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Abstract 

Background: Radiotherapy resistance in breast cancer remains a major clinical challenge. The key molecular determinants and 
cellular populations driving this resistance are not fully understood. 
Methods: A radiotherapy resistance (RR) gene panel was identified from TCGA-BRCA and GSE120798 cohorts. Single-cell and 
spatial transcriptomics characterized RRhigh epithelial cells (RRhighepi). A prognostic model, named SuperPC and StepCox-based 
Radiotherapy Resistance model (SSRR), was built via machine learning and Mendelian randomization. Functional roles of Prolyl 
4-Hydroxylase Subunit Alpha 2 (P4HA2) were validated in vitro. 
Results: The RR gene panel was upregulated in tumors and enriched for cell cycle pathways. RRhighepi cells exhibited elevated 
stemness, activated cell cycle and metabolic programs, and enhanced DNA damage repair. RRhighepi represented a developmental 
origin and communicated with endothelial cells. The SSRR model stratified patients into high-risk groups with poorer survival and 
distinct therapeutic responses. P4HA2, a key model gene, was upregulated in multiple cancers. P4HA2 knockdown suppressed 
proliferation, invasion, and colony formation, and synergized with radiotherapy to reduce stemness and enhance DNA damage. 
WGCNA confirmed co-module membership of P4HA2 and the RR panel. 
Conclusions: This study, through multi-omics analysis, proposes a potential mechanistic model associated with radiotherapy 
resistance in breast cancer. P4HA2 is a potential therapeutic target that sensitizes breast cancer to radiotherapy. The RR gene panel 
and SSRR model provide insights into resistance mechanisms and prognostic stratification. 
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Introduction 
Radiotherapy resistance in breast cancer remains 

a critical concern in clinical oncology, both in terms of 
incidence and evolving epidemiological trends. A 
population-based study utilizing the Surveillance, 
Epidemiology, and End Results (SEER) database 
analyzed 374,993 patients, of whom 154,697 received 
radiotherapy. With a median follow-up of 8.9 years, 
13% of patients developed second primary 
malignancies. The incidence of secondary cancers was 
significantly higher in those who underwent 
radiotherapy, particularly among younger 

individuals and those with longer latency periods [1]. 
Variations in reported incidence across studies may 
be attributable to differences in patient cohorts, 
radiotherapy protocols, and evaluation criteria. A 
separate investigation involving 1,003 breast cancer 
patients revealed subtype-specific differences in 
radiotherapy response following breast-conserving 
surgery. Human epidermal growth factor receptor 
2-positive (HER2+) tumors exhibited the highest level 
of radioresistance, whereas patients with triple- 
negative breast cancer (TNBC) derived the greatest 
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reduction in breast cancer-specific mortality from 
radiotherapy [2]. 

Aberrations in cell cycle regulation are closely 
associated with clinical outcomes in breast cancer. 
Numerous studies have demonstrated that 
dysregulation of cell cycle-associated proteins and 
their encoding genes significantly influences disease 
progression and patient survival. For example, 
overexpression of cyclin D1 mRNA is strongly 
correlated with poor prognosis in estrogen 
receptor-positive (ER+) breast cancer. In a study of 
253 primary breast cancer cases, elevated cyclin D1 
mRNA levels in ER+ tumors were significantly 
associated with increased risk of recurrence (P = 
0.0016), local relapse (P = 0.025), distant metastasis (P 
= 0.019), and mortality (P = 0.025), whereas no such 
association was observed in ER-negative tumors [3]. 
Similarly, low expression of F-box and WD repeat 
domain containing 7 (FBXW7), a gene involved in cell 
cycle regulation, correlates with adverse prognosis. 
Specifically, FBXW7 mRNA levels were markedly 
reduced in high-grade tumors and hormone 
receptor-negative subtypes, with lower expression 
predicting poorer breast cancer-specific survival [4]. 
Elevated Cullin 7 expression has also been associated 
with advanced pathological stage (P = 0.013), lymph 
node metastasis (P = 0.022), and decreased overall 
survival (P = 0.037). Knockdown of Cullin 7 inhibited 
breast cancer cell proliferation and invasion, likely 
through modulation of cell cycle-associated proteins 
[5]. Collectively, these findings underscore the 
prognostic significance of cell cycle dysregulation and 
highlight related molecules as candidate biomarkers 
and therapeutic targets. 

Metabolic reprogramming plays a pivotal role in 
radiotherapy resistance in breast cancer. Hallmark 
metabolic alterations, such as the Warburg effect and 
enhanced lipid biosynthesis, are linked to 
chemotherapy failure, and the distinct metabolic 
profiles of metastatic lesions contribute to resistance 
to both targeted and immune therapies [6]. Multiple 
mechanisms underlie this phenomenon. For instance, 
Pyruvate dehydrogenase kinase 1 (PDK1)-dependent 
metabolic reprogramming has been shown to drive 
metastatic potential. Liver metastases of breast cancer 
display unique metabolic adaptations characterized 
by elevated PDK1 expression, which is essential for 
metabolic fitness and hepatic colonization [7]. In 
TNBC, Retinoic acid receptor responder 2 (RARRES2) 
mediates brain metastasis via lipid metabolism 
reprogramming. Downregulation of RARRES2 is 
associated with brain tropism and modulates the 
PTEN-mTOR-SREBP1 axis to alter glycerophospho 
lipid and triglyceride levels, thereby promoting tumor 
cell survival in the brain microenvironment [8]. 

The tumor microenvironment (TME) also exerts 
critical influence on radiotherapy resistance in breast 
cancer. Radiotherapy induces profound alterations in 
the vascular, stromal, and immune components of the 
TME, potentially facilitating tumor recurrence and 
resistance [9]. Specific TME constituents, including 
cancer-associated fibroblasts (CAFs), tumor- 
associated macrophages (TAMs), and myeloid- 
derived suppressor cells (MDSCs), modulate immune 
evasion and contribute to therapeutic resistance [10]. 
Fibroblast Growth Factor 2 (FGF2), a secreted factor 
within the TME, confers resistance to various 
therapies in ER+ breast cancer. Mechanistically, FGF2 
activates ERK1/2 signaling via FGFRs, leading to 
upregulation of Cyclin D1 and downregulation of 
Bim. Inhibition of FGF2 or its receptors reverses 
therapeutic resistance, and transcriptional signatures 
of FGF2 signaling can predict relapse-free survival 
[11]. 

In this study, we integrated bulk RNA 
sequencing data from TCGA-BRCA and GSE120798 to 
identify a gene panel associated with radiotherapy 
resistance in breast cancer. Through differential 
expression analysis and downstream validation using 
single-cell and spatial transcriptomics, we delineated 
the expression patterns and potential functional roles 
of these genes within malignant epithelial cells. 
Particular attention was paid to the role of tumor 
epithelial cells in cell cycle regulation, metabolic 
reprogramming, and intercellular communication 
with endothelial cells, elucidating their central 
function in mediating radiotherapy resistance. 

Additionally, we identified P4HA2 as a potential 
therapeutic target. P4HA2 is highly expressed in 
breast cancer and strongly correlates with poor 
prognosis. Its knockdown significantly suppressed 
proliferation and migration of breast cancer cells, 
suggesting a key role in the development of 
radioresistance. Taken together, this study presents a 
comprehensive multi-omics framework for decoding 
the regulatory landscape underlying breast cancer 
radioresistance and provides a theoretical foundation 
and candidate targets for future therapeutic 
interventions. 

Methods and Materials 
Cell Culture and Transfection Conditions 

The HCC1806 and MCF7 cell lines were sourced 
from the Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China) and were maintained in 
DMEM medium (Boster, China) supplemented with 
10% FBS (HyClone, USA), incubated at 37 °C in a 5% 
CO2 atmosphere. To suppress P4HA2 expression, 
siRNAs were transfected into these cells using 
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Lipofectamine 3000. The siRNAs (including the 
scrambled negative control), used in this study were 
commercially acquired from Shanghai GenePharma 
Co., Ltd. 

Cell Viability Assay 
Cells were digested, centrifuged, and seeded into 

96-well plates at a density of 2000-3000 cells per well. 
Cell viability was measured using the Cell Counting 
Kit-8 (APExBIO, United States) at 0, 24, 48, and 72 h 
after treatment.  

