

1 *Supporting Information for*

2

3 **Sono-Piezoelectric Cues Regulate Neuroinflammatory Reflex-Arc-Mediated α 7nAChR-P2RX7**
4 **Axis to Dampen Osteoarthritis-Correlated Pain With Osteoarthritis Attenuation**

5 Qiuling Zhong,^{1,#} Junqi Xie,^{1,2,#} Maocheng Zuo,^{3,4,#} Chuanan Liao,^{5,#} Qiuxia Peng,^{4,5} Simeng Yu,¹ Pan
6 Hu,¹ Yuanyuan Liu,^{1,2} Li Zheng,^{1,2,*} Kun Zhang,^{4,5,*} Zhenhui Lu,^{1,2,*} and Jinmin Zhao^{1,6}

7 Table of Contents

8	Supplementary Experimental Section.....	S3
9	Supplementary Tables Section.....	S9
10	Supplementary Figures Section.....	S10
11	Supplementary References	S15

12 **Experimental section**

13 **Materials**

14 Zinc oxide ($\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, $\geq 99.8\%$) and sodium hydroxide (NaOH , $\geq 99.8\%$) were purchased from
15 Aladdin Chemical Reagent Co., Ltd (Shanghai, China). *N,N*-dimethylformamide (DMF) ($\geq 99.5\%$)
16 and dimethyl sulfoxide (DMSO) were purchased from Macklin Biochemical Technology Co., Ltd
17 (Shanghai, China). All chemical reagents were used directly without any further purification.

18 **Preparation of ZnO NPs**

19 ZnO NPs were synthesized using microfluidic technique. Briefly, the extension tube of the
20 micropump was made into a Y-shaped tube, divided into two ports, A and B, which were connected
21 to two syringe ports respectively: port A was connected to a syringe containing 300 mM $\text{Zn}(\text{NO}_3)_2$
22 solution, and port B was connected to a syringe containing 125 mM NaOH solution. The solution in
23 port A is injected at 50 $\mu\text{L}/\text{min}$ and the solution in port B is injected at 100 $\mu\text{L}/\text{min}$. Both were
24 pumped into the Y-type micro-pump channel. Both were pumped through the pump into a Y-shaped
25 microchannel. The synthesis product was collected at the outlet in a 50 mL round-bottomed flask and
26 then placed directly into a water bath at 80 °C for 1 h of continuous heating to complete the
27 crystallization. After cooling, it was centrifuged and then purified by centrifugation. The supernatant
28 was removed. After washing three times with ultrapure water, the resulting white product was placed
29 in a vacuum drying oven for 12 h to obtain high-purity ZnO NPs.

30 **Characterization of ZnO NPs**

31 The morphology, distribution and size of ZnO NPs were analyzed by TEM (H-7650, Hitachi, Japan)
32 and DLS (Malvern Panalytical, UK). The element composts were analyzed by high-resolution
33 Mapping as well as X-ray energy spectroscopy EDX (Thermo Scientific™ Talos F200S 200kV
34 S/TEM, USA). Infrared spectrum and X-ray diffraction characteristics were measured by FTIR
35 (Nicolet IS50R, USA) and XRD (Rigaku, Japan).

36 **Piezoelectric performance**

37 ZnO NPs was dissolved in ultrapure water and sonicated for 30 min at 20 °C. Appropriate amount of
38 the solution was added drop wise to bottom electrode that coated with 100 nm thickness of Pd. The
39 sample was dried and polarized at room temperature for 30 min with a voltage of 8 kV. Then the
40 sample was coated with a 5 nm thickness of Pd as the upper electrode. The piezoelectric properties of
41 ZnO NPs were examined by a PFM (Oxford, Shanghai, China).

42 The piezoelectric properties of ZnO NPs were further analyzed by constructing a piezoelectric
43 film based on PVDF. Firstly, ZnO particles (30 wt %, relative to PVDF) were added to DMF
44 solution, and the mixture was sonicated for 30 min to ensure a homogeneous mixture. PVDF powder
45 was finally blended into the prepared solvent and the solution stayed in 60 °C hot water bath for 6 h
46 with stirring. Electrospinning was carried out at a push rate of 0.1 mm/min at an electrospinning
47 distance of 15 cm between the spinneret and the collector. The electrospinning voltage was 20 kV.
48 Pristine PVDF nanofiber membranes were prepared under the same conditions. All the nanofiber
49 membranes were stored in a dry cabinet. A conductive copper foil was attached to the surface of the
50 nanofiber membrane and two wires were connected externally for stimulation using ultrasound. The
51 output voltage and current of ZnO NPs were recorded with an oscilloscope (TBS 1102, Tektronix,
52 USA).

