the ssGSEA scores of the radiation
resistance gene panel in the radiation-resistant group
(RR) were significantly higher than those in the
control group (WT) among MCF7, MDAB-231, and
ZR751 cell lines (Figure 2G-I).

Elevated Expression of Radiotherapy
Resistance Gene Panel in BRCA Epithelial
Tumor Cells

To further explore the cell specificity of the
radiotherapy resistance gene panel, we analyzed
BRCA single-cell cohorts, performing batch
correction, dimensionality reduction, clustering, and
cell annotation (Figure 3A). Using multiple single-cell
scoring methods, we evaluated the radiotherapy
resistance gene panel (RR) scores across cell types and
compared their average values (Figure 3B-C), finding
that BRCA epithelial cells had the highest RR scores.
In a validation cohort following batch correction,
dimensionality reduction, clustering, and cell
annotation (Figure 3D), we confirmed that BRCA
epithelial cells exhibited the highest RR scores (Figure
3E), with increased scores in epithelial cells of tumor
tissues (Figure 3F). To further investigate RR
specificity in tumor tissues, we identified and
characterized malignant and benign regions in spatial
transcriptomics using the Cottrazm R package (Figure
S1A-B), revealing higher RR scores in malignant
compared to benign tissues (Figure 3G-H).

Based on scoring, we divided epithelial cells into
two groups (RR group, median value was 0.450658):
high RR score (RRhighepi, RRhighepi group was
defined as epithelial cells with a score > 0.450658) and
low RR score (RRlowepi, RRlowepi group was
defined as epithelial cells with a score < 0.450658)
(Figure 4A). Differential enrichment analysis using
Reactome, Wikipathway, and Hallmarker pathways
revealed upregulation of cell cycle-related pathways
in RRhighepi, including cell cycle, cell cycle mitotic,
cell cycle checkpoint, and G2M checkpoint (Figure
4B). Additionally, enrichment analysis using 12 tumor
states from CancerGSEA showed upregulation of cell
cycle and proliferation states in RRhighepi, while
hypoxia and apoptosis were downregulated (Figure
4C). To investigate the mechanisms underlying
pathway activation, we conducted a transcriptional
regulatory analysis on BRCA epithelial cells. We
assessed the Connection Specificity Index (CSI) and
identified six transcriptional modules (Figure 4D),
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finding that RRhighepi had higher scores in module 2
(Figure 4E) and lower scores in module 6 (Figure 4F).
Transcription factor activity analysis revealed
enhanced activity of ARID2, ELF1, MAZ, CREBS,
IRF3, NFYB, and E2F1 in RRhighepi (Figure 4G),
which are representative genes of module 2.

RRhighepi Exhibits Higher Tumor Stemness
Characteristics

To further investigate the developmental
dynamics within RR groups, we conducted
pseudotime analysis using the monocle algorithm.
Initially, tumor stemness characteristics in the RR
groups were inferred wusing the CytoTRACE
algorithm (Figure 5A-B), which revealed higher
stemness scores in the RRhighepi group (Figure 5C).
Cells with elevated CytoTRACE stemness scores were
designated as developmental starting points, and
developmental trajectories were inferred using the
monocle algorithm. This analysis indicated a decrease
in the proportion of RRhighepi cells as development
advanced (Figure 5D-E). Cellular
development-related genes were grouped into four
clusters (Figure 5F), with ESR1, NME2, and IGFBP4
showing  predominant expression at later
developmental stages. A further exploration of
tumor-associated pathways, including
epithelial-mesenchymal transition (EMT),
angiogenesis (ANG), DNA damage repair (DNA), the
PI3K  pathway (PI3K), apoptosis (APO), and
radiotherapy resistance gene panels (RR) during the
pseudotime analysis of RR groups (Figure 5G),
showed a gradual reduction in pathways such as
DNA damage repair and the PI3K pathway as
pseudotime  progressed. = Notably, = RRhighepi
consistently demonstrated higher tumor-associated
characteristics compared to RRlowepi throughout the
pseudotime trajectory.

Subsequently, we used RCTD deconvolution to
map single-cell cohort cell types to spatial
transcriptomics (Figure 6A-C) and employed stlearn
to infer the developmental trajectory of RR groups.
We found that the spatial transcriptomic
developmental trajectory proceeds from RRhighepi to
RRlowepi, with the developmental trajectory tree
illustrating  detailed evolutionary relationships
between cell clusters (Figure 6D-I). Additionally, we
observed that radiotherapy resistance gene panel
scores positively correlate with trajectory evolution
gene enrichment scores (Figure 6J-L). Based on these
findings, we propose that the developmental
progression involves a transition from a stem-like,
therapy-resistant state (RRhighepi) toward a more
differentiated state (RRlowepi), with the latter
expanding during this progression.
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Figure 3. Elevated expression of
radiotherapy resistance gene panel in
BRCA tumor epithelial cells. (A) UMAP
visualization of cell types after batch correction,
dimensionality reduction, and clustering in
GSE176078 dataset. (B) Bubble plot showing
radiotherapy resistance gene panel scores across
cell types using multiple scoring methods in
GSE176078 dataset. (C) Violin plot displaying
average enrichment scores across cell types in
GSE176078 dataset. (D) UMAP visualization of cell
types after batch correction, dimensionality
reduction, and clustering in GSE161529 dataset. (E)
Bubble plot showing radiotherapy resistance gene
panel scores across cell types using multiple
scoring methods in GSE161529 dataset. (F) Violin
plot displaying average enrichment scores across
cell types in GSE161529 dataset. (G-H) Enrichment
scores of radiotherapy resistance gene panel in
spatial transcriptomics and differential analysis
between regions.