Western Blotting (WB) 
The cells were lysed in a cold buffer 

supplemented with phosphatase and protease 
inhibitors. Protein levels were quantified using the 
bicinchoninic acid assay. Following separation on 
4-12% SDS/PAGE gels, the proteins were transferred 
onto PVDF membranes, blocked, and then incubated 
with both primary and secondary antibodies. 
Immunoreactive proteins were detected using a 
chemiluminescent solution. Detailed information on 
the antibodies used is provided in Table S1. 

Transwell Assays 
Cell migration was evaluated using the Boyden 

chamber assay, employing an 8-μm pore size. A total 
of 1 × 105 cells were suspended in 200 μL of medium 
lacking FBS and added to the upper chamber, while 
the lower chamber contained 20% FBS medium. After 
24 h, cells were fixed and stained, and the number of 
cells in six randomly chosen fields was counted. 

EdU Assay 
Cells were transfected and seeded in 24-well 

plates at a density of 5 × 104 cells per well, followed by 
overnight incubation. To evaluate EdU incorporation, 
the EdU Cell Proliferation Kit, labeled with Alexa 
Fluor 488, was employed. EdU-positive cells were 
stained using Azide 488 and Hoechst 33342. Images 
were captured from three randomly chosen fields, 
and the EdU incorporation rate was calculated as: 
EdU-positive rate = (number of EdU-positive cells / 
(number of EdU-positive cells + number of EdU- 
negative cells)) × 100%. 

Colony Formation Assay 
Cells (8 × 102 to 1 × 103 cells) were seeded into 

6-well plates and incubated at 37 °C for 10 to 14 days. 
After incubation, colonies were fixed with methanol, 
stained with 1% crystal violet for 15 min, and counted 
to assess colony formation ability. 

Immunofluorescence Staining 
Cells were seeded on 18 mm coverslips and 

stabilized overnight at 37 °C. Briefly, the slides were 
blocked with 5% bovine serum albumin, followed by 
incubation with primary antibodies and fluorescently 
labeled secondary antibodies. Nuclei were stained 
using DAPI (Thermo). The samples were visualized 
using an LSM 880 laser scanning microscope (Zeiss). 
Detailed information on the antibodies used is 
provided in Table S1. 

3D Spheroid Assay 
Cells are dissociated with 0.05% trypsin and 

quenched with complete medium followed by 
centrifugation. The cells were washed twice with PBS 
and centrifuged to remove serum before counting. A 
total of 5,000 cells are seeded per well in ultra-low 
attachment 6-well plates with 2 mL of DMEM/F12 
specialized medium for sphere formation. After 2-3 
days of culture, 1 mL of fresh medium is 
supplemented per well. Sphere growth and size are 
recorded after 7-10 days of culture. 

Data Sources 
Single-cell RNA sequencing data GSE176078 and 

spatial transcriptomics data GSM6760695, 
GSM6760696, GSM6760697, as well as bulk 
transcriptomics data GSE16446, GSE20486, GSE24450, 
and GSE21656 were downloaded from the GEO 
database. Pan-cancer (including TCGA, ICGC) 
transcriptomics, genomics, methylation, and clinical 
data were sourced from the UCSC Xena database [12], 
GEO database, ArrayExpress database, and ICGC 
Data Portal. Immunohistochemical staining data were 
obtained from The Human Protein Atlas [13]. 
Pan-cancer single-cell data were downloaded from 
the TISCH database [14, 15]. 

Single-cell and Spatial Transcriptomics 
Processing 

Single-cell RNA sequencing (scRNA-seq) data 
were processed using the Seurat package (v4.1.3) in R 
(v4.2.2) [16]. Quality control measures included: 1) 
exclusion of genes present in fewer than three cells; 2) 
removal of cells expressing fewer than 50 total genes; 
and 3) elimination of cells with more than 5% 
mitochondrial gene expression. Data normalization 
was performed using the SCTransform method, while 
batch effects were corrected using the Harmony 
method (v0.1.0) to combine Seurat objects into a 
unified dataset. Dimensionality reduction was 
conducted via Principal Component Analysis (PCA), 
and cell classification was executed using the 
FindNeighbors and FindClusters functions. Cell-cycle 
scores were computed with Seurat’s CellCycleScoring 
function. For visualization, the Uniform Manifold 
Approximation and Projection (UMAP) algorithm 



Theranostics 2026, Vol. 16, Issue 5 
 

 
https://www.thno.org 

2195 

was applied. Cell types were identified through 
differential expression analysis with Seurat’s 
FindAllMarkers function. The thresholds applied for 
marker gene identification were adjusted P-value < 
0.05, expression > 0.25, and absolute log2 fold change 
> 0.5. SingleR was used for annotation based on 
marker gene composition, and validation was done 
using the CellMarker database. For cell 
communication analysis in single-cell transcriptomics, 
the Cellcall algorithm [17] was used to explore tumor 
microenvironment interactions in the RR group. 
Pseudotime analysis was conducted using the 
monocle2 algorithm [18-20] to identify developmental 
trajectories in the RR group. The CytoTRACE 
algorithm [21] was used to assess stemness features in 
the RR group, and transcription factor identification 
in single-cell data was performed using the SCENIC 
algorithm [22]. Metabolic pathway activity was 
assessed using the scFEA algorithm [23] to determine 
metabolic differences in the RR group.  

ST data were processed and visualized using 
Seurat. The data were standardized using the SCT 
method, and integration was performed using 
SelectIntegrationFeatures, PrepSCTIntegration, 
FindIntegrationAnchors, and IntegrateData functions. 
Unsupervised clustering methods were applied to 
group similar ST regions. Cell group annotations were 
based on hematoxylin and eosin (HE) stained sections 
and significantly variable genes within each group. 
Spatial transcript and feature plots (SpatialDimPlot 
and SpatialFeaturePlot) were used for data 
visualization. For cell-type decomposition of spatial 
transcriptomics data, Robust Cell Type 
Decomposition (RCTD) was used to align reference 
scRNA-seq cell types with spatial transcriptomics 
data. Cell type marker genes were identified using 
Seurat’s FindAllMarkers function, with positive log2 
fold change as the selection criterion. The standard 
RCTD analysis pipeline was applied, concentrating on 
reference data and Visium spatial transcriptomics 
data, with the dual-mode configured to full. 
Trajectory evolution in spatial transcriptomics was 
analyzed using the stLearn algorithm [24] to identify 
developmental trajectory differences in the RR group. 
MISTy [25] in mistyR (v1.2.1) was utilized to evaluate 
how the abundance of primary cell types influences 
the prevalence of other major cell types. 

Enrichment Analysis 
The Metascape online analysis tool [26] was used 

to perform enrichment analysis of radiation resistance 
gene panels. Multiple gene lists were uploaded, and 
the top 20 pathways were selected for further 
analysis. Enrichment analysis for single-cell and 
spatial transcriptomics was performed using the 

irGSEA package [27]. Gene sets were downloaded 
from the Molecular Signatures Database [28-30]. 

Survival Analysis 
To investigate risk models and the role of P4HA2 

in clinical diagnosis and prognosis, survival analysis 
was performed on pan-cancer transcriptomic cohorts, 
including BRCA, using the Survival (v3.2-10) and 
Survminer (v0.4.9) packages. The median value was 
used to divide patients into high or low categories, 
and Kaplan-Meier survival curves were generated 
using the survfit function. 

Immunotherapy Efficacy and Drug Sensitivity 
Prediction 

Cohorts for immunotherapy analysis were 
sourced from the TIGER database [53]. Drug 
sensitivity data for cell lines were obtained from the 
Cancer Therapeutics Response Portal (CTRP v.2.0, 
released October 2015, https://portals.broadinstitute 
.org/ctrp) and PRISM Repurposing dataset (19Q4, 
released December 2019, https://depmap.org/ 
portal/prism/). 

Statistical Analysis 
Data are presented as mean ± standard 

deviation. The chi-squared test was employed to 
evaluate differences in categorical variables, such as 
clinical characteristics across subgroups. A P-value of 
< 0.05 was considered statistically significant. The 
Benjamini-Hochberg method was applied to adjust 
P-values for multiple comparisons. Data processing, 
statistical analysis, and visualization were performed 
using R software (version 4.1.3). 