53 **Cell isolation and culture**

54 Chondrocytes were extracted from knee cartilage of Sprague-Dawley (SD) rats (3~5 days old) by
55 collagenase type II. Cells were cultured with DMEM medium (Gibco, USA) containing 10% fetal
56 bovine serum (FBS; Every Green, Hangzhou, China), and 1 % penicillin-streptomycin solution
57 (Biosharp, Shanghai, China) in an incubator (37 °C, 5 % CO₂, Thermo Fisher Scientific, USA).
58 Chondrocytes at passage two were used and the morphology was observed by a optical microscope.
59 Synoviocytes were purchased from Wuhan Procell Life Sciences Co (CM-R083).

60 **Cell counting kit-8 (CCK-8) assay**

61 Cells seeded on 96-well-plates were stimulated with or without 10 ng/mL of IL-1β. After treated
62 with different concentrations of ZnO or ultrasonic intensity/time for 72 h, cultured medium was
63 removed and added with fresh medium. Then 10 µL of CCK-8 (Biosharp, China) was added to each
64 well and incubated at 37 °C for 4 h. The absorbance at 450 nm was measured with a microplate
65 reader (Thermo Fisher Scientific, USA).

66 **Cell treatment**

67 Cells were divided into five groups: (1) Control: cells cultured with complete medium; (2) IL-1β:
68 cells stimulated with IL-1β (10 ng/mL); (3) ZnO: IL-1β (10 ng/mL) induced cells cultured with 10
69 µg/mL of ZnO; (4) US: IL-1β (10 ng/mL) induced cells combined ultrasound therapy (0.35 W/cm²,
70 90 s); (5) ZnO+US: IL-1β (10 ng/mL) induced cells cultured with 10 µg/mL of ZnO combined
71 ultrasound therapy (0.35 W/cm², 90 s). All the IL-1β induced cells were pre-treated with IL-1β for 1

72 h followed by the experimental treatments. And the cells were harvested 24 h post-treatment.

73 **Live/dead cell staining**

74 After washing with PBS for three times, Live and dead cells were stained with a
75 Calcein-AM/propidium iodide (PI) kit (Beyotime, China) for 5 min in the dark. Rinse by PBS again
76 and the images were captured by a fluorescence microscope (Olympus, Japan). Semi-quantitative
77 analysis for the images was calculated by Image J software.

78 **Deoxyribonucleic acid (DNA) and glycosaminoglycan (GAG) quantitation**

79 Digested cells were collected and added with Proteinase K (Beyotime, Shanghai, China) and
80 incubated in the 56°C for 16 h. DNA was measured by dying with Hoechst 33258 (Solarbio, Beijing,
81 China) and detected by a fluorescence microplate reader (BioTek Synergy H1). Calf thymus DNA
82 (Solarbio, Beijing, China) was used as a standard. GAG was measured by staining with DMMB
83 (Sigma-Aldrich, USA) with chondroitin sulfate (Aladdin, Shanghai, China) as standard. Relative
84 amount GAG was normalized to the total DNA.

85 **Scratch wound healing assay**

86 A scratch-wound assay was used to detect the cell migration. Cells cultured in the 12-well-plates
87 until reaching too fully confluent. A scratch was made by a sterile pipette tip on the chondrocytes.
88 After different treatment for 24 h, the images of the scratches were obtained by a microscopy.

89 **Toluidine blue staining**

90 The ECM production of chondrocytes was measured by toluidine blue staining. After removing the
91 culture medium, cells were washed with PBS and incubated with toluidine blue dye (Aladdin, China)
92 in room temperature for 10 min. The excess dye was then washed by PBS and the images were
93 captured using a microscopy.

94 **Quantitative real-time polymerase chain reaction (qRT-PCR) analysis**

95 Total RNA was purified using a total RNA kit (Magen, Guangzhou, China). The RNA was then
96 reverse transcribed into cDNA using a first-strand cDNA synthesis kit (Takara, Beijing, China).
97 Primer sequences used in this study are listed in Table S1. A SYBR Green qRT-PCR Super Mix Plus
98 system (Roche, Switzerland) was used for amplification detection under follow conditions: the
99 reaction consists of three major steps: denaturation, annealing, and extension, and the reaction
100 conditions are preheating at 95 °C, reacting at 95 °C for 10 s and 60 s (40 cycles) at 95 °C and 60 °C,
101 respectively, and reacting at 65 °C for 10 s. The relative expression of the genes was calculated by

102 the $2^{-\Delta\Delta CT}$ method and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal
103 control.

104 **Establishment of rat OA model**

105 All animal experiments were conducted in accordance with the guidelines of the Animal Research
106 Ethics Committee of Guangxi Medical University. Fifty-four SD rats (male, 6-8 weeks age) were
107 used in this study for in vivo study. Rats were intraperitoneally injected with pentobarbital sodium
108 (40 mg/kg) for anesthesia. Then an anterior cruciate ligament tenotomy (ACLT) surgery was
109 conducted to establish an OA model. The sham-operated group used the same surgical method but
110 did not cut the ACL. Four weeks later, rats were divided randomly into five groups: (1) sham
111 operation group; (2) OA group: OA rats intra-articular injection of 0.5 mL PBS; (3) ZnO group: OA
112 rats intra-articular injection of 0.5 mL ZnO NPs; (4) US group: OA rats intra-articular injection of
113 0.5 mL PBS combined ultrasound therapy (0.35 W/cm², 90 s) therapy; (5) ZnO+US group: OA rats
114 intra-articular injection of 0.5 mL ZnO NPs combined ultrasound therapy (0.35 W/cm², 90 s) therapy.
115 The treatment of US was performed every two days.