Single-Cell Metabolomic
Differences in RRgroups

Our previous findings
revealed the upregulation of
genes involved in 'Metabolism
of polyamines' and 'Enterocyte
cholesterol metabolism'
pathways in RRhighepi (Figure
3B). Therefore, we used the
scFEA algorithm [23] to conduct
detailed metabolomic
exploration of RR groups.
Among 169 metabolic
pathways, the majority of
upregulated pathways were in
RRhighepi, including G6P to
G3P conversion, Fatty Acid
uptake, serine uptake, and Fatty
Acid Acetyl to CoA conversion
(Figure 7A). Conversely,
upregulated  pathways  in
RRlowepi included Valine
uptake and Glucose to G6P
conversion (Figure 7A). We
further identified multiple
activated pathways in
RRhighepi related to
Pyrimidine synthesis (Figure
7B), Transporters (Figure 7C),
Purine synthesis (Figure 7D),
Glycolysis TCA cycle (Figure
7E), BCAA metabolism (Figure
7F), and Fatty acid metabolism
(Figure 7G), indicating that
RRhighepi  possesses more
robust metabolic characteristics.
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Figure 7. Single-cell metabolomic differences in RR groups. (A) Heatmap showing differences in metabolite conversion-related pathways between RR groups (red font
indicates higher activity in RRhighepi, blue font indicates higher activity in RRlowepi). (B-G) Cohen's D differential analysis in Pyrimidine synthesis (B), Transporters (C), Purine
synthesis (D), Glycolysis TCA cycle (E), BCAA metabolism (F), and Fatty acid metabolism (G).

Interaction Between RRhighepi and
Endothelial Cells

Given the important role of the tumor
microenvironment in radiotherapy, we further
explored cell-cell communication between RR groups
and other cell types at the single-cell level used the

Cellcall algorithm

[17]. We

discovered

strong

communication intensity between RRhighepi and
endothelial cells (Figure 8A), with their interactions

primarily activating Cellular

adhesion, MAPK

signaling pathway,

senescence,

Focal
Relaxin

signaling pathway, and TNF signaling pathway

(Figure 8B).

Analyzing ligand-receptor pairs, we
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found that the main pairs mediating communication By  integrating  results from  spatial
from RRhighepi to endothelial cells included transcriptomic deconvolution with tumor state

WNT7B-FZD4, EFNA3-EPHA2, EFNA1-EPHA4, and
EFNA4-EPHA4 (Figure 8C, Figure S5). From
endothelial cells to RRhighepi, key ligand-receptor
pairs included AREG-EGFR, KITLG-EGFR, and
AREG-ERBB3 (Figure 8C). These findings indicate
that RRhighepi communicates with endothelial cells
through multiple pathways.

Dependency of the Radiotherapy Resistance
Gene Panel (RR) on Cell Cycle and Tumor
States

As identified in our initial analysis (Figure 2D),
the radiotherapy resistance gene panel is primarily
enriched in cell cycle-related pathways. This finding
was further supported by our subsequent spatial
transcriptomics analysis. Using data from 12 tumor
cell states within the CancerGSEA database, we
conducted spatial transcriptomic enrichment analysis
to assess the relationship between the radiotherapy
resistance gene panel and various tumor states.
Dependency analysis of pathways with mistyR [25]
revealed that the gene panel is predominantly
associated with the cell cycle, DNA damage, DNA
repair, and cell proliferation states across regions of
spatial colocation, immediate neighborhoods, and
extended neighborhoods (15 spots) (Figure S2A-C),
with these results confirmed in multiple spatial
transcriptomic samples.

enrichment analysis and applying mistyR for
cell-pathway dependency evaluation, we observed
that RRhighepi shows a strong reliance on the
radiotherapy resistance gene panel (RR), as well as
pathways related to the cell cycle, DNA damage,
DNA repair, and proliferation in both intra- and
para-spatial regions (Figure S2D-F). These findings
lead to the conclusion that the radiotherapy resistance
gene panel is closely tied to the cell cycle, DNA
damage, DNA repair, and other related pathways or
states in tumors.

Mendelian Randomization Analysis of
Radiotherapy Resistance Gene Panel and
Breast Cancer Causality

We collected 24 breast cancer-related GWAS
cohorts and performed Mendelian randomization to
analyze the causal relationship between SNPs in the
radiotherapy resistance gene panel and breast cancer
GWAS. In the ebi-a-GCST90018799 cohort, genes with
causal relationships to breast cancer included NOP5S,
OCIAD2, P4HA2, PEMT, and PNPLA?2 (Figure 9A, C).
In the ieu-a-1126 cohort, genes with causal
relationships to breast cancer included GNB2, HADH,
OAS2, OCIAD2, P4HA2, and PAFAH1B3 (Figure 9B,
D). Across 24 GWAS cohorts, we identified 318 genes
with causal relationships to breast cancer (Table S3).
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Figure 8. Interaction between RRhighepi and endothelial cells. (A) Interaction intensity analysis between RRhighepi and multiple cell types. (B) Analysis of activated
pathways in various cell communications. (C) Analysis of activated ligand-receptor pairs in various cell communications.
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Figure 9. Mendelian randomization exploration of causal relationships between radiotherapy resistance-related genes and breast cancer. (A-B) Forest plots
showing MR analysis results of radiotherapy resistance-related genes in ebi-a-GCST90018799 cohort and ieu-a-1126 cohort. (C-D) Volcano plots displaying eQTL results of

radiotherapy resistance-related genes.

Robust Machine Learning Model for Predicting
Survival and Guiding Treatment Decisions

To identify signature genes for RRhighepi
(]logFC|>0.25) (Table S4), we used the Findmarker
function and cross-referenced these genes with those
from Mendelian randomization analysis (Figure S3) to
construct a prognostic model (Table S5). Among the
various machine learning methods tested for
predicting patient survival, StepCox[both]+SuperPC
consistently ranked in the top three based on average
c-index (Figure 10A), maintaining stable gene weights
(Figure 10B). As a result, we adopted this method to
develop our prognostic model, named SSRR
(SuperPC and  StepCox-based  Radiotherapy

Resistance model). By using the median SSRR risk
score as a threshold, patients were stratified into
high-risk and low-risk groups. In the TCGA cohort,
the high-risk group demonstrated significantly worse
survival outcomes compared to the low-risk group
(Figure 10C). The area under the curve (AUC) values
for two-year survival in the TCGA, GSE16446,
GSE20486, and GSE24450 cohorts were 0.57, 0.71, 0.68,
and 0.79, respectively, while for four-year survival,
the AUC values were 0.62, 0.55, 0.68, and 0.73,
respectively. Expression patterns of the SSRR weight
genes are illustrated in Figure 10F, with P4HA2,
KIF20B, and DSCC1 showing higher expression in the
high-risk group.
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Figure 10. Establishment of
RRhighEpi-related prognostic model and
relationship between prognostic score
and clinical factors. (A) Heatmap showing C
index of various machine learning approaches for
prognostic model construction. (B) Bar plot
displaying gene weights under
StepCox[both]+SuperPC algorithm. (C) Survival
analysis of risk scores under prognostic model
assessment in TCGA-BRCA cohort. (D-E) AUC
values for 2-year and 4-year survival across
cohorts using StepCox[both]+SuperPC method
for prognostic model construction. (F) Heatmap
showing expression of RRhighepi signature genes
in risk score groups in TCGA-BRCA cohort. (G)
Horizontal comparison of prognostic models
constructed using  StepCox[both]+SuperPC
method. (H) Impact of risk score on patient
survival, tumor grade, tumor stage, and TNM
classification. (I-J) Relationship between risk
score and tumor grade. (K-P) Univariate and
multivariate analysis of risk score and clinical
indicators' impact on OS, PFI, and DSS.
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When comparing SSRR to
other prognostic models, SSRR
consistently ranked among the
top models in c-index across
independent cohorts (Figure
10G). Stratifying patients into
high-risk and low-risk groups
based on the median SSRR
value and analyzing the
relationship ~ with  clinical
indicators revealed significant
differences in survival status,
tumor grade, tumor stage, and
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T stage between the groups (Figure 10H). The
high-risk group had a higher proportion of stage II-IV
tumors than the low-risk group (Figure 10I), and
higher SSRR risk scores were observed in stage II-IV
tumors compared to stage I tumors (Figure 10]). To
determine whether SSRR is an independent
prognostic factor for BRCA, wunivariate and
multivariate Cox regression analyses were performed
on OS, PFI, and DSS in the TCGA-BRCA dataset. The
results indicated that SSRR was a significant risk
factor for OS, PFl, and DSS in univariate analysis
(HR>1, p<0.001). Additionally, in multivariate
analysis, SSRR remained an independent prognostic
factor for OS (HR:1.476, p<0.001), PFS (HR:1.471, p <
0.001), and DSS (HR:1.780, p < 0.001) (Figure 10K-P),
demonstrating its strong prognostic capability in
BRCA patients.

To  further examine differences  in
immunotherapy response between high-risk and
low-risk groups, we applied the Submap algorithm to
predict immunotherapy outcomes in the TCGA and
GSE16446 cohorts. The high-risk group showed a
better response to immunotherapy (Figure 11A-B),
while the low-risk group exhibited higher TIDE scores
(Figure 11C-D). Additionally, analysis of public
single-cell immunotherapy datasets revealed that cells
responsive to immunotherapy had higher risk scores
(Figure 11E-F). Given the poor prognosis of patients in
the high-risk group, we conducted an analysis of the
CTRP and PRISM databases and found that this
group was more sensitive to drugs such as docetaxel
and doxorubicin (Figure 11G-H), while the low-risk
group showed greater sensitivity to drugs like
letrozole and tamoxifen (Figure 11I-]). Furthermore,
we identified potential drugs for the high-risk group,
including KX2-391, rigosertib, cabazitaxel, and
taltobulin (Figure 11K-L).

P4HA2 as a Potential Therapeutic Target for
Breast Cancer

Analysis of SSRR model genes revealed that
P4HA?2 had the highest weight (Figure 10B). We
conducted in-depth exploration of P4HA2 at the
transcriptomic, proteomic, and genomic levels across
pan-cancer datasets. In TCGA transcriptomics, P4HA?2
expression was elevated in multiple cancers (BRCA,
CHOL, HNSC, KIRC, LIHC, THCA) and decreased in
PRAD (Figure 12A). Similar findings were observed
in paired samples: P4HA?2 expression was increased in
BRCA, HNSC, KIRC, LIHC, and THCA, while
decreased in PRAD (Figure 12B). In CPTAC
proteomics data, P4HA2 protein expression was
elevated in BRCA, HNSC, KIRC, LIHC, and unlike
mRNA expression, also in COAD, GBM, LUAD,
LUSC, OV, PAAD, and UCEC, suggesting
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mechanisms involved in transcriptional and
translational regulation (Figure 12C). Additionally,
immunohistochemical staining showed higher P4HA?2
levels in Breast, Lung, Colon, Liver, Ovary, and
Glioma tissue sections compared to normal tissues
(Figure 12D). In pan-cancer single-cell
transcriptomics, P4HA2 showed higher expression in
malignant tumor cells and fibroblasts, with lower
expression in B cells and T cells (Figure 12E).
Furthermore, in spatial transcriptomics of multiple
cancers (BRCA, CRC, KIRC, PAAD, LIHC, LUAD,
SKCM), P4HA?2 expression was consistently higher in
malignant regions compared to non-malignant
regions (Figure 12F-L).

Further exploration of P4HA2 genomics revealed
positive correlation between methylation levels and
expression in BLCA, BRCA, PRAD, and UCEC, but
negative correlation in KIRC and THCA (Figure 13A).
Focusing on BRCA methylation, we found negative
correlation between expression and methylation
across different regions (SUTR, DHS, Enhancer,
Promoter) (Figure 13B). Regarding survival, BRCA
patients with high methylation levels showed
significantly better survival compared to those with
low methylation levels (Figure 13C). In terms of
mutation frequency, P4HA2 showed mutation rates
above 5% in Cholangiocarcinoma, Renal Clear Cell
Carcinoma, and Endometrial Cancer, with Renal

Clear Cell Carcinoma predominantly showing
Amplification, Endometrial Cancer  showing
Mutation, while Breast cancer had mutation

frequency below 1% (Figure 13D). Across multiple
samples, the NM_001142599 transcript of P4HA2 had
a mutation frequency of 0.29%, primarily Missense
Mutations and Frame Shift Deletions (Figure 13E).
P4HA?2 expression varied significantly across
mutation types, with highest expression in
Amplification and Gain groups, and lowest in the
DeepDeletion group (Figure 13F). Additionally,
P4HA2 showed higher expression in the biological
aging group (Figure 13G). Analysis of genomic
instability-related gene sets in  pan-cancer
transcriptomics revealed positive correlation between
P4HA? and aneuploidy, homologous recombination
deficiency, tumor ploidy, single nucleotide variant
neoantigens, non-silent mutation rate, and silent
mutation rate in BRCA (Figure 13H-L). In ATAC-Peak
and transcription factor correlation analysis, P4HA2
showed strong correlation with transcription factors
ESR1, ATRX, FOXP1, GATA3, HOXC6, RYBP, TAF7,
and ZNF263 (Figure 13N), while transcription factor
prediction based on the Cistrome Data Browser
database identified BRD4, CTCF, ESR1, POLR2A, and
PR as potential transcriptional regulators of P4HA2
(Figure 130).
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Figure 12. Expression differences of P4HA2 in normal tissues and various tumor tissues. (A) mRNA expression levels of P4HA2 in normal and tumor samples across
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(F-L) Expression levels of P4HA2 in spatial transcriptomics samples of BRCA (F), CRC (G), KIRC (H), PAAD (l), LIHC (J), LUAD (K), and SKCM (L).

Next, we analyzed the prognostic value of
P4HA?2. P4HA?2 was found to be a risk factor for OS,
DSS, DFI, and PFI in BRCA, a risk factor for OS, DSS,
and PFI in BLCA, CESC, GBM, HNSC, KICH, KIRP,
LGG, and UVM, but a protective factor for OS, DSS,
DFI, and PFl in DLBC (Figure 14A). In univariate COX
analysis across multiple cohorts, P4HA2 was a risk
factor for most cancers but potentially a protective
factor in DLBC (Figure 14B). Regarding diagnostic
performance, P4HA2 demonstrated AUC values
above 0.9 in distinguishing tumor tissues from normal
tissues in COAD, HNSC, ESCA, LIHC, LUSC, PCPG,
READ, and STAD (Figure 14C), with an AUC of 0.815
in BRCA (Figure 14D). In the GSE21653 breast cancer

cohort, P4HA2 expression showed significant
differences across tumor grades, with highest
expression in G3 (Figure 14E), while in the

TCGA-BRCA cohort, P4HA2 expression differed
significantly across tumor stages, with highest
expression in stage 4 (Figure 14F-G). Across breast
cancer subtypes, P4HA2 expression varied
significantly, with highest expression in HER2
subtype and lowest in Normal-like subtype (Figure
14H). In TCGA-BRCA and GSE22820 breast cancer
cohorts, P4HA?2 expression positively correlated with
ERBB2? (Figure 14I-K). Additionally, in the
GSE176078-HER2 positive single-cell cohort, P4HA2
positively correlated with ERBB2 (Figure 14L).
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Figure 13. Integrated analysis of P4HA2-related multi-omics molecular characteristics and clinical phenotypes, and prognostic evaluation. (A) Differences in
P4HA2 methylation levels across pan-cancer. (B) Spearman correlation between average P4HA2 gene expression and methylation at different sites in BRCA. (C) Disease-free
survival curves for four different subgroups based on DNA methylation (Methy) and gene expression (Exp) levels. (D) Differences in mutation frequency of P4HAZ2 across different
mutation types in pan-cancer. (E) Distribution of mutation sites of P4HA2 across different samples. (F) Differences in P4HA2 expression across different CNV types in pan-cancer.
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(G) Differences in P4HA2 expression between biological age acceleration/deceleration groups in breast cancer (BRCA). (H-M) Spearman correlation between different gene set
enrichment scores (aneuploidy, homologous recombination deficiency, tumor ploidy, single nucleotide variant neoantigens, non-silent mutation rate, silent mutation rate) and
P4HA2 expression across pan-cancer. (N) Spearman correlation analysis of P4HA2 gene ATAC-Peak and transcription factors. (O) Prediction of potential transcriptional

regulatory factors for P4HA2.

Finally, we conducted laboratory experiments to
explore the biological function of P4HA2. We used a
pair of small interfering RNAs (siRNAs) to
downregulate P4HA2 expression in HCC1806 and
MCEF7 cell lines. Western blot analysis 48 hours
post-transfection confirmed successful knockout of
P4HA? (Figure 15A-B). After intervention, EdU assays
showed reduced cell proliferation in both HCC1806
and MCF7 cell lines (Figure 15C-D). We also observed
decreased cell viability (Figure 15E-F). Furthermore,
invasion assays demonstrated significantly reduced
migration ability in HCC1806 and MCF7 cells after
P4HA?2 knockdown (Figure 15G-I). Colony formation
assays showed that P4HA2 downregulation inhibited
cell clone formation ability (Figure 15J-L). These
results collectively indicate that P4HA2 promotes
proliferation and migration in breast cancer cells.

To further elucidate the relationship between
P4HA? and the radioresistance gene panel, we
performed WGCNA analysis on GSE120798. We first
conducted sample clustering and soft-threshold
analysis (Figure 16A-B), followed by modular
clustering of genes (Figure 16C). We found that
modules such as MEblue, MEpurple, MEpink, and
MEgrey  showed  strong  correlations  with
radioresistance (Figure 16D), and genes among
different modules exhibited complex interaction
relationships (Figure 16E). Subsequently, module
composition analysis of the radioresistance gene
panel revealed that the blue module accounted for
85.1% of the total genes in the radioresistance gene
panel, followed by pink (12.3%), light yellow (1.5%),
and grey (1.2%) (Figure 16F). Within the blue module,
scatter plots showed positive correlations between
"module membership" and both "gene significance
(for radioresistance trait)" (Figure 16G, cor = 0.52, p <
1e-200) and "gene significance (for P4HA2 high
expression trait)" (Figure 16H, cor = 0.27, p = 1.3e-67),
suggesting that genes with high module membership
also possess high trait significance. STRING network
protein-protein interaction analysis demonstrated
strong interactions between P4HA2 and the
radioresistance gene panel (Figure S4). Functional
enrichment analysis indicated that the blue module
(Figure 16I) was enriched in biological processes
including cell cycle, DNA metabolic processes, and
regulation of DNA-templated DNA replication; the
pink module (Figure 16]) was enriched in pathways
including positive regulation of cells, syndecan
interactions, and protein export from the nucleus.
These results suggest regulatory relationships exist

between the radioresistance gene panel and P4HA?2 in
relation to radioresistance characteristics.

Subsequently, we further explored the effects of
radiotherapy and P4HA2 on breast cancer cells
through experimental validation. First, using multiple
radiation doses combined with P4HA2 knockdown,
we found that breast cancer cells were significantly
reduced under 4 Gy irradiation combined with
P4HA? knockdown (Figure 17A-C), while cells nearly
disappeared under 6 Gy irradiation combined with
P4HA2 knockdown. Using 4 Gy irradiation combined
with P4HA2 knockdown, we found that protein
expression levels of CD44, Vimentin, and Oct4 in the 4
Gy irradiation plus P4HA2 knockdown group were
significantly lower than in the irradiation-only or
P4HA? knockdown-only groups, while E-cadherin
protein expression was significantly increased (Figure
17D-G). Sphere formation assays showed that sphere
volume was significantly reduced in the 4 Gy
irradiation plus P4HA2 knockdown group (Figure
17H-]), and Transwell assays demonstrated that cell
migration capacity was significantly decreased in the
4 Gy irradiation plus P4HA2 knockdown group
(Figure 17K-M). Furthermore, we found that protein
expression levels of KU80 and BCL-2 in the 4 Gy
irradiation plus P4HA2 knockdown group were
significantly lower than in the irradiation-only or
P4HA? knockdown-only groups, while y-H2AX
protein expression was significantly elevated (Figure
17N-Q). Immunofluorescence showed that the mean
fluorescence intensity of y-H2AX was significantly
enhanced in the 4 Gy irradiation plus P4HA2
knockdown group (Figure 17R-T). Taken together,
these results suggest that knockdown of P4HA2 may
be a potential target for enhancing radiosensitivity.

Discussion

Radioresistance represents a major challenge in
the treatment of breast cancer (BRCA) [31, 32],
particularly under the complex influences of tumor
heterogeneity and the tumor microenvironment
[33-39]. In this study, we identified a gene panel
associated with radiotherapy resistance and
elucidated its mechanistic role in breast cancer cells
through multi-level analyses. Systematic analyses of
two independent cohorts, TCGA-BRCA and
GSE120798, revealed core features of the resistance
gene panel and further explored its potential
mechanisms concerning cell specificity, metabolic
characteristics, tumor microenvironment, and
immune response.
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Figure 14. Prognostic value of P4HA2 and its correlation with ERBB2. (A) Relationship of P4HA2 with different survival periods (disease-free interval DFI,
disease-specific survival DSS, overall survival OS, progression-free interval PFl) across pan-cancer. (B) Relationship between P4HA2 gene expression level and overall survival
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(OS), disease-free survival (DFS), progression-free survival (PFS), and recurrence-free survival (RFS) assessed by univariate Cox survival analysis across multiple external datasets.
(C) Diagnostic performance of P4HA2 expression in distinguishing tumor from normal groups across pan-cancer. (D) ROC curve showing diagnostic performance of P4HA2 gene
in breast tumors versus normal tissues. (E) Expression differences of P4HA2 under tumor grading in GSE21653. (F) Expression differences of P4HA2 gene across different tumor
stages (Stage I-IV) in TCGA-BRCA cohort. (G) Median expression (Z-score) across stages. (H) Expression differences of P4HA2 gene across different molecular subtypes in
TCGA-BRCA cohort. (I) Correlation analysis and Fisher's exact test of P4HA2 and ERBB2 in mRNA-TCGA-BRCA dataset. (J) Correlation analysis and Fisher's exact test of
P4HA2 and ERBB2 in mRNA-GSE22820 dataset. (K) Correlation scatter plot analysis of P4HA2 and ERBB2. (L) Correlation of P4HA2 and ERBB2 in single-cell cohort.
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Figure 15. P4HA2 knockdown significantly inhibits proliferation, invasion, and clone formation ability of HCC1806 and MCF7 cells. (A-B) Western blot
detection of P4HA2 knockdown efficiency in HCC1806 and MCF7 cells. (C-D) EdU experiment and bar graph showing that P4HA2 knockdown significantly inhibits DNA
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replication in HCC1806 and MCF7 cells. (E-F) CCK8 experiment confirming that P4HA2 knockdown significantly reduces growth ability of HCC1806 and MCF7 cells. (G-)
Transwell invasion experiment and bar graph showing that P4HA2 knockdown significantly reduces migration ability of HCC1806 and MCF7 cells. (J-L) Clone formation
experiment and bar graph showing that P4HA2 knockdown significantly reduces the number of clones formed by HCC1806 and MCF7 cells. All the above biological experiments

were repeated at least three times.
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Initially, differential
expression analysis was
performed on both bulk datasets,
TCGA-BRCA and GSE120798,

successfully identifying genes
closely associated with
radiotherapy resistance.

Enrichment analyses indicated
that these genes predominantly
participated in cell cycle-related
pathways, including cell cycle
regulation, G1/S checkpoint, and
G2/M  checkpoint pathways.
Research indicates that tumor
cells can enter a radiation-tolerant
persistent state through processes
like cell cycle progression and
division, temporarily resisting
radiotherapy and  ultimately
promoting tumor regrowth [40].
G1/S and G2/M checkpoints are
crucial for cell cycle control and
can be targeted to counteract
radiation-induced damage [41].
Further analysis showed that the
expression of the radiotherapy
resistance gene panel was
significantly elevated in breast
epithelial cells, suggesting an
important role of tumor epithelial
cells in radioresistance. Normal
cells, upon DNA damage, arrest
at the G1 phase via p53 regulators
to  initiate DNA  repair.
Conversely, tumor cells, due to
dysfunctional G1/S checkpoints,
tend to proceed into S phase and
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evade repair. Post-radiation, cancer cells activate CAD
(Caspase-Activated DNAse), leading to DNA
fragmentation and G2 arrest, providing additional
time for repair. Inhibiting CAD has been shown to
increase radiosensitivity, and targeting G2 checkpoint
pathways might enhance radiotherapy efficacy
[42-44].

To further explore cell-type specificity, we
analyzed single-cell BRCA datasets, revealing that the
resistance gene panel was markedly overexpressed in
epithelial cells. Within tumor tissues, the resistance
scores derived from this panel were significantly
higher in epithelial cells, highlighting their potential
role in mediating radioresistance. This suggests that
radioresistance may be intricately linked to epithelial
cell characteristics, especially proliferative states. The
concept of tumor cells adopting an adaptive,
persistent state to survive and proliferate
post-radiation [40], resembling 'radiation-tolerant
persister cells" (RTP cells), was further examined via
viral budding simulation methods, which facilitated
tumor re-proliferation.

Subsequently, spatial transcriptomics analyses
validated these findings by revealing that the
resistance gene panel was more highly expressed in
malignant regions of breast cancer tissues compared
to benign regions. This supports the notion that
resistance-related genes are involved in the formation
of malignant tumor areas, with resistant cancer cells
likely persisting within these regions and contributing
to tumor recurrence.

Enrichment analyses indicated that cell cycle
pathways were significantly upregulated in the
radioresistant epithelial cell subgroup (RRhighepi),
including pathways related to the cell cycle and
G2/M  checkpoint. This aligns with earlier
observations that cell cycle control is a key mechanism
of radiotherapy resistance in breast cancer, notably
through the activation of the G2/M checkpoint, which
functions as a negative regulator of cell cycle
progression [41]. The activation of cell cycle arrest in
radioresistant epithelial cells effectively induces a
state of proliferation blockade. Upon radiation-
induced DNA damage, tumor cells engage cell cycle
arrest, further activating self-repair mechanisms and

evading radiation injury, thereby increasing
resistance [42]. However, residual tumor cells often
re-enter a proliferative state during tumor

repopulation [45]. Studies suggest that cell death
induced by radiochemotherapy can generate potent
growth-stimulatory  signals, promoting tumor
regeneration [45, 46]. Moreover, transcription factor
activity analysis revealed elevated activity of several
transcription factors, such as ARID2, E2F1, E2F4,
NFYB, and MYC, in the RRhighepi group, all of which

2215

are closely associated with cell proliferation and
tumor progression. E2F1, for instance, can induce
transcription of genes involved in cell cycle entry and
apoptosis regulation [47]. NFYB-mediated
upregulation of E2F1 enhances CHKI signaling,
contributing to chemotherapy resistance in colorectal
cancer [48]. Therefore, the proliferation and
radioresistance of epithelial cells in the context of
radiotherapy may be mediated by overactivation of
cell cycle-related genes.

Metabolic pathway analysis via single-cell
metabolomics further revealed that activation of
multiple metabolic routes-including fatty acid
metabolism, amino acid metabolism, glycolysis,
pyrimidine synthesis, and purine synthesis-is
prominent in the RRhighepi group. These metabolic
adaptations provide essential energy support and
likely sustain proliferation and survival of resistant
cells [49-52]. It should be noted that the analysis of
pathways such as polyamine and cholesterol
metabolism in this study is based on computational
inference from transcriptomic data. While this
provides valuable hypotheses, it does not directly
measure metabolite levels or flux. Future studies
employing targeted or untargeted metabolomics
techniques on sorted cell populations will be essential
to experimentally confirm these metabolic alterations.
Furthermore, the observed metabolic differences
between RR groups may reflect not only intrinsic
programming disparities but also potential influences
of feedback mechanisms, such as the inhibition of
biosynthetic pathways due to sufficient end-product
levels. Studies demonstrate that radiation enhances
glycolysis in pancreatic cancer cells, raising lactate
levels and promoting MDSC activity via the

GPR81/mTOR/HIF-1A/STAT3 pathways, thus
contributing to an immunosuppressive
microenvironment and tumor  progression,

recurrence, and radioresistance [53]. Tumor cells
undergo metabolic reprogramming, including
increased mitochondrial fatty acid oxidation (FAO),
which supplies ATP through mitochondrial
breakdown to aid escape from radiation-induced cell
death. FAO also upregulates CD47 expression via the
citrate-Acetyl-CoA-RelA pathway, contributing to
immune suppression and protecting radioresistant
GBM cells from macrophage-mediated phagocytosis
[54-56]. Additionally, increased purine levels in
glioblastoma enhance DNA repair, further promoting
resistance [57]. These findings underscore the
significance of metabolic reprogramming in tumor
cell survival under radiotherapy and highlight the
importance of understanding these mechanisms to
develop combination therapies that can improve
treatment outcomes.
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Figure 17. Effects of P4HA2 knockdown combined with radiotherapy on breast cancer cells. (A-C) Clone formation assays show the effects of the combination of
multiple radiation doses and P4HA2 knockdown on breast cancer cells. (D-G) Western blotting (WB) shows the effects of P4HA2 knockdown combined with radiotherapy on
the cancer stemness and EMT characteristics of breast cancer cells. (H-]) Sphere formation assay in suspension shows the effects of P4HA2 knockdown combined with
radiotherapy on the cancer stemness characteristics of breast cancer cells. (K-M) Transwell assay shows the effects of P4HA2 knockdown combined with radiotherapy on the
migration ability of breast cancer cells. (N-Q) Western blotting (WB) shows the effects of P4HA2 knockdown combined with radiotherapy on the DNA damage characteristics
of breast cancer cells. (R-T) Immunofluorescence assay shows the effects of P4HA2 knockdown combined with radiotherapy on y-H2AX in breast cancer cells. All the above

biological experiments were repeated at least three times.
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Further investigations into the interaction
between the resistance gene panel and tumor
microenvironment, especially with endothelial cells,
revealed that RRhighepi influences intercellular
communication  pathways. Radiotherapy can
modulate endothelial functions to promote tumor
progression through mechanisms such as EndMT
(Endothelial-to-Mesenchymal  Transition), ~which
increases the expression of stem cell markers like
CD44v6, associated with increased osteopontin
secretion in lung cancer [58]. Additionally, radiation
enhances tumor-associated macrophage (TAM) M2
polarization [58]. In hepatocellular carcinoma,
irradiated endothelial cells facilitate tumor invasion
through cytokine secretion changes and extracellular
matrix (ECM) remodeling [59, 60]. Notably, doses of 2
Gy rather than higher doses like 6 Gy elicited these
pro-invasive responses, indicating that radiation
dosage and scheduling may modulate tumor-stroma
interactions and influence therapy efficacy [59, 60].
Radiation also augments endothelial drug efflux
capacity, contributing to blood-brain barrier-
mediated drug resistance [61]. Based on single-cell
communication analyses, we observed significant
signaling interactions between RRhighepi and
endothelial cells primarily via ligand-receptor pairs
such as WNT7B-FZD4 and EFNA3-EPHA2. WNT7B
activates P-catenin signaling pathways involved in
HPV E6-induced tumor angiogenesis in cervical
cancer [62] and promotes gastric cancer progression
via WNT7B-m6A-TCF7L2 feedback loops [63]. The
EFNA3/EPHA2 axis modulates cellular metabolic
plasticity, promoting stemness features in hypoxic
hepatocellular carcinoma [64]. These pathways play
critical roles in cell migration, proliferation, and
tumor microenvironment remodeling, suggesting that
RRhighepi may foster tumor angiogenesis and
invasion through these signaling networks, thereby
enhancing tumor growth and metastatic potential.

Through various analytical approaches, the
expression of P4HA2 was found to be significantly
elevated in breast cancer, correlating closely with
tumor stage, grade, and patient prognosis. P4HA? is
markedly overexpressed across multiple cancer types,
especially in BRCA. Laboratory experiments
confirmed that silencing P4HA2 suppressed
proliferation and migration abilities of breast cancer
cells. We further found that P4HA2 knockdown can
also exert a synergistic effect with radiotherapy - the
combination of 4 Gy radiotherapy and P4HA2
knockdown significantly reduced the number of
breast cancer cells, while almost eliminating these
cells when combined with 6 Gy irradiation, which
fully demonstrates knockdown of P4HA2 in
enhancing radiosensitivity. Mechanistically, WGCNA
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analysis revealed that P4HA2 is closely associated
with the core modules of the radiation resistance gene
panel (e.g., the MEblue module, which accounts for
85.1% of the panel genes). Moreover, module
membership showed positive correlations with gene
significance for both radiation resistance and P4HA2
overexpression, suggesting that P4AHA2 may function
by regulating radiation resistance-related pathways
such as cell cycle and DNA metabolism. String
interaction analysis further validated the functional
crosstalk between P4HA2 and the radiation resistance
gene panel. In functional experiments, P4HA?2
knockdown combined with radiotherapy not only
decreased the expression of cancer stemness markers
(e.g., CD44, Oct4) and inhibited sphereforming and
migration capacities, but also impaired DNA damage
repair and anti-apoptotic abilities by downregulating
KU80 and BCL-2 while wupregulating (-H2AX.
Although our functional studies did not involve direct
isolation of the RRhighepi subpopulation, the
concurrent suppression of stemness markers (e.g.,
Oct4) and tumorsphere formation, coupled with
enhanced  radiosensitivity = following  P4HA2
knockdown, provides strong correlative evidence that
the stem-like state contributes to the resistant
phenotype. Future studies utilizing specific cell
surface markers for RRhighepi cell sorting would be
valuable to directly test their radiotherapeutic
response. Our experimental results demonstrating
that P4HA?2 knockdown suppresses proliferation, and
migration are consistent with previously reported
findings that P4HA2-mediated collagen prolyl
hydroxylation regulates cancer cell plasticity and
migration [65]. Our study extends this knowledge by
establishing a direct link between P4HA2 and
radiotherapy resistance, demonstrating its role in
enhancing DNA damage repair and maintaining a
stem cell-like state wupon radiation exposure.
Interventions targeting P4HA2 are expected to
provide a novel strategy for breast cancer treatment,
particularly holding significant translational value for
cases with radiotherapy resistance.

In conclusion, this comprehensive multi-layered
bioinformatics analysis reveals the biological
significance of the radiotherapy resistance gene panel
in breast cancer and its potential clinical applications.
The panel exerts its effects through mechanisms such
as cell cycle regulation, metabolic reprogramming,
and tumor microenvironment interactions, thereby
augmenting tumor cell proliferation and survival.
Importantly, P4HA2 emerges as a potential
therapeutic target with significant prognostic value in
the context of radiotherapy resistance. Future
therapeutic strategies focusing on the inhibition of
this gene panel and its associated pathways may pave
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the way for personalized treatment approaches in
breast cancer. Nevertheless, further experimental
validation and clinical trials are essential to evaluate
these findings' translational potential and their
relevance in overcoming radiotherapy tolerance and
resistance in breast cancer.
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