Results 
Determination of Radiotherapy Resistance 
Gene Panel 

The study design is depicted in Figure 1. We 
began by analyzing the TCGA-BRCA and GSE120798 
cohorts (Figure 2A), with the corresponding sample 
details provided in Figure 2B. Differential expression 
analysis was conducted for both cohorts, and the 
overlap of upregulated genes in tumor tissues and 
radiotherapy-resistant groups was identified (Figure 
2C, Table S1). Using a threshold of meta_FDR < 0.05 
and |meta_Hedges| > 0.7, we obtained a set of 
significantly differentially expressed genes, which 
was designated as the "radiotherapy resistance gene 
panel" (Table S2). Enrichment analysis performed 
using the Metascape database revealed that this gene 
panel is predominantly associated with cell 
cycle-related pathways, including R-HSA-1640170, 
GO:0000278, and GO:0045787 (Figure 2D). Tissue 
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specificity analysis indicated the highest expression in 
breast tissue (Figure 2E). Additionally, cell-type 
specificity analysis using the WebCESA database 
demonstrated that the gene panel is most prominently 
expressed in breast epithelial cells, endothelial cells, 
and smooth muscle cells (Figure 2F). Furthermore, we 
found that the ssGSEA scores of the radiation 
resistance gene panel in the radiation-resistant group 
(RR) were significantly higher than those in the 
control group (WT) among MCF7, MDAB-231, and 
ZR751 cell lines (Figure 2G-I). 

Elevated Expression of Radiotherapy 
Resistance Gene Panel in BRCA Epithelial 
Tumor Cells 

To further explore the cell specificity of the 
radiotherapy resistance gene panel, we analyzed 
BRCA single-cell cohorts, performing batch 
correction, dimensionality reduction, clustering, and 
cell annotation (Figure 3A). Using multiple single-cell 
scoring methods, we evaluated the radiotherapy 
resistance gene panel (RR) scores across cell types and 
compared their average values (Figure 3B-C), finding 
that BRCA epithelial cells had the highest RR scores. 
In a validation cohort following batch correction, 
dimensionality reduction, clustering, and cell 
annotation (Figure 3D), we confirmed that BRCA 
epithelial cells exhibited the highest RR scores (Figure 
3E), with increased scores in epithelial cells of tumor 
tissues (Figure 3F). To further investigate RR 
specificity in tumor tissues, we identified and 
characterized malignant and benign regions in spatial 
transcriptomics using the Cottrazm R package (Figure 
S1A-B), revealing higher RR scores in malignant 
compared to benign tissues (Figure 3G-H). 

Based on scoring, we divided epithelial cells into 
two groups (RR group, median value was 0.450658): 
high RR score (RRhighepi, RRhighepi group was 
defined as epithelial cells with a score > 0.450658) and 
low RR score (RRlowepi, RRlowepi group was 
defined as epithelial cells with a score ≤ 0.450658) 
(Figure 4A). Differential enrichment analysis using 
Reactome, Wikipathway, and Hallmarker pathways 
revealed upregulation of cell cycle-related pathways 
in RRhighepi, including cell cycle, cell cycle mitotic, 
cell cycle checkpoint, and G2M checkpoint (Figure 
4B). Additionally, enrichment analysis using 12 tumor 
states from CancerGSEA showed upregulation of cell 
cycle and proliferation states in RRhighepi, while 
hypoxia and apoptosis were downregulated (Figure 
4C). To investigate the mechanisms underlying 
pathway activation, we conducted a transcriptional 
regulatory analysis on BRCA epithelial cells. We 
assessed the Connection Specificity Index (CSI) and 
identified six transcriptional modules (Figure 4D), 

finding that RRhighepi had higher scores in module 2 
(Figure 4E) and lower scores in module 6 (Figure 4F). 
Transcription factor activity analysis revealed 
enhanced activity of ARID2, ELF1, MAZ, CREB3, 
IRF3, NFYB, and E2F1 in RRhighepi (Figure 4G), 
which are representative genes of module 2. 

RRhighepi Exhibits Higher Tumor Stemness 
Characteristics 

To further investigate the developmental 
dynamics within RR groups, we conducted 
pseudotime analysis using the monocle algorithm. 
Initially, tumor stemness characteristics in the RR 
groups were inferred using the CytoTRACE 
algorithm (Figure 5A-B), which revealed higher 
stemness scores in the RRhighepi group (Figure 5C). 
Cells with elevated CytoTRACE stemness scores were 
designated as developmental starting points, and 
developmental trajectories were inferred using the 
monocle algorithm. This analysis indicated a decrease 
in the proportion of RRhighepi cells as development 
advanced (Figure 5D-E). Cellular 
development-related genes were grouped into four 
clusters (Figure 5F), with ESR1, NME2, and IGFBP4 
showing predominant expression at later 
developmental stages. A further exploration of 
tumor-associated pathways, including 
epithelial-mesenchymal transition (EMT), 
angiogenesis (ANG), DNA damage repair (DNA), the 
PI3K pathway (PI3K), apoptosis (APO), and 
radiotherapy resistance gene panels (RR) during the 
pseudotime analysis of RR groups (Figure 5G), 
showed a gradual reduction in pathways such as 
DNA damage repair and the PI3K pathway as 
pseudotime progressed. Notably, RRhighepi 
consistently demonstrated higher tumor-associated 
characteristics compared to RRlowepi throughout the 
pseudotime trajectory. 

Subsequently, we used RCTD deconvolution to 
map single-cell cohort cell types to spatial 
transcriptomics (Figure 6A-C) and employed stlearn 
to infer the developmental trajectory of RR groups. 
We found that the spatial transcriptomic 
developmental trajectory proceeds from RRhighepi to 
RRlowepi, with the developmental trajectory tree 
illustrating detailed evolutionary relationships 
between cell clusters (Figure 6D-I). Additionally, we 
observed that radiotherapy resistance gene panel 
scores positively correlate with trajectory evolution 
gene enrichment scores (Figure 6J-L). Based on these 
findings, we propose that the developmental 
progression involves a transition from a stem-like, 
therapy-resistant state (RRhighepi) toward a more 
differentiated state (RRlowepi), with the latter 
expanding during this progression. 
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Figure 1. The workflow of the study. 
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Figure 2. Identification and function of breast cancer radiotherapy resistance gene panel. (A) Schematic diagram showing the origin of breast cancer radiotherapy 
resistance gene panel. (B) Details of the datasets used for gene panel construction. (C) Volcano plot displaying the radiotherapy resistance gene panel. (D) Enrichment analysis 
of radiotherapy resistance gene panel. (E) Tissue type distribution analysis of radiotherapy resistance gene panel. (F) Cell type distribution analysis of radiotherapy resistance gene 
panel. (G-I) Comparison of ssGSEA scores of the radiation resistance gene panel between the radiation-resistant group (RR) and the control group (WT) in MCF7, MDAB-231, 
and ZR751 cell lines. 
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Figure 3. Elevated expression of 
radiotherapy resistance gene panel in 
BRCA tumor epithelial cells. (A) UMAP 
visualization of cell types after batch correction, 
dimensionality reduction, and clustering in 
GSE176078 dataset. (B) Bubble plot showing 
radiotherapy resistance gene panel scores across 
cell types using multiple scoring methods in 
GSE176078 dataset. (C) Violin plot displaying 
average enrichment scores across cell types in 
GSE176078 dataset. (D) UMAP visualization of cell 
types after batch correction, dimensionality 
reduction, and clustering in GSE161529 dataset. (E) 
Bubble plot showing radiotherapy resistance gene 
panel scores across cell types using multiple 
scoring methods in GSE161529 dataset. (F) Violin 
plot displaying average enrichment scores across 
cell types in GSE161529 dataset. (G-H) Enrichment 
scores of radiotherapy resistance gene panel in 
spatial transcriptomics and differential analysis 
between regions. 

 

Single-Cell Metabolomic 
Differences in RRgroups 

Our previous findings 
revealed the upregulation of 
genes involved in 'Metabolism 
of polyamines' and 'Enterocyte 
cholesterol metabolism' 
pathways in RRhighepi (Figure 
3B). Therefore, we used the 
scFEA algorithm [23] to conduct 
detailed metabolomic 
exploration of RR groups. 
Among 169 metabolic 
pathways, the majority of 
upregulated pathways were in 
RRhighepi, including G6P to 
G3P conversion, Fatty Acid 
uptake, serine uptake, and Fatty 
Acid Acetyl to CoA conversion 
(Figure 7A). Conversely, 
upregulated pathways in 
RRlowepi included Valine 
uptake and Glucose to G6P 
conversion (Figure 7A). We 
further identified multiple 
activated pathways in 
RRhighepi related to 
Pyrimidine synthesis (Figure 
7B), Transporters (Figure 7C), 
Purine synthesis (Figure 7D), 
Glycolysis TCA cycle (Figure 
7E), BCAA metabolism (Figure 
7F), and Fatty acid metabolism 
(Figure 7G), indicating that 
RRhighepi possesses more 
robust metabolic characteristics.  
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Figure 4. Identification and functional analysis of RRhighepi cell population. (A) Schematic diagram of functional identification of RRhighepi cell population. (B) Bar plot 
showing Reactome, Hallmarker, and KEGG pathway enrichment analysis. (C) Line plot displaying enrichment analysis of tumor-related states/pathways from CancerGSEA. (D) 
Regulon Module analysis of BRCA tumor epithelial cells. (E-F) Differential comparison of regulon Modules in RR (Radiation resistant) groups. (G) Heatmap showing activities of 
different transcription factors in RR groups (red font indicates higher activity in RRhighepi, blue font indicates higher activity in RRlowepi). 
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Figure 5. Single-cell exploration of cellular origin in RR groups. (A) CytoTRACE analysis of cell differentiation potential in RR groups. (B) UMAP visualization of RR 
group classification. (C) Raincloud plot showing differential comparison of CytoTRACE scores in RR groups. (D-E) Cell type proportion analysis and grouping display under 
developmental trajectory. (F) Pseudotemporal analysis of genes related to cell development. (G) Differential comparison of tumor activity-related pathway pseudotemporal 
analysis in RR groups. 
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Figure 6. Spatial transcriptomics exploration of RR group cellular origin. (A-C) Cell types after spatial transcriptomics deconvolution. (D,E) Cell developmental 
trajectory and trajectory tree of RR groups in spatial transcriptomics sample GSM6760695. (F,G) Cell developmental trajectory and trajectory tree of RR groups in spatial 
transcriptomics sample GSM6760696. (H,I) Cell developmental trajectory and trajectory tree of RR groups in spatial transcriptomics sample GSM6760697. (J-L) Correlation 
scatter plots between radiotherapy resistance gene panel scores and developmental trajectory genes across multiple spatial transcriptomics samples. 
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Figure 7. Single-cell metabolomic differences in RR groups. (A) Heatmap showing differences in metabolite conversion-related pathways between RR groups (red font 
indicates higher activity in RRhighepi, blue font indicates higher activity in RRlowepi). (B-G) Cohen's D differential analysis in Pyrimidine synthesis (B), Transporters (C), Purine 
synthesis (D), Glycolysis TCA cycle (E), BCAA metabolism (F), and Fatty acid metabolism (G). 

 
Interaction Between RRhighepi and 
Endothelial Cells 

Given the important role of the tumor 
microenvironment in radiotherapy, we further 
explored cell-cell communication between RR groups 
and other cell types at the single-cell level used the 

Cellcall algorithm [17]. We discovered strong 
communication intensity between RRhighepi and 
endothelial cells (Figure 8A), with their interactions 
primarily activating Cellular senescence, Focal 
adhesion, MAPK signaling pathway, Relaxin 
signaling pathway, and TNF signaling pathway 
(Figure 8B). Analyzing ligand-receptor pairs, we 
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found that the main pairs mediating communication 
from RRhighepi to endothelial cells included 
WNT7B-FZD4, EFNA3-EPHA2, EFNA1-EPHA4, and 
EFNA4-EPHA4 (Figure 8C, Figure S5). From 
endothelial cells to RRhighepi, key ligand-receptor 
pairs included AREG-EGFR, KITLG-EGFR, and 
AREG-ERBB3 (Figure 8C). These findings indicate 
that RRhighepi communicates with endothelial cells 
through multiple pathways. 

Dependency of the Radiotherapy Resistance 
Gene Panel (RR) on Cell Cycle and Tumor 
States 

As identified in our initial analysis (Figure 2D), 
the radiotherapy resistance gene panel is primarily 
enriched in cell cycle-related pathways. This finding 
was further supported by our subsequent spatial 
transcriptomics analysis. Using data from 12 tumor 
cell states within the CancerGSEA database, we 
conducted spatial transcriptomic enrichment analysis 
to assess the relationship between the radiotherapy 
resistance gene panel and various tumor states. 
Dependency analysis of pathways with mistyR [25] 
revealed that the gene panel is predominantly 
associated with the cell cycle, DNA damage, DNA 
repair, and cell proliferation states across regions of 
spatial colocation, immediate neighborhoods, and 
extended neighborhoods (15 spots) (Figure S2A-C), 
with these results confirmed in multiple spatial 
transcriptomic samples. 

By integrating results from spatial 
transcriptomic deconvolution with tumor state 
enrichment analysis and applying mistyR for 
cell-pathway dependency evaluation, we observed 
that RRhighepi shows a strong reliance on the 
radiotherapy resistance gene panel (RR), as well as 
pathways related to the cell cycle, DNA damage, 
DNA repair, and proliferation in both intra- and 
para-spatial regions (Figure S2D-F). These findings 
lead to the conclusion that the radiotherapy resistance 
gene panel is closely tied to the cell cycle, DNA 
damage, DNA repair, and other related pathways or 
states in tumors. 

Mendelian Randomization Analysis of 
Radiotherapy Resistance Gene Panel and 
Breast Cancer Causality 

We collected 24 breast cancer-related GWAS 
cohorts and performed Mendelian randomization to 
analyze the causal relationship between SNPs in the 
radiotherapy resistance gene panel and breast cancer 
GWAS. In the ebi-a-GCST90018799 cohort, genes with 
causal relationships to breast cancer included NOP58, 
OCIAD2, P4HA2, PEMT, and PNPLA2 (Figure 9A, C). 
In the ieu-a-1126 cohort, genes with causal 
relationships to breast cancer included GNB2, HADH, 
OAS2, OCIAD2, P4HA2, and PAFAH1B3 (Figure 9B, 
D). Across 24 GWAS cohorts, we identified 318 genes 
with causal relationships to breast cancer (Table S3). 

 

 
Figure 8. Interaction between RRhighepi and endothelial cells. (A) Interaction intensity analysis between RRhighepi and multiple cell types. (B) Analysis of activated 
pathways in various cell communications. (C) Analysis of activated ligand-receptor pairs in various cell communications. 
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Figure 9. Mendelian randomization exploration of causal relationships between radiotherapy resistance-related genes and breast cancer. (A-B) Forest plots 
showing MR analysis results of radiotherapy resistance-related genes in ebi-a-GCST90018799 cohort and ieu-a-1126 cohort. (C-D) Volcano plots displaying eQTL results of 
radiotherapy resistance-related genes. 

 

Robust Machine Learning Model for Predicting 
Survival and Guiding Treatment Decisions 

To identify signature genes for RRhighepi 
(|logFC|>0.25) (Table S4), we used the Findmarker 
function and cross-referenced these genes with those 
from Mendelian randomization analysis (Figure S3) to 
construct a prognostic model (Table S5). Among the 
various machine learning methods tested for 
predicting patient survival, StepCox[both]+SuperPC 
consistently ranked in the top three based on average 
c-index (Figure 10A), maintaining stable gene weights 
(Figure 10B). As a result, we adopted this method to 
develop our prognostic model, named SSRR 
(SuperPC and StepCox-based Radiotherapy 

Resistance model). By using the median SSRR risk 
score as a threshold, patients were stratified into 
high-risk and low-risk groups. In the TCGA cohort, 
the high-risk group demonstrated significantly worse 
survival outcomes compared to the low-risk group 
(Figure 10C). The area under the curve (AUC) values 
for two-year survival in the TCGA, GSE16446, 
GSE20486, and GSE24450 cohorts were 0.57, 0.71, 0.68, 
and 0.79, respectively, while for four-year survival, 
the AUC values were 0.62, 0.55, 0.68, and 0.73, 
respectively. Expression patterns of the SSRR weight 
genes are illustrated in Figure 10F, with P4HA2, 
KIF20B, and DSCC1 showing higher expression in the 
high-risk group. 
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Figure 10. Establishment of 
RRhighEpi-related prognostic model and 
relationship between prognostic score 
and clinical factors. (A) Heatmap showing C 
index of various machine learning approaches for 
prognostic model construction. (B) Bar plot 
displaying gene weights under 
StepCox[both]+SuperPC algorithm. (C) Survival 
analysis of risk scores under prognostic model 
assessment in TCGA-BRCA cohort. (D-E) AUC 
values for 2-year and 4-year survival across 
cohorts using StepCox[both]+SuperPC method 
for prognostic model construction. (F) Heatmap 
showing expression of RRhighepi signature genes 
in risk score groups in TCGA-BRCA cohort. (G) 
Horizontal comparison of prognostic models 
constructed using StepCox[both]+SuperPC 
method. (H) Impact of risk score on patient 
survival, tumor grade, tumor stage, and TNM 
classification. (I-J) Relationship between risk 
score and tumor grade. (K-P) Univariate and 
multivariate analysis of risk score and clinical 
indicators' impact on OS, PFI, and DSS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When comparing SSRR to 

other prognostic models, SSRR 
consistently ranked among the 
top models in c-index across 
independent cohorts (Figure 
10G). Stratifying patients into 
high-risk and low-risk groups 
based on the median SSRR 
value and analyzing the 
relationship with clinical 
indicators revealed significant 
differences in survival status, 
tumor grade, tumor stage, and 
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T stage between the groups (Figure 10H). The 
high-risk group had a higher proportion of stage II-IV 
tumors than the low-risk group (Figure 10I), and 
higher SSRR risk scores were observed in stage II-IV 
tumors compared to stage I tumors (Figure 10J). To 
determine whether SSRR is an independent 
prognostic factor for BRCA, univariate and 
multivariate Cox regression analyses were performed 
on OS, PFI, and DSS in the TCGA-BRCA dataset. The 
results indicated that SSRR was a significant risk 
factor for OS, PFI, and DSS in univariate analysis 
(HR>1, p<0.001). Additionally, in multivariate 
analysis, SSRR remained an independent prognostic 
factor for OS (HR:1.476, p<0.001), PFS (HR:1.471, p < 
0.001), and DSS (HR:1.780, p < 0.001) (Figure 10K-P), 
demonstrating its strong prognostic capability in 
BRCA patients. 

To further examine differences in 
immunotherapy response between high-risk and 
low-risk groups, we applied the Submap algorithm to 
predict immunotherapy outcomes in the TCGA and 
GSE16446 cohorts. The high-risk group showed a 
better response to immunotherapy (Figure 11A-B), 
while the low-risk group exhibited higher TIDE scores 
(Figure 11C-D). Additionally, analysis of public 
single-cell immunotherapy datasets revealed that cells 
responsive to immunotherapy had higher risk scores 
(Figure 11E-F). Given the poor prognosis of patients in 
the high-risk group, we conducted an analysis of the 
CTRP and PRISM databases and found that this 
group was more sensitive to drugs such as docetaxel 
and doxorubicin (Figure 11G-H), while the low-risk 
group showed greater sensitivity to drugs like 
letrozole and tamoxifen (Figure 11I-J). Furthermore, 
we identified potential drugs for the high-risk group, 
including KX2-391, rigosertib, cabazitaxel, and 
taltobulin (Figure 11K-L). 

P4HA2 as a Potential Therapeutic Target for 
Breast Cancer 

Analysis of SSRR model genes revealed that 
P4HA2 had the highest weight (Figure 10B). We 
conducted in-depth exploration of P4HA2 at the 
transcriptomic, proteomic, and genomic levels across 
pan-cancer datasets. In TCGA transcriptomics, P4HA2 
expression was elevated in multiple cancers (BRCA, 
CHOL, HNSC, KIRC, LIHC, THCA) and decreased in 
PRAD (Figure 12A). Similar findings were observed 
in paired samples: P4HA2 expression was increased in 
BRCA, HNSC, KIRC, LIHC, and THCA, while 
decreased in PRAD (Figure 12B). In CPTAC 
proteomics data, P4HA2 protein expression was 
elevated in BRCA, HNSC, KIRC, LIHC, and unlike 
mRNA expression, also in COAD, GBM, LUAD, 
LUSC, OV, PAAD, and UCEC, suggesting 

mechanisms involved in transcriptional and 
translational regulation (Figure 12C). Additionally, 
immunohistochemical staining showed higher P4HA2 
levels in Breast, Lung, Colon, Liver, Ovary, and 
Glioma tissue sections compared to normal tissues 
(Figure 12D). In pan-cancer single-cell 
transcriptomics, P4HA2 showed higher expression in 
malignant tumor cells and fibroblasts, with lower 
expression in B cells and T cells (Figure 12E). 
Furthermore, in spatial transcriptomics of multiple 
cancers (BRCA, CRC, KIRC, PAAD, LIHC, LUAD, 
SKCM), P4HA2 expression was consistently higher in 
malignant regions compared to non-malignant 
regions (Figure 12F-L). 

Further exploration of P4HA2 genomics revealed 
positive correlation between methylation levels and 
expression in BLCA, BRCA, PRAD, and UCEC, but 
negative correlation in KIRC and THCA (Figure 13A). 
Focusing on BRCA methylation, we found negative 
correlation between expression and methylation 
across different regions (5UTR, DHS, Enhancer, 
Promoter) (Figure 13B). Regarding survival, BRCA 
patients with high methylation levels showed 
significantly better survival compared to those with 
low methylation levels (Figure 13C). In terms of 
mutation frequency, P4HA2 showed mutation rates 
above 5% in Cholangiocarcinoma, Renal Clear Cell 
Carcinoma, and Endometrial Cancer, with Renal 
Clear Cell Carcinoma predominantly showing 
Amplification, Endometrial Cancer showing 
Mutation, while Breast cancer had mutation 
frequency below 1% (Figure 13D). Across multiple 
samples, the NM_001142599 transcript of P4HA2 had 
a mutation frequency of 0.29%, primarily Missense 
Mutations and Frame Shift Deletions (Figure 13E). 
P4HA2 expression varied significantly across 
mutation types, with highest expression in 
Amplification and Gain groups, and lowest in the 
DeepDeletion group (Figure 13F). Additionally, 
P4HA2 showed higher expression in the biological 
aging group (Figure 13G). Analysis of genomic 
instability-related gene sets in pan-cancer 
transcriptomics revealed positive correlation between 
P4HA2 and aneuploidy, homologous recombination 
deficiency, tumor ploidy, single nucleotide variant 
neoantigens, non-silent mutation rate, and silent 
mutation rate in BRCA (Figure 13H-L). In ATAC-Peak 
and transcription factor correlation analysis, P4HA2 
showed strong correlation with transcription factors 
ESR1, ATRX, FOXP1, GATA3, HOXC6, RYBP, TAF7, 
and ZNF263 (Figure 13N), while transcription factor 
prediction based on the Cistrome Data Browser 
database identified BRD4, CTCF, ESR1, POLR2A, and 
PR as potential transcriptional regulators of P4HA2 
(Figure 13O). 
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Figure 11. Relationship between risk score and clinical treatment. (A-B) Prediction of immunotherapy response in high and low risk score groups in TCGA and 
GSE16446 cohorts. (C-D) Comparison of TIDE scores in high and low risk score groups in TCGA and GSE16446 cohorts. (E-F) Relationship between risk score and treatment 
response in immunotherapy single-cell cohorts BLCA_GSE145281 (E) and SCC_GSE123813 (F). (G-J) Drug sensitivity analysis for docetaxel (G), doxorubicin (H), letrozole (I), 
and tamoxifen (J) in high and low risk score groups. (K-L) Analysis of potential small molecule drugs for high and low risk score groups. 
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Figure 12. Expression differences of P4HA2 in normal tissues and various tumor tissues. (A) mRNA expression levels of P4HA2 in normal and tumor samples across 
TCGA pan-cancer cohorts (including paired and unpaired samples). (B) mRNA expression levels of P4HA2 in normal and tumor samples in paired samples from TCGA 
pan-cancer cohorts. (C) Protein expression levels of P4HA2 in normal and tumor samples in CPTAC pan-cancer proteotranscriptomic cohorts. (D) Immunohistochemical 
staining levels of P4HA2 in various normal and tumor tissues. (E) Heatmap showing mRNA expression levels of P4HA2 across different cell types in pan-cancer single-cell cohorts. 
(F-L) Expression levels of P4HA2 in spatial transcriptomics samples of BRCA (F), CRC (G), KIRC (H), PAAD (I), LIHC (J), LUAD (K), and SKCM (L). 

 
 
Next, we analyzed the prognostic value of 

P4HA2. P4HA2 was found to be a risk factor for OS, 
DSS, DFI, and PFI in BRCA, a risk factor for OS, DSS, 
and PFI in BLCA, CESC, GBM, HNSC, KICH, KIRP, 
LGG, and UVM, but a protective factor for OS, DSS, 
DFI, and PFI in DLBC (Figure 14A). In univariate COX 
analysis across multiple cohorts, P4HA2 was a risk 
factor for most cancers but potentially a protective 
factor in DLBC (Figure 14B). Regarding diagnostic 
performance, P4HA2 demonstrated AUC values 
above 0.9 in distinguishing tumor tissues from normal 
tissues in COAD, HNSC, ESCA, LIHC, LUSC, PCPG, 
READ, and STAD (Figure 14C), with an AUC of 0.815 
in BRCA (Figure 14D). In the GSE21653 breast cancer 

cohort, P4HA2 expression showed significant 
differences across tumor grades, with highest 
expression in G3 (Figure 14E), while in the 
TCGA-BRCA cohort, P4HA2 expression differed 
significantly across tumor stages, with highest 
expression in stage 4 (Figure 14F-G). Across breast 
cancer subtypes, P4HA2 expression varied 
significantly, with highest expression in HER2 
subtype and lowest in Normal-like subtype (Figure 
14H). In TCGA-BRCA and GSE22820 breast cancer 
cohorts, P4HA2 expression positively correlated with 
ERBB2 (Figure 14I-K). Additionally, in the 
GSE176078-HER2 positive single-cell cohort, P4HA2 
positively correlated with ERBB2 (Figure 14L). 
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Figure 13. Integrated analysis of P4HA2-related multi-omics molecular characteristics and clinical phenotypes, and prognostic evaluation. (A) Differences in 
P4HA2 methylation levels across pan-cancer. (B) Spearman correlation between average P4HA2 gene expression and methylation at different sites in BRCA. (C) Disease-free 
survival curves for four different subgroups based on DNA methylation (Methy) and gene expression (Exp) levels. (D) Differences in mutation frequency of P4HA2 across different 
mutation types in pan-cancer. (E) Distribution of mutation sites of P4HA2 across different samples. (F) Differences in P4HA2 expression across different CNV types in pan-cancer. 
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(G) Differences in P4HA2 expression between biological age acceleration/deceleration groups in breast cancer (BRCA). (H-M) Spearman correlation between different gene set 
enrichment scores (aneuploidy, homologous recombination deficiency, tumor ploidy, single nucleotide variant neoantigens, non-silent mutation rate, silent mutation rate) and 
P4HA2 expression across pan-cancer. (N) Spearman correlation analysis of P4HA2 gene ATAC-Peak and transcription factors. (O) Prediction of potential transcriptional 
regulatory factors for P4HA2. 

 
Finally, we conducted laboratory experiments to 

explore the biological function of P4HA2. We used a 
pair of small interfering RNAs (siRNAs) to 
downregulate P4HA2 expression in HCC1806 and 
MCF7 cell lines. Western blot analysis 48 hours 
post-transfection confirmed successful knockout of 
P4HA2 (Figure 15A-B). After intervention, EdU assays 
showed reduced cell proliferation in both HCC1806 
and MCF7 cell lines (Figure 15C-D). We also observed 
decreased cell viability (Figure 15E-F). Furthermore, 
invasion assays demonstrated significantly reduced 
migration ability in HCC1806 and MCF7 cells after 
P4HA2 knockdown (Figure 15G-I). Colony formation 
assays showed that P4HA2 downregulation inhibited 
cell clone formation ability (Figure 15J-L). These 
results collectively indicate that P4HA2 promotes 
proliferation and migration in breast cancer cells. 

To further elucidate the relationship between 
P4HA2 and the radioresistance gene panel, we 
performed WGCNA analysis on GSE120798. We first 
conducted sample clustering and soft-threshold 
analysis (Figure 16A-B), followed by modular 
clustering of genes (Figure 16C). We found that 
modules such as MEblue, MEpurple, MEpink, and 
MEgrey showed strong correlations with 
radioresistance (Figure 16D), and genes among 
different modules exhibited complex interaction 
relationships (Figure 16E). Subsequently, module 
composition analysis of the radioresistance gene 
panel revealed that the blue module accounted for 
85.1% of the total genes in the radioresistance gene 
panel, followed by pink (12.3%), light yellow (1.5%), 
and grey (1.2%) (Figure 16F). Within the blue module, 
scatter plots showed positive correlations between 
"module membership" and both "gene significance 
(for radioresistance trait)" (Figure 16G, cor = 0.52, p < 
1e-200) and "gene significance (for P4HA2 high 
expression trait)" (Figure 16H, cor = 0.27, p = 1.3e-67), 
suggesting that genes with high module membership 
also possess high trait significance. STRING network 
protein-protein interaction analysis demonstrated 
strong interactions between P4HA2 and the 
radioresistance gene panel (Figure S4). Functional 
enrichment analysis indicated that the blue module 
(Figure 16I) was enriched in biological processes 
including cell cycle, DNA metabolic processes, and 
regulation of DNA-templated DNA replication; the 
pink module (Figure 16J) was enriched in pathways 
including positive regulation of cells, syndecan 
interactions, and protein export from the nucleus. 
These results suggest regulatory relationships exist 

between the radioresistance gene panel and P4HA2 in 
relation to radioresistance characteristics. 

Subsequently, we further explored the effects of 
radiotherapy and P4HA2 on breast cancer cells 
through experimental validation. First, using multiple 
radiation doses combined with P4HA2 knockdown, 
we found that breast cancer cells were significantly 
reduced under 4 Gy irradiation combined with 
P4HA2 knockdown (Figure 17A-C), while cells nearly 
disappeared under 6 Gy irradiation combined with 
P4HA2 knockdown. Using 4 Gy irradiation combined 
with P4HA2 knockdown, we found that protein 
expression levels of CD44, Vimentin, and Oct4 in the 4 
Gy irradiation plus P4HA2 knockdown group were 
significantly lower than in the irradiation-only or 
P4HA2 knockdown-only groups, while E-cadherin 
protein expression was significantly increased (Figure 
17D-G). Sphere formation assays showed that sphere 
volume was significantly reduced in the 4 Gy 
irradiation plus P4HA2 knockdown group (Figure 
17H-J), and Transwell assays demonstrated that cell 
migration capacity was significantly decreased in the 
4 Gy irradiation plus P4HA2 knockdown group 
(Figure 17K-M). Furthermore, we found that protein 
expression levels of KU80 and BCL-2 in the 4 Gy 
irradiation plus P4HA2 knockdown group were 
significantly lower than in the irradiation-only or 
P4HA2 knockdown-only groups, while γ-H2AX 
protein expression was significantly elevated (Figure 
17N-Q). Immunofluorescence showed that the mean 
fluorescence intensity of γ-H2AX was significantly 
enhanced in the 4 Gy irradiation plus P4HA2 
knockdown group (Figure 17R-T). Taken together, 
these results suggest that knockdown of P4HA2 may 
be a potential target for enhancing radiosensitivity. 

Discussion 
Radioresistance represents a major challenge in 

the treatment of breast cancer (BRCA) [31, 32], 
particularly under the complex influences of tumor 
heterogeneity and the tumor microenvironment 
[33-39]. In this study, we identified a gene panel 
associated with radiotherapy resistance and 
elucidated its mechanistic role in breast cancer cells 
through multi-level analyses. Systematic analyses of 
two independent cohorts, TCGA-BRCA and 
GSE120798, revealed core features of the resistance 
gene panel and further explored its potential 
mechanisms concerning cell specificity, metabolic 
characteristics, tumor microenvironment, and 
immune response. 
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Figure 14. Prognostic value of P4HA2 and its correlation with ERBB2. (A) Relationship of P4HA2 with different survival periods (disease-free interval DFI, 
disease-specific survival DSS, overall survival OS, progression-free interval PFI) across pan-cancer. (B) Relationship between P4HA2 gene expression level and overall survival 
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(OS), disease-free survival (DFS), progression-free survival (PFS), and recurrence-free survival (RFS) assessed by univariate Cox survival analysis across multiple external datasets. 
(C) Diagnostic performance of P4HA2 expression in distinguishing tumor from normal groups across pan-cancer. (D) ROC curve showing diagnostic performance of P4HA2 gene 
in breast tumors versus normal tissues. (E) Expression differences of P4HA2 under tumor grading in GSE21653. (F) Expression differences of P4HA2 gene across different tumor 
stages (Stage I-IV) in TCGA-BRCA cohort. (G) Median expression (Z-score) across stages. (H) Expression differences of P4HA2 gene across different molecular subtypes in 
TCGA-BRCA cohort. (I) Correlation analysis and Fisher's exact test of P4HA2 and ERBB2 in mRNA-TCGA-BRCA dataset. (J) Correlation analysis and Fisher's exact test of 
P4HA2 and ERBB2 in mRNA-GSE22820 dataset. (K) Correlation scatter plot analysis of P4HA2 and ERBB2. (L) Correlation of P4HA2 and ERBB2 in single-cell cohort. 

 
Figure 15. P4HA2 knockdown significantly inhibits proliferation, invasion, and clone formation ability of HCC1806 and MCF7 cells. (A-B) Western blot 
detection of P4HA2 knockdown efficiency in HCC1806 and MCF7 cells. (C-D) EdU experiment and bar graph showing that P4HA2 knockdown significantly inhibits DNA 
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replication in HCC1806 and MCF7 cells. (E-F) CCK8 experiment confirming that P4HA2 knockdown significantly reduces growth ability of HCC1806 and MCF7 cells. (G-I) 
Transwell invasion experiment and bar graph showing that P4HA2 knockdown significantly reduces migration ability of HCC1806 and MCF7 cells. (J-L) Clone formation 
experiment and bar graph showing that P4HA2 knockdown significantly reduces the number of clones formed by HCC1806 and MCF7 cells. All the above biological experiments 
were repeated at least three times. 

 
Figure 16. WGCNA analysis of 
radioresistance gene panel. (A) Sample 
dendrogram and trait heatmap of GSE120798. (B) 
Scale independence test and mean connectivity 
analysis of soft threshold. (C) Gene cluster 
dendrogram. (D) Module-trait correlation heatmap. 
(E). Module eigengene network diagram. (F) Pie chart 
of module distribution related to radioresistance 
gene panel traits. (G) Scatter plot of "module 
membership" and "gene significance (for 
radioresistance trait)" of genes in the blue module. 
(H) Scatter plot of "module membership" and "gene 
significance (for Q1 vs. all trait)" of genes in the blue 
module. (I) Functional enrichment analysis network 
of the blue module. (J) Functional enrichment analysis 
network of the pink module.  

 
 
Initially, differential 

expression analysis was 
performed on both bulk datasets, 
TCGA-BRCA and GSE120798, 
successfully identifying genes 
closely associated with 
radiotherapy resistance. 
Enrichment analyses indicated 
that these genes predominantly 
participated in cell cycle-related 
pathways, including cell cycle 
regulation, G1/S checkpoint, and 
G2/M checkpoint pathways. 
Research indicates that tumor 
cells can enter a radiation-tolerant 
persistent state through processes 
like cell cycle progression and 
division, temporarily resisting 
radiotherapy and ultimately 
promoting tumor regrowth [40]. 
G1/S and G2/M checkpoints are 
crucial for cell cycle control and 
can be targeted to counteract 
radiation-induced damage [41]. 
Further analysis showed that the 
expression of the radiotherapy 
resistance gene panel was 
significantly elevated in breast 
epithelial cells, suggesting an 
important role of tumor epithelial 
cells in radioresistance. Normal 
cells, upon DNA damage, arrest 
at the G1 phase via p53 regulators 
to initiate DNA repair. 
Conversely, tumor cells, due to 
dysfunctional G1/S checkpoints, 
tend to proceed into S phase and 
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evade repair. Post-radiation, cancer cells activate CAD 
(Caspase-Activated DNAse), leading to DNA 
fragmentation and G2 arrest, providing additional 
time for repair. Inhibiting CAD has been shown to 
increase radiosensitivity, and targeting G2 checkpoint 
pathways might enhance radiotherapy efficacy 
[42-44]. 

To further explore cell-type specificity, we 
analyzed single-cell BRCA datasets, revealing that the 
resistance gene panel was markedly overexpressed in 
epithelial cells. Within tumor tissues, the resistance 
scores derived from this panel were significantly 
higher in epithelial cells, highlighting their potential 
role in mediating radioresistance. This suggests that 
radioresistance may be intricately linked to epithelial 
cell characteristics, especially proliferative states. The 
concept of tumor cells adopting an adaptive, 
persistent state to survive and proliferate 
post-radiation [40], resembling "radiation-tolerant 
persister cells" (RTP cells), was further examined via 
viral budding simulation methods, which facilitated 
tumor re-proliferation. 

Subsequently, spatial transcriptomics analyses 
validated these findings by revealing that the 
resistance gene panel was more highly expressed in 
malignant regions of breast cancer tissues compared 
to benign regions. This supports the notion that 
resistance-related genes are involved in the formation 
of malignant tumor areas, with resistant cancer cells 
likely persisting within these regions and contributing 
to tumor recurrence. 

Enrichment analyses indicated that cell cycle 
pathways were significantly upregulated in the 
radioresistant epithelial cell subgroup (RRhighepi), 
including pathways related to the cell cycle and 
G2/M checkpoint. This aligns with earlier 
observations that cell cycle control is a key mechanism 
of radiotherapy resistance in breast cancer, notably 
through the activation of the G2/M checkpoint, which 
functions as a negative regulator of cell cycle 
progression [41]. The activation of cell cycle arrest in 
radioresistant epithelial cells effectively induces a 
state of proliferation blockade. Upon radiation- 
induced DNA damage, tumor cells engage cell cycle 
arrest, further activating self-repair mechanisms and 
evading radiation injury, thereby increasing 
resistance [42]. However, residual tumor cells often 
re-enter a proliferative state during tumor 
repopulation [45]. Studies suggest that cell death 
induced by radiochemotherapy can generate potent 
growth-stimulatory signals, promoting tumor 
regeneration [45, 46]. Moreover, transcription factor 
activity analysis revealed elevated activity of several 
transcription factors, such as ARID2, E2F1, E2F4, 
NFYB, and MYC, in the RRhighepi group, all of which 

are closely associated with cell proliferation and 
tumor progression. E2F1, for instance, can induce 
transcription of genes involved in cell cycle entry and 
apoptosis regulation [47]. NFYB-mediated 
upregulation of E2F1 enhances CHK1 signaling, 
contributing to chemotherapy resistance in colorectal 
cancer [48]. Therefore, the proliferation and 
radioresistance of epithelial cells in the context of 
radiotherapy may be mediated by overactivation of 
cell cycle-related genes. 

Metabolic pathway analysis via single-cell 
metabolomics further revealed that activation of 
multiple metabolic routes-including fatty acid 
metabolism, amino acid metabolism, glycolysis, 
pyrimidine synthesis, and purine synthesis-is 
prominent in the RRhighepi group. These metabolic 
adaptations provide essential energy support and 
likely sustain proliferation and survival of resistant 
cells [49-52]. It should be noted that the analysis of 
pathways such as polyamine and cholesterol 
metabolism in this study is based on computational 
inference from transcriptomic data. While this 
provides valuable hypotheses, it does not directly 
measure metabolite levels or flux. Future studies 
employing targeted or untargeted metabolomics 
techniques on sorted cell populations will be essential 
to experimentally confirm these metabolic alterations. 
Furthermore, the observed metabolic differences 
between RR groups may reflect not only intrinsic 
programming disparities but also potential influences 
of feedback mechanisms, such as the inhibition of 
biosynthetic pathways due to sufficient end-product 
levels. Studies demonstrate that radiation enhances 
glycolysis in pancreatic cancer cells, raising lactate 
levels and promoting MDSC activity via the 
GPR81/mTOR/HIF-1A/STAT3 pathways, thus 
contributing to an immunosuppressive 
microenvironment and tumor progression, 
recurrence, and radioresistance [53]. Tumor cells 
undergo metabolic reprogramming, including 
increased mitochondrial fatty acid oxidation (FAO), 
which supplies ATP through mitochondrial 
breakdown to aid escape from radiation-induced cell 
death. FAO also upregulates CD47 expression via the 
citrate-Acetyl-CoA-RelA pathway, contributing to 
immune suppression and protecting radioresistant 
GBM cells from macrophage-mediated phagocytosis 
[54-56]. Additionally, increased purine levels in 
glioblastoma enhance DNA repair, further promoting 
resistance [57]. These findings underscore the 
significance of metabolic reprogramming in tumor 
cell survival under radiotherapy and highlight the 
importance of understanding these mechanisms to 
develop combination therapies that can improve 
treatment outcomes.  
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Figure 17. Effects of P4HA2 knockdown combined with radiotherapy on breast cancer cells. (A-C) Clone formation assays show the effects of the combination of 
multiple radiation doses and P4HA2 knockdown on breast cancer cells. (D-G) Western blotting (WB) shows the effects of P4HA2 knockdown combined with radiotherapy on 
the cancer stemness and EMT characteristics of breast cancer cells. (H-J) Sphere formation assay in suspension shows the effects of P4HA2 knockdown combined with 
radiotherapy on the cancer stemness characteristics of breast cancer cells. (K-M) Transwell assay shows the effects of P4HA2 knockdown combined with radiotherapy on the 
migration ability of breast cancer cells. (N-Q) Western blotting (WB) shows the effects of P4HA2 knockdown combined with radiotherapy on the DNA damage characteristics 
of breast cancer cells. (R-T) Immunofluorescence assay shows the effects of P4HA2 knockdown combined with radiotherapy on γ-H2AX in breast cancer cells. All the above 
biological experiments were repeated at least three times. 
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Further investigations into the interaction 
between the resistance gene panel and tumor 
microenvironment, especially with endothelial cells, 
revealed that RRhighepi influences intercellular 
communication pathways. Radiotherapy can 
modulate endothelial functions to promote tumor 
progression through mechanisms such as EndMT 
(Endothelial-to-Mesenchymal Transition), which 
increases the expression of stem cell markers like 
CD44v6, associated with increased osteopontin 
secretion in lung cancer [58]. Additionally, radiation 
enhances tumor-associated macrophage (TAM) M2 
polarization [58]. In hepatocellular carcinoma, 
irradiated endothelial cells facilitate tumor invasion 
through cytokine secretion changes and extracellular 
matrix (ECM) remodeling [59, 60]. Notably, doses of 2 
Gy rather than higher doses like 6 Gy elicited these 
pro-invasive responses, indicating that radiation 
dosage and scheduling may modulate tumor-stroma 
interactions and influence therapy efficacy [59, 60]. 
Radiation also augments endothelial drug efflux 
capacity, contributing to blood-brain barrier- 
mediated drug resistance [61]. Based on single-cell 
communication analyses, we observed significant 
signaling interactions between RRhighepi and 
endothelial cells primarily via ligand-receptor pairs 
such as WNT7B-FZD4 and EFNA3-EPHA2. WNT7B 
activates β-catenin signaling pathways involved in 
HPV E6-induced tumor angiogenesis in cervical 
cancer [62] and promotes gastric cancer progression 
via WNT7B-m6A-TCF7L2 feedback loops [63]. The 
EFNA3/EPHA2 axis modulates cellular metabolic 
plasticity, promoting stemness features in hypoxic 
hepatocellular carcinoma [64]. These pathways play 
critical roles in cell migration, proliferation, and 
tumor microenvironment remodeling, suggesting that 
RRhighepi may foster tumor angiogenesis and 
invasion through these signaling networks, thereby 
enhancing tumor growth and metastatic potential. 

Through various analytical approaches, the 
expression of P4HA2 was found to be significantly 
elevated in breast cancer, correlating closely with 
tumor stage, grade, and patient prognosis. P4HA2 is 
markedly overexpressed across multiple cancer types, 
especially in BRCA. Laboratory experiments 
confirmed that silencing P4HA2 suppressed 
proliferation and migration abilities of breast cancer 
cells. We further found that P4HA2 knockdown can 
also exert a synergistic effect with radiotherapy - the 
combination of 4 Gy radiotherapy and P4HA2 
knockdown significantly reduced the number of 
breast cancer cells, while almost eliminating these 
cells when combined with 6 Gy irradiation, which 
fully demonstrates knockdown of P4HA2 in 
enhancing radiosensitivity. Mechanistically, WGCNA 

analysis revealed that P4HA2 is closely associated 
with the core modules of the radiation resistance gene 
panel (e.g., the MEblue module, which accounts for 
85.1% of the panel genes). Moreover, module 
membership showed positive correlations with gene 
significance for both radiation resistance and P4HA2 
overexpression, suggesting that P4HA2 may function 
by regulating radiation resistance-related pathways 
such as cell cycle and DNA metabolism. String 
interaction analysis further validated the functional 
crosstalk between P4HA2 and the radiation resistance 
gene panel. In functional experiments, P4HA2 
knockdown combined with radiotherapy not only 
decreased the expression of cancer stemness markers 
(e.g., CD44, Oct4) and inhibited sphereforming and 
migration capacities, but also impaired DNA damage 
repair and anti-apoptotic abilities by downregulating 
KU80 and BCL-2 while upregulating γ-H2AX. 
Although our functional studies did not involve direct 
isolation of the RRhighepi subpopulation, the 
concurrent suppression of stemness markers (e.g., 
Oct4) and tumorsphere formation, coupled with 
enhanced radiosensitivity following P4HA2 
knockdown, provides strong correlative evidence that 
the stem-like state contributes to the resistant 
phenotype. Future studies utilizing specific cell 
surface markers for RRhighepi cell sorting would be 
valuable to directly test their radiotherapeutic 
response. Our experimental results demonstrating 
that P4HA2 knockdown suppresses proliferation, and 
migration are consistent with previously reported 
findings that P4HA2-mediated collagen prolyl 
hydroxylation regulates cancer cell plasticity and 
migration [65]. Our study extends this knowledge by 
establishing a direct link between P4HA2 and 
radiotherapy resistance, demonstrating its role in 
enhancing DNA damage repair and maintaining a 
stem cell-like state upon radiation exposure. 
Interventions targeting P4HA2 are expected to 
provide a novel strategy for breast cancer treatment, 
particularly holding significant translational value for 
cases with radiotherapy resistance. 

In conclusion, this comprehensive multi-layered 
bioinformatics analysis reveals the biological 
significance of the radiotherapy resistance gene panel 
in breast cancer and its potential clinical applications. 
The panel exerts its effects through mechanisms such 
as cell cycle regulation, metabolic reprogramming, 
and tumor microenvironment interactions, thereby 
augmenting tumor cell proliferation and survival. 
Importantly, P4HA2 emerges as a potential 
therapeutic target with significant prognostic value in 
the context of radiotherapy resistance. Future 
therapeutic strategies focusing on the inhibition of 
this gene panel and its associated pathways may pave 
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the way for personalized treatment approaches in 
breast cancer. Nevertheless, further experimental 
validation and clinical trials are essential to evaluate 
these findings' translational potential and their 
relevance in overcoming radiotherapy tolerance and 
resistance in breast cancer. 
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