116 **Pain behavior and gait patterns**

117 The mechanical sensitivity to pain was assessed using the Von Frey nociceptive test. The paws of
118 rats were stimulated using Von Frey hairs test (Yuyuan Scientific Instrument Co., Shanghai, China)
119 with different diameters and stiffness. Sufficient time intervals were left between the different
120 filaments stimulated to allow the experimental animal to return to the basal state. Observe the
121 responses of the experimental animals to the different stimuli, such as lifting their feet or making
122 noises, to determine their pain sensitivity. We repeated the test three times and recorded the results of
123 each test.

124 The gait of rats was recorded under non-stimulated conditions using an animal visual gait
125 analysis system (VisuGait XR-FP101, Xinruan Information Technology Co., Shanghai, China) to
126 assess motor deficits and pain-induced gait changes. Rats can walk from one end of the walking
127 platform to the other. The system uses a unique footprint light refraction technology to capture real
128 footprint footprints through a high-speed HD camera placed underneath the walking platform, which
129 are then automatically categorized by the computer vision processing software. At the same time, the
130 system is able to detect differences in the relative pressure of the footsteps, which is the result of the
131 different distribution of the animal's weight across its four paws as it walks.

132 **Macroscopic and histological evaluation**

133 After 4 and 8 weeks of treatment, the experimental animals were euthanized. Knee joint specimens
134 from all groups were collected and photographed for macroscopic observation. The macroscopic
135 score was performed through 3 valiators who were blinded to the groups according to the scales of
136 0–4 [1]. Knee joints, DRG and main organs (hearts, livers, spleens, lungs and kidneys) were
137 collected and fixed with 4% paraformaldehyde (biosharp, China) for 48 h. Then joints were
138 decalcified in 10% ethylenediaminetetraacetic acid decalcification (ETDA; Aladdin, Shanghai,
139 China) for 30 d. Samples were embedded in paraffin and cut into sections (4 μ m thickness). The
140 joints sections were dewaxed and stained with H&E (Solarbio, Beijing China) or safranin O/fast
141 green (Solarbio, Beijing China). Images were taken by a light microscope (BX 63, Olympus, Japan).
142 The histological score was performed blindly by three observers according to the method [2]. The
143 sections of main organs were stained with H&E to evaluate the toxicity of NPs in vivo.

144 **Immunohistochemical and immunofluorescence staining**

145 Fixed cells and dewaxed sections of joints and DRG were rinsed with PBS and incubated with 3%
146 H_2O_2 (ZSGB-BIO, Beijing, China) at 37 °C for 15 min. The samples were then blocked with goat
147 serum (ZSGB-BIO, Beijing, China) for 20 min and followed by incubating with the primary
148 antibodies: Col2A1 (28459-1-AP, 1:100, Proteintech, Wuhan, China), IL6 (21865-1-AP, 1:100,
149 Proteintech, China), TNF- α (17590-1-AP, 1:100, Proteintech, Wuhan, China), MMP13 (18165-1-AP,
150 1:100, Proteintech, Wuhan, China), CHRNA7 (TA374764S, 1:100, Origene, Wuxi, China), F4/80
151 (28463-1-AP, 1:100; proteintech, Wuhan, China), CX3CL1 (#AF0129, 1:100, affinity, USA) and
152 P2RX7 (11144-1-AP, 1:100; proteintech, Wuhan, China) antibodies overnight at 4°C. For the
153 immunohistochemical staining, sections were successively incubated with secondary antibody
154 (ZSGB-BIO, Beijing, China) and developed by diaminobenzidine (DAB) kit (ZSGB-BIO, Beijing,
155 China). After stained by hematoxylin, the images were obtained. For immunofluorescence staining,
156 samples were incubated with fluorescence secondary antibodies at 37 °C in the dark for 1 h. Nuclear
157 were stained with DAPI (Solarbio, Beijing, China) at room temperature protected from light. A
158 fluorescence microscope was used for capturing the photographs.

159 **Transcriptome sequencing**

160 Transcriptome RNA sequencing was performed using the synovium tissues from rats in OA and
161 ZnO+US groups. RNA purification, reverse transcription, library construction and sequencing were

162 performed at Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai, China) according to
163 the manufacturer's instructions. After quantified by Qubit 4.0, the sequencing library was performed
164 on DNBSEQ-T7 platform (PE150) using DNBSEQ-T7RS Reagent Kit (FCL PE150). The raw paired
165 end reads were trimmed and quality controlled by fast with default parameters. Then clean reads
166 were separately aligned to reference genome with orientation mode using HISAT2 software. The
167 mapped reads of each sample were assembled by StringTie in a reference-based approach [3]. In R,
168 genes with $P < 0.05$ and $|\log_2 \text{FC}| \geq 2$ are considered differentially expressed genes (DEGs).
169 Additionally, GO and KEGG pathway enrichment analyses were performed using R to examine
170 pathways associated with the DEGs [4].

171 **Western blotting**

172 The synovium tissues were lysed with RIPA lysis buffer, and the concentrations of total proteins was
173 detected by using a BCA protein kit (Beyotime, Shanghai, China). Then the proteins were separated
174 by 12% SDS-polyacrylamide gel electrophoresis and transferred onto the PVDF membranes. The
175 membranes were incubated with the primary antibodies against P2RX7 (28207-1-AP, Proteintech,
176 Wuhan, China) and GAPDH (10494-1-AP, Proteintech, Wuhan, China). After exposure to secondary
177 antibody (), the membranes were scan by a high-sensitivity imaging instrument (GE, USA) and the
178 densities and gray levels of all bands were quantified with Image J (2.x) software.

179 **Measurement of tissue Zn^{2+} content**

180 Cartilage, liver and kidney was collected after 4 and 8 weeks of treatment, and then 0.1 of tissues
181 were weighted. After homogenat and lysis of tissues, the content of Zn^{2+} were detected by using a
182 Zn^{2+} Content Detection Kit (NJDULY, Nanjing, China).

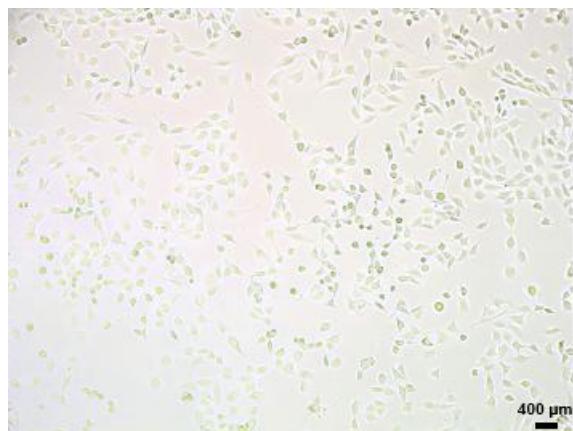
183 **Statistical analysis**

184 All data were expressed as mean \pm SD (standard deviation). Statistical analysis was performed using
185 GraphPad prism software. One-way analysis of variance (ANOVA) was performed to analyze
186 multiple comparisons.

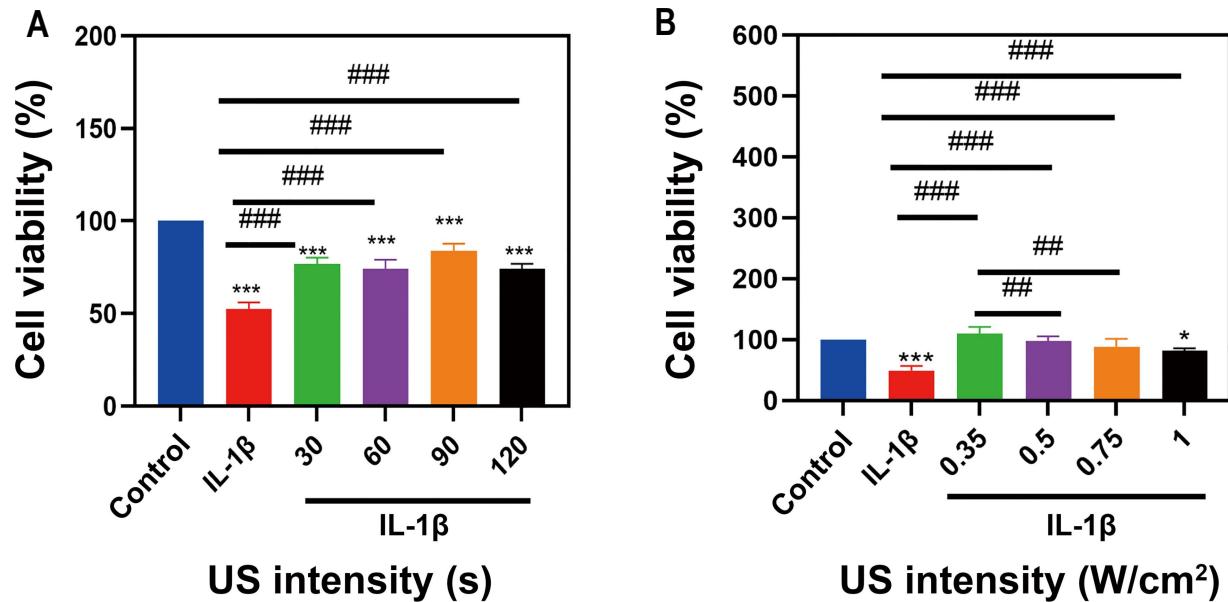
194

Supplementary table

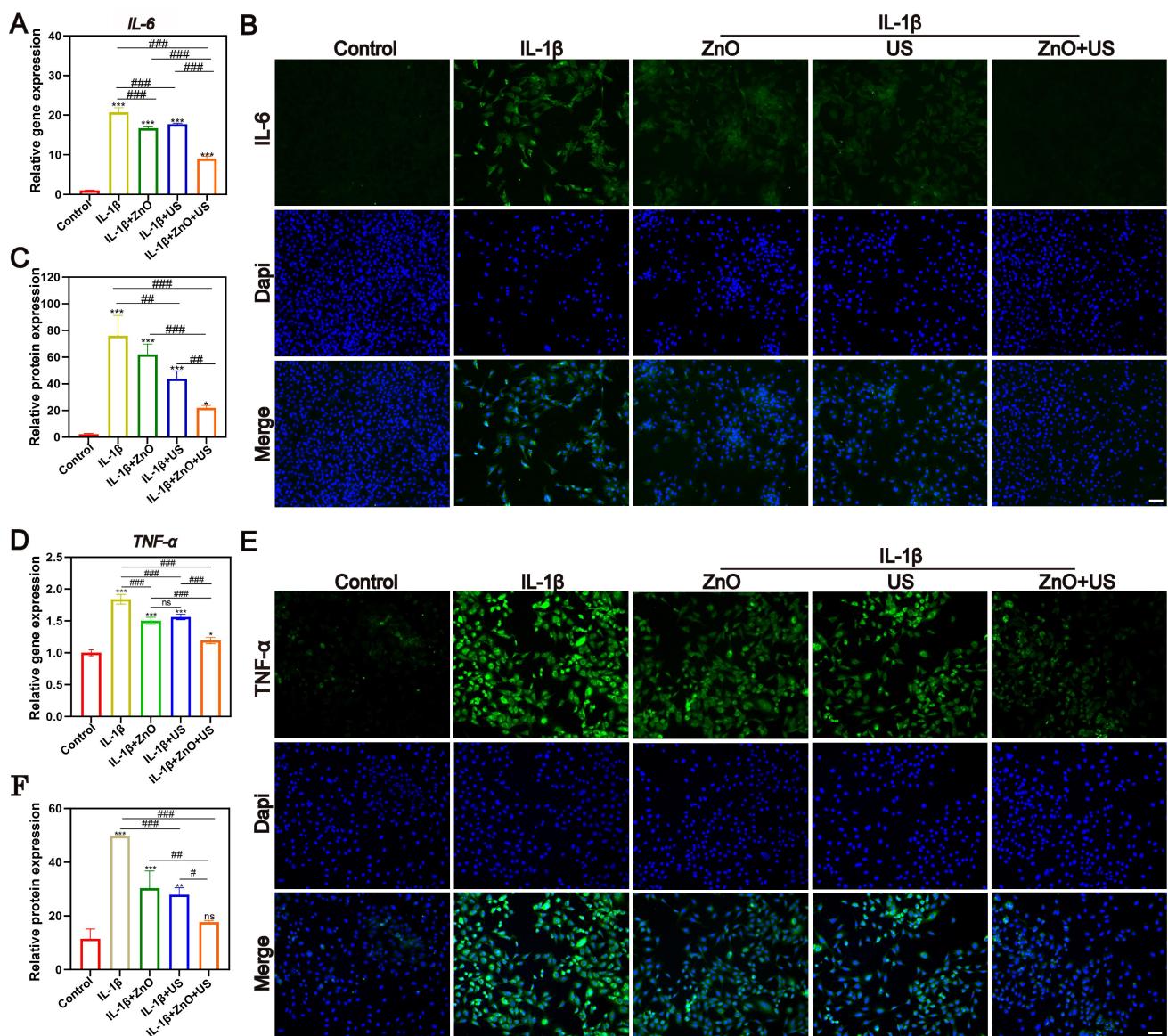
195

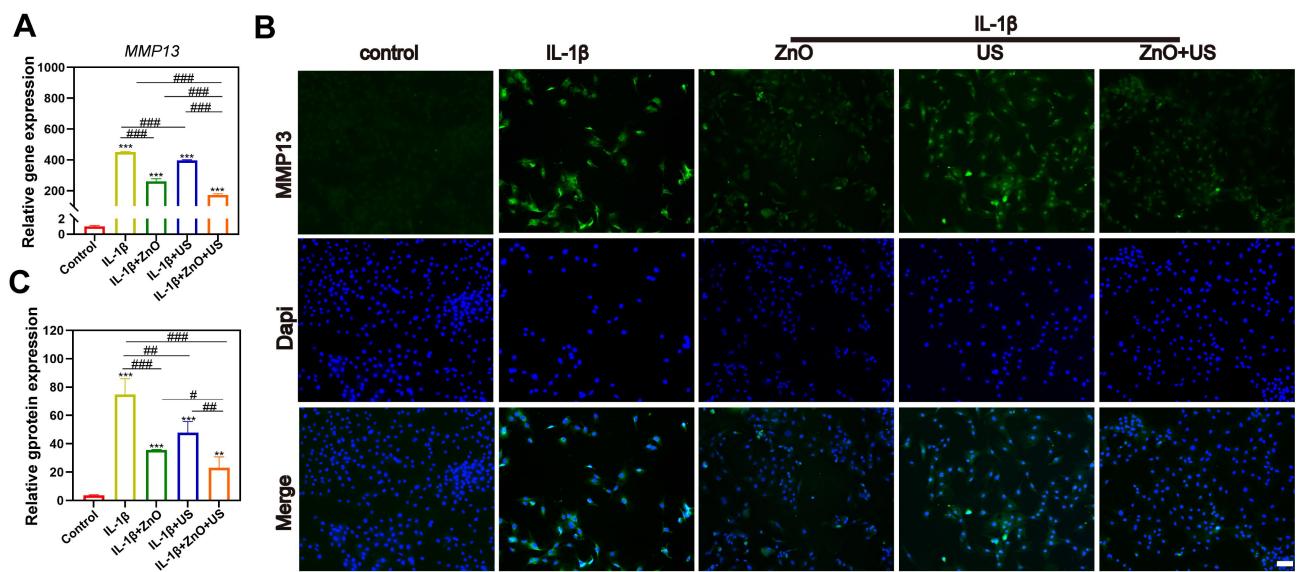

Table S1. Primer sequences used in qRT-PCR analysis

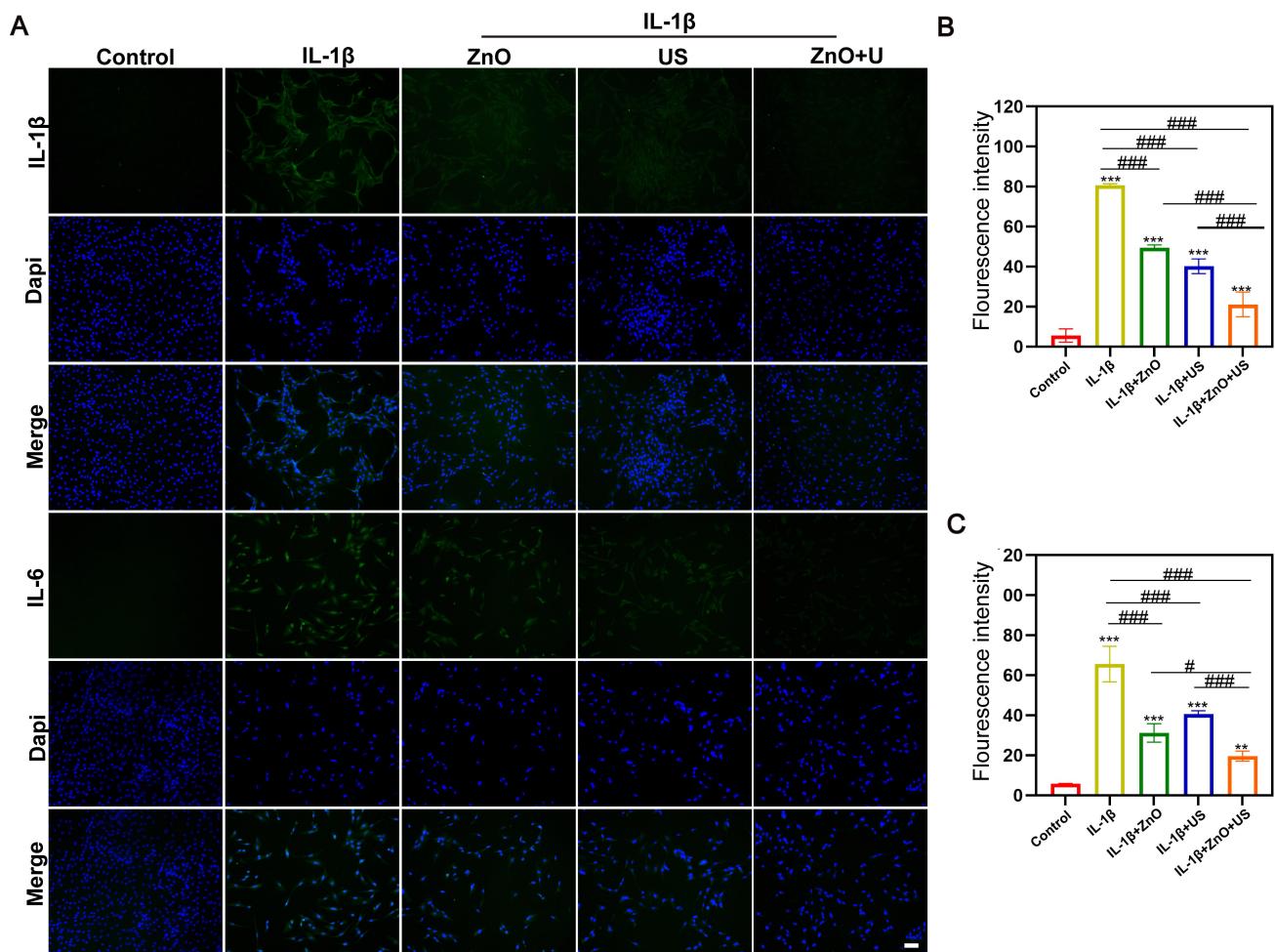
Gene	Forward sequence (5' to 3')	Reverse sequence (5' to 3')
<i>GAPDH</i>	TCCAGTATGACTCTACCCACG	CACGACATACTCAGCACCG
<i>Col2a1</i>	TGCTGGAAAACCTGGTGATG	GTAACCTCTGTGACCCTTGAC
<i>ACAN</i>	GAATGGGAGCCAGCCTACAC	GAGAGGCAGAGGGACTTCG
<i>IL-6</i>	GGCATGACTCTCACAAATGCG	ACAGTGCATCATCGCTGTT
<i>MMPI3</i>	GGACAAAGACTATCCCCGCC	GGCGGGGATAGTCTTGCC
<i>Chrna7</i>	GCAAAGAGCCATACCCAG	GCAGGCAGCAAGAATACC
<i>Cx3cl1</i>	TGGTGGCAAGTTGAGAA	TGGGAAATAGCAGTCGGT
<i>IL-1β</i>	CTTCAGGCAGGCAGTATCACTC	TGCAGTTGCTAATGGAACGT
<i>TNF-α</i>	GAGTGACAAGCCTGTAGCC	CTCCTGGTATGAGATAGCAA

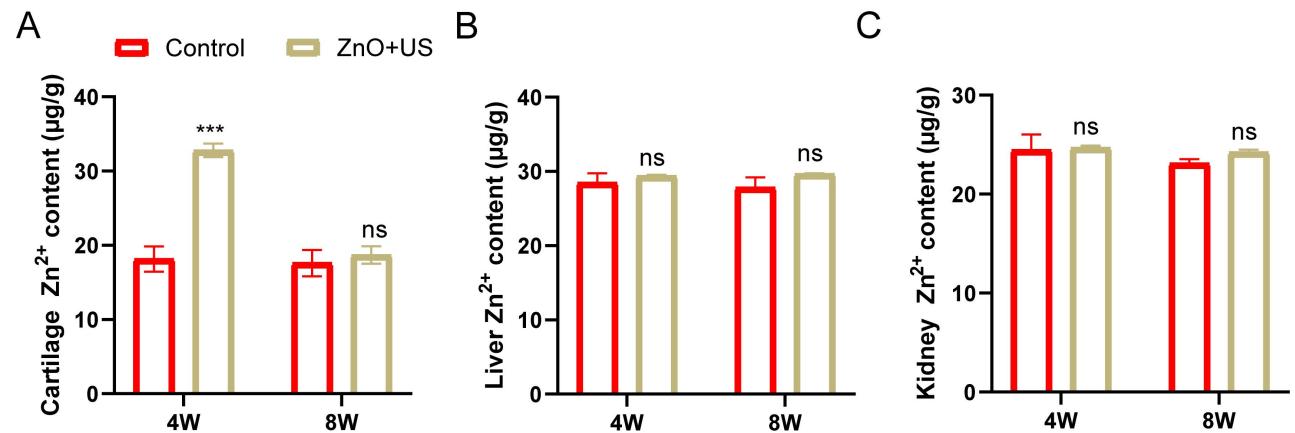

196

197


Supplementary figures


200 **Figure S1. The morphological observations of primary chondrocytes (Scale bar: 400 μm)**
 201


203 **Figure S2. Optimization of ultrasound parameters for piezoelectric ZnO NPs treatment. (A,**
 204 **B) Relative viabilities of IL-1 β -induced chondrocytes treated with ZnO NPs under varying durations**
 205 **(30–120 s) and ultrasound intensities (0.35–1 W/cm²). Data represent mean \pm SD, (n=3). *p<0.05,**
 206 ****p<0.01, ***p<0.001 vs. control; #p<0.05, ##p<0.01, ###p<0.001 for intergroup comparisons.**


210 **Figure S3. Anti-inflammatory effects of ultrasound-driven piezoelectric ZnO NPs in**
211 **chondrocytes.** (A) qRT-PCR analysis of *IL-6* mRNA expression in chondrocytes across treatment
212 groups. (B) Representative immunofluorescence images of *IL-6* (green). (C) Semi-quantitative
213 analysis of immunofluorescence staining for *IL-6* (Scale bar: 200 μ m) in (B). (D) qRT-PCR analysis
214 of *TNF- α* mRNA expression in chondrocytes across treatment groups. (E) Representative
215 immunofluorescence images of *TNF- α* (green). (F) Semi-quantitative analysis of
216 immunofluorescence staining for *TNF- α* (Scale bar: 200 μ m) in (E). Data are mean \pm SD, (n=3).
217 * p <0.05, ** p <0.01, *** p <0.001 vs. control; # p <0.05, ### p <0.001 for inter group comparisons.

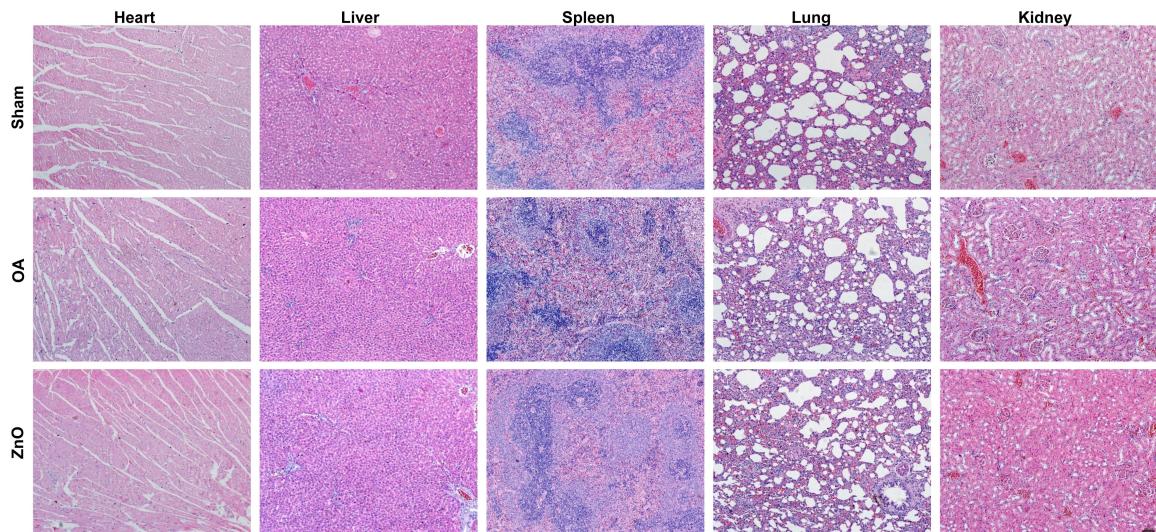

Figure S4. Anti-inflammatory effects of ultrasound-driven piezoelectric ZnO NPs in chondrocytes. (A) qRT-PCR analysis of *MMP13* mRNA expression in chondrocytes across treatment groups. (B) Representative immunofluorescence images of MMP13 (green). (C) Semi-quantitative analysis of immunofluorescence staining for MMP13 (Scale bar: 200 μ m) in (B). Data are mean \pm SD, (n=3). ** p <0.01, *** p <0.001 vs. control; # p <0.05, ## p <0.01, ### p <0.001 for intergroup comparisons.

Figure S5. Anti-inflammatory effects of ZnO NPs in synovioblast. (A) Immunofluorescence staining of IL-1 β and IL-6 in synovioblast (Scale bar: 200 μ m). (B,C) Semi-quantitative analysis of IL-1 β (B) and IL-6 (C) fluorescence intensity in (A). Data are mean \pm SD, (n=3). ** p <0.01, *** p <0.001 vs. control; # p <0.05, ### p <0.001 for intergroup comparisons.

Figure S6. The concentration of Zn²⁺ in cartilage (A), liver (B) and kidney (C) tissue after 4 and 8 weeks of treatment. Data are presented as the mean \pm SD, (n = 3); *** p < 0.001.

268

References

269 [1] L. Assi, A. Harrison, A. Kuttapitiya, F. Howe, V. Ejindu, C. Heron, et al. Relation of radiographic severity of knee
270 osteoarthritis to clinical pain scores: Results from the pain perception in osteoarthritis study. *Osteoarthritis Cartilage*.
271 2018; 26: S223-4.

272 [2] K. Nagira, S. Miyagi, Y. Ikuta, M. Lotz. Histological scoring system for periartricular bone changes of the
273 osteoarthritis. *Osteoarthritis Cartilage*. 2018; 26: S85-6.

274 [3] E.A. Stahl, D. Wegmann, G. Trynka, J. Gutierrez-Achury, R. Do, B.F. Voight, et al. Bayesian inference analyses of the
275 polygenic architecture of rheumatoid arthritis. *Nat Genet*. 2012; 44(5): 483-9.

276 [4] N.C. Butterfield, K.F. Curry, J. Steinberg, H. Dewhurst, D. Komla-Ebri, N.S. Mannan, et al. Accelerating functional
277 gene discovery in osteoarthritis. *Nat Commun*. 2021; 12(1): 467.

278

279

280

281

282

283