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Abstract 

Rationale: Isoniazid-induced liver injury (INH-ILI) poses a significant clinical challenge due to the lack of reliable, non-invasive, and 
real-time diagnostic tools. Here, we present an integrated platform that combines label-free confocal Raman spectroscopy imaging, 
machine learning (ML), and targeted metabolomics to identify and classify INH-ILI in a murine model.  
Methods: An INH-ILI mouse model was established, and Raman imaging and subsequent data analysis were performed on the 
control and INH-ILI at 7, 14, 21, and 28-day groups. Alterations in hepatic metabolites following INH-ILI were elucidated. 
Furthermore, ML techniques were employed to identify subtle differences between the control and INH-ILI groups.  

Results: Distinct Raman spectral shifts, notably the emergence of a 1638 cm−1 peak in injured liver tissues compared to 
characteristic peaks at 1203, 1266, and 1746 cm−1 in controls, were observed. ML models including support vector machine (SVM), 
random forest (RF), extreme gradient boosting (XGBoost), and convolutional neural network (CNN) have achieved accurate 
staging and classification of INH-ILI (AUC > 0.95). Metabolomic analysis further confirmed disruptions in lipid and aromatic amino 
acid metabolism, particularly involving phenylalanine–tyrosine imbalance linked to oxidative stress.  
Conclusions: This method enables precise, high-throughput, and spatially resolved diagnosis of INH-ILI, with strong potential for 
clinical translation in drug-induced liver injury assessment. 
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Introduction 
Tuberculosis (TB) remains one of the most 

pressing global health challenges, ranking as the 
second leading cause of death from infectious 
diseases worldwide in 2022, surpassed only by 
COVID-19 [1-3]. Despite decades of public health 
efforts, TB continues to infect millions and exerts a 
profound burden on patients, families, and healthcare 
systems. Isoniazid (INH), a first-line anti-tuberculosis 
agent, plays a critical role in TB treatment due to its 

high efficacy, affordability, and broad use in both 
active and latent TB cases. However, INH is also one 
of the most frequent causes of drug-induced liver 
injury (DILI), leading to a spectrum of hepatic 
manifestations ranging from asymptomatic enzyme 
elevation to acute liver failure and death [4-6]. 
INH-induced liver injury (INH-ILI) has been reported 
to occur in up to 20% of patients and is a major reason 
for treatment interruption and poor clinical outcomes. 
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Clinically, the diagnosis of INH-ILI remains 
challenging. Liver biopsy, though considered the gold 
standard, is invasive, associated with procedural 
risks, and often suffers from sampling variability and 
inter-observer inconsistencies. The pathological 
features of INH-ILI are heterogeneous, involving 
hepatocytes, bile ducts, and vascular endothelium in 
varying degrees [7, 8]. Moreover, access to 
experienced pathologists and histopathology services 
is uneven, especially in resource-limited settings 
where TB burden is highest. Serum biomarkers such 
as alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) are routinely used but lack 
specificity and spatial resolution. These limitations 
highlight the urgent need for a non-invasive, accurate, 
and dynamic method for identifying INH-ILI and 
monitoring its progression. 

Raman spectroscopy, a label-free and 
non-destructive optical technique based on inelastic 
light scattering by molecular vibrations, has emerged 
as a powerful analytical tool in biomedicine [9-12]. It 
offers molecular “fingerprints” of biological samples, 
enabling the detection of subtle biochemical changes 
associated with disease processes. In recent years, 
Raman spectroscopy has shown promise in the 
diagnosis of various cancers, infections, and metabolic 
disorders, including applications in tissue analysis, 
biofluid screening, and intraoperative margin 
assessment [13-15]. However, its application in 
detecting hepatotoxicity, particularly INH-ILI, 
remains underexplored. 

A critical barrier to the clinical translation of 
Raman spectroscopy lies in the complexity of spectral 
data, which necessitates labor-intensive expert 
interpretation prone to subjectivity. To overcome this, 
we developed an integrated diagnostic platform 
combining label-free confocal Raman imaging, 
machine learning (ML)-driven spectral decoding, and 
targeted metabolomic validation. This synergy 
enables automated recognition of disease-specific 
molecular fingerprints, achieving rapid, 
operator-independent classification of tissue 
pathology while simultaneously providing spatially 
resolved metabolic insights [16-19]. Such capabilities 
address the unmet clinical need for non-invasive, 
real-time assessment of DILI. 

In this study, we propose a novel diagnostic 
framework that integrates confocal Raman 
spectroscopy imaging with ML and targeted 
metabolomics to identify INH-ILI in a murine model. 
We constructed a time-course mouse model of 
INH-ILI and performed label-free Raman imaging of 
liver tissues at different stages of injury. Using ML 
algorithms, we classified liver injury stages with high 
accuracy. Furthermore, we validated spectral findings 

through metabolomics, revealing key alterations in 
lipid and aromatic amino acid metabolism. This 
integrative approach offers a non-invasive, spatially 
resolved, and molecularly specific method for 
identifying INH-ILI and lays a foundation for future 
clinical translation in DILI diagnosis and mechanistic 
studies, as shown in Scheme 1. 

Experimental Section 
Reagents 

INH (analytical standard, ≥ 99%, lot number 
I3377) and tribromoethanol (≥ 97%, lot number 
T48402) were procured from Sigma Aldrich Co., Ltd. 
(Shanghai, China), 4% paraformaldehyde solution (lot 
number BL539A) was obtained from Biosharp 
Biotechnology (Hefei, China), optimal cutting 
temperature compound (OCT, lot number 4583) was 
acquired from Sakura Finetek USA, Inc. (Torrance, 
USA). Colorimetric assay kits for ALT and AST were 
purchased from Elabscience Biotechnology Co. Ltd. 
(Wuhan, China). 

Animal Model 
Previous research has shown that mice are more 

suitable for developing animal models of INH-ILI that 
closely resemble human physiology [20]. C57BL/6J 
mice (male, 6-8 weeks, 18-22g, Liaoning Changsheng 
Biotechnology Co., Ltd.) were housed under standard 
pathogen-free (SPF) conditions at 24 ± 2 ℃, 12 h 
light/dark cycle, and 50 ± 5% relative humidity. After 
a one-week adaptive feeding, 50 mice were randomly 
assigned to a control group (n = 10) or an 
experimental group (n = 40). The experimental group 
was subdivided into four subgroups according to the 
treatment duration: INH treatment for 7, 14, 21, and 
28 days (n = 10 in each group). Mice in the 
experimental group received INH via intragastric 
gavage at a dose of 100 mg/kg once daily [21-23]. In 
contrast, those in the control group received an 
equivalent volume of purified water according to 
body weight. Figure 1B shows the specific procedural 
steps involved. After the final administration, the 
mice were fasted for 24 h before being anesthetized 
with tribromoethanol. Blood samples were collected 
via orbital vein puncture and subsequently 
centrifuged at 4 ℃ and 3500 rpm for 15 min to obtain 
serum, then frozen at −80 ℃ for subsequent 
biochemical detection. The liver tissue was taken and 
weighed after the mice were killed by neck removal. 
The liver index was calculated as (liver weight/body 
weight) × 100. The liver tissue was divided into three 
segments: one segment was fixed in a solution of 4% 
paraformaldehyde for 24 h before embedding in 
paraffin, another segment was frozen in OCT for 
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Raman scattering imaging, and the last segment was 
preserved at −80 °C for subsequent experiments. All 
animal experiments were approved by the 

Institutional Animal Care and Use Committees of the 
Harbin Medical University (ethics code: IRB3072724). 

 

 
Scheme 1. Workflow for the metabolic component of INH-ILI liver tissue. (A) Construction of the INH-ILI model in c57BL/CJ mice. (B) Flowchart illustrating Raman 
scattering imaging of liver tissue. (C) Overview of the ML analysis process. (D) Validation of Raman scattering imaging analysis results through widely targeted metabolomics 
utilizing UPLC-MS/MS. 
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Biochemical Assay and Histological Analysis 
Serum levels of ALT and AST were quantified 

using colorimetric assay kits following all procedures 
outlined by the manufacturer's instructions. 
Paraffin-embedded liver sections (5 μm thick) were 
stained with hematoxylin-eosin (HE) and Masson, 
respectively. Images were captured using a DMI3000B 
fluorescence microscope (Leica, Wetzlar, Germany). 

Raman Scattering Imaging of Liver Tissue 
For Raman measurements, 10 μm frozen liver 

tissue sections were prepared and mounted on glass 
slides. Raman spectroscopy and imaging of liver 
tissue were conducted using a WITec Alpha 300R 
Raman instrument (Ulm, Germany). A laser with a 
wavelength of 532 nm, objective lens of L × 100 
(numerical aperture (NA) = 0.9, working distance 
(WD) = 1 mm), laser power of 12.5 mW per data point, 
and exposure time of 0.35 s were selected. Spectra 
were collected from a minimum of 100 randomly 
chosen points on the surface of each tissue sample 
within the range of 600-1800 cm−1. The Raman 
imaging area of the liver tissue was 80 × 80 μm; the 
other conditions were the same as before, and the 
temperature of the above operating experiment was 
always maintained at 24 ℃. 

Before statistical analysis, spectral data were 
processed using the WITec Project (version 5.3, Ulm, 
Germany) and LabSpec software (version 5.0, Horiba, 
Japan), including smoothing, baseline reduction, 
cosmic ray removal, fluorescent background removal, 
and signal-to-noise ratio improvement. Origin 2024 
was used to compute the mean and standard 
deviation (SD) for each spectra group.  

Machine Learning 
Spectra of 30 Raman shifts (from 600 to 1800 

cm−1) were obtained as uniform manifold 
approximation and projection (UMAP) and 
t-distributed stochastic neighbor embedding (t-SNE) 
in each of the five groups of spectra. The Raman 
spectra were mapped onto a score map using the 
"error ellipse" function in UMAP and tSNE to draw an 
error ellipse with a confidence of 95%. The support 
vector machines (SVM), random forest (RF), extreme 
gradient boosting (XGBoost), and convolutional 
neural network (CNN) methods were adopted to 
conduct spectral analyses of 1000 Raman shifts within 
the range of 600-1800 cm−1 for five groups of spectra 
respectively. The area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve was 
used to classify identification performance. The above 
spectral data were all analyzed in the R Studio 4.3.0 
environment. 

UPLC-MS/MS Metabolomics and Data 
Analysis 

Based on the above findings, collected six liver 
tissue samples from the control and INH 7-, 14-, and 
28-day groups for this investigation. The data 
acquisition system primarily consisted of electrospray 
ionization (ESI), tandem mass spectrometry (MS/MS, 
QTRAP®6500+ System), and ultra-performance 
liquid chromatography (UPLC, ExionLC AD).  

R Studio 4.3.0 software was used to perform 
principal component analysis (PCA), partial least 
squares-discriminant analysis (PLS-DA), orthogonal 
partial least discriminant analysis (OPLS-DA), and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database. The data were annotated using the 
KEGG Compound database, which widely targeted 
metabolomics data. 

Statistical Analysis 
Data are presented as the mean ± SD. Student 

t-test was used for comparisons between the two 
groups. One-way analysis of variance (ANOVA) was 
used for multiple comparisons. GraphPad Prism 
software (version 9.5, San Diego, CA, USA) was used 
for statistical analysis. P < 0.05 is regarded as 
statistically significant (*P < 0.05, **P < 0.01, ***P < 
0.001, ****P < 0.0001). 

Results and Discussion 

Establishment and Validation of the INH-ILI 
Mouse Model 

To validate the INH-ILI model, both serological 
biomarkers and histopathological changes were 
assessed at multiple time points (Figure 1A). Mice 
treated with INH exhibited significant alterations in 
liver index, body weight (BW), and liver weight (LW) 
compared to the control group. These differences 
were evident as early as days 7 and 14 (Figure 1C), 
with further disparities observed at later time points 
(Figure S1A and S1B). In particular, serum levels of 
ALT and AST were markedly elevated following INH 
administration, peaking at day 14 (Figure 1D-E), 
indicating hepatocellular damage. 

Histopathological evaluation of hematoxylin and 
eosin (H&E)-stained sections revealed progressive 
hepatic injury in the INH-treated groups, with 
varying degrees of hepatocyte swelling, cytoplasmic 
vacuolization, and necrosis observed on days 7, 14, 21, 
and 28 (Figure 1F). Notably, the severity of liver injury 
increased over time, reaching its peak at day 21 before 
partially subsiding by day 28.  
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Figure 1. Serologic and histopathologic characteristics of mice in the control and INH-ILI groups. (A) Schematic representation detailing serological and 
histopathological characteristics observed in mice. (B) Methodology for establishing the INH-ILI mouse model. (C) Comparison of liver index between control and INH-ILI 
groups, respectively (n = 10). Alterations in serum ALT (D) and AST (E) levels across control and INH-ILI groups at various time points are presented accordingly (n = 10). (F) 
Representative HE staining alongside Masson's staining is conducted on liver sections from control and INH-ILI groups, respectively. Magnification, ×100. All scale bars are 100 
μm. All the Data are presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus the control group. 

 
Furthermore, Masson’s trichrome staining 

showed increased collagen fiber deposition, 
particularly at day 21, indicating hepatic fibrosis as a 
consequence of sustained hepatocellular injury 
(Figure 1F). These combined serological and 
histological findings confirm the successful 
establishment of an INH-ILI model that captures the 
temporal progression of liver injury, suitable for 
subsequent Raman-based molecular analysis. 

Confocal Raman Imaging Reveals Molecular 
Signatures of INH-ILI 

To explore the molecular changes associated 
with INH-ILI, label-free confocal Raman scattering 
imaging was performed using a 532 nm excitation 
laser. The workflow of spectral acquisition and 
analysis is illustrated in Figure 2A. Frozen liver 
sections from the control and INH-treated mice at 7, 
14, 21, and 28 days were imaged. Representative 
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results are shown in Figure 2B-F, including 
bright-field images, Raman intensity maps, and 

corresponding three-dimensional surface plots of the 
scanned areas. 

 

 
Figure 2. Raman scattering imaging of control and INH-ILI groups. (A) Schematic representation depicting the methodology employed for Raman scattering imaging. 
(B-F) Representative comparative images representing liver tissues, bright field images, Raman images, and 3D surface profile images for the control and INH-ILI groups.  
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The Raman signals obtained from liver tissues 
were of high quality and reproducibility across 
groups. Notably, no enhancement substrates or 
nanoparticles were employed, avoiding potential 
signal interference or biological risks associated with 
nanomaterials. This substrate-free approach not only 
simplifies sample preparation but also enhances 
safety and feasibility for broader clinical or 
translational applications, particularly in 
resource-limited settings [24, 25]. Material-free 
confocal Raman imaging thus offers a promising 
route for visualizing biochemical changes in liver 
tissue with high spatial resolution. The robust spectral 
signals obtained provide a molecular basis for further 
classification of healthy and diseased tissues, forming 
the foundation for the integration of artificial 
intelligence algorithms in the subsequent analysis. 

Molecular Analysis of Liver Tissue Using 
Raman Spectroscopy 

To investigate the biochemical alterations 
associated with INH-ILI, high-resolution Raman 
spectral data were collected from frozen liver tissue 
sections (Figure S2). At least 1,000 spectra were 
randomly acquired per sample across each group to 
ensure representative and statistically robust 
profiling.  

Seventeen and fifteen distinct Raman peaks were 
consistently observed in control and INH-ILI tissues, 
respectively. Figure 3A presents a flowchart of the 
Raman spectrum processing. These peaks 
corresponded to major molecular classes, including 
lipids, amino acids, proteins, and nucleic acids. 
Specifically, peaks at 1128, 1266, 1366, 1441, 1657, and 
1746 cm−1 were predominantly lipid-associated. Peaks 
at 749, 1004, 1169, 1203, 1395, and 1589 cm−1 were 
linked to aromatic amino acids such as tyrosine, 
tryptophan, and phenylalanine. The Raman line at 
1230 cm−1 represents the antisymmetric phosphate 
stretching of the amide III band (β-pleated sheet). The 
Raman signature at 1082 cm−1 corresponds to the 
symmetric stretching of PO- 

2  in nucleic acids. The 
Raman feature at 970 cm−1 is attributed to the 
phosphate monoester groups in the phosphorylated 
protein. The peaks at 1306 and 1338 cm−1 were 
assigned to CH3/CH2 twisting or bending and CH2 

deformation of collagen, respectively. The band at 
1638 cm−1 represents the intermolecular bending 
mode of water.  

The difference in Raman spectra between the 
control and INH-ILI groups reflects alterations in the 
biochemical components of the liver tissue caused by 
INH, providing a basis for distinguishing between 
control and INH-ILI liver tissues. Table S1 presents 
the leading positions of the Raman vibration peaks 

and the corresponding representative compounds 
reported in the literature [26].  

To better identify the differences, the average 
Raman spectra of the control and INH-ILI groups 
were plotted in the range of 600-1800 cm−1 (Figure 3B) 
and 2500-3300 cm−1 (Figure 3C), respectively, and heat 
maps were constructed (Figure S4A-B). In addition, 
Figure 3B demonstrates the difference in the intensity 
of the Raman characteristic peaks between the control 
and INH-ILI groups within the 600-1800 cm−1 range. 

To further analyzed and examined the 
differences in the metabolic components of the liver 
tissues between the control and INH-ILI groups based 
on the changes in the Raman characteristic peaks. 
Most of the aromatic amino acids, amides, collagen, 
and water-related peaks, such as 749 (Figure 3D), 1004 
(Figure 3E), 1128 (Figure 3F), 1169 (Figure 3G), 1203 
(Figure 3H), 1230 (Figure 3I), 1338 (Figure 3K), and 
1638 cm−1 (Figure 3L), were higher in the INH-ILI 
groups (P < 0.05). In contrast, some lipid peaks, such 
as 1266 (Figure 3J) and 1746 cm−1 (Figure 3M), were 
lower in the INH-ILI groups (P < 0.05). Research has 
indicated that the liver is crucial in drug 
detoxification, including steatosis and 
phospholipidosis [27-29]. This may serve as one of the 
critical pathological foundations for the occurrence 
and progression of INH-ILI. Peak intensities in the I 
INH-ILI 7-, 14-, 21-, and 28-day groups at 
wavelengths of 749 (Figure 3D), 1004 (Figure 3E),1128 
(Figure 3F),1169 (Figure 3G),1230 (Figure 3I), and1338 
cm−1 (Figure 3K) are found to be higher than those 
observed in the control group. Additionally, the peak 
intensity at wavelength 1366 (Figure S5D) cm−1 was 
elevated in the INH-ILI 14-, 21-, and 28-day groups 
compared to that in the control. After treatment with 
INH-ILI for 7 and 21 days, the peak intensity 
corresponding to the liver tissue at 1203 cm-¹ (Figure 
3H) exceeded that recorded for the control group.  

Interestingly, 1203,1266, and 1746 cm−1 were the 
characteristic peaks of the control group, while 1638 
cm−1 was the characteristic peak distinctive of the 
INH-ILI groups (Figure 3L). 1203 cm−1 linked to 
aromatic amino acids (phenylalanine/tryptophan), 
1266 cm−1 assigned to amide III (β-sheet proteins) and 
lipids, and 1746 cm−1 characteristic of C=O ester 
bonds in lipids. These peaks decreased in INH-ILI 
tissues, consistent with disrupted lipid/protein 
homeostasis. Control-associated peaks (1203, 1266, 
and 1746 cm−1) declined progressively with injury 
duration, reflecting metabolic dysfunction rather than 
acute drug deposition. The peak at 1638 cm−1 is 
explicitly attributed to the intermolecular bending 
mode of water. This aligns with histopathological 
evidence of hepatocyte swelling, cytoplasmic 
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vacuolization, and edema in INH-ILI tissues. 1638 
cm−1 intensity peaked at day 21, mirroring maximal 
histopathological injury (hepatocyte necrosis/fibrosis; 
Figure 1F). It is worth noting that, the specificity of the 
1638 cm−1 peak for INH-ILI-induced liver injury arises 
not from water itself, but from pathology-driven 
alterations in the aqueous microenvironment. In 
INH-ILI, cellular damage releases macromolecules 
(proteins, nucleic acids, lipids) and disrupts ion 
homeostasis. Increased bound water populations near 
hydrophilic macromolecule surfaces, where water 
molecules exhibit restricted mobility and altered 
hydrogen-bonding networks. Modify local ionic 
strength (e.g., K+/Ca2+ leakage), perturbing water 
structure through ion hydration effects. The 1638 cm−1 

bending mode is highly sensitive to such constrained 
hydrogen-bonding environments. Thus, its increase in 
INH-ILI reflects liver-specific pathophysiological 
restructuring of water, not generic hydration changes. 
In our experiment, only the OH-stretch in the 7-day 
INH-ILI group (with the center at approximately 
3250-3350 cm−1) originated from strong hydrogen 
bond water, while the shoulders at 3400-3500 cm−1 
reflected weaker hydrogen bonds (Figure S3). In 
addition, the OH-stretching region is susceptible to 
fluorescence interference in biological tissues. It 
indicates that the change of this bending mode has a 
relatively small correlation with the wider OH- 
stretching region. 

 

 
Figure 3. Raman spectral difference in characteristic peak intensity between control and INH-ILI groups. (A) Flowchart illustrating the processing of Raman 
spectra. The average Raman spectra in the ranges of 600-1800 cm−1 (B) and 2500-3300 cm−1 (C) were obtained from the control and INH-ILI groups, respectively. The central 
lines represent the mean values, while the shaded areas indicate standard deviations of these means. A gray dotted line marks a characteristic peak distinguishing between the 
control and INH-ILI groups. Peak intensities were measured at (D) 749, (E) 1004, (F) 1128, (G) 1169, (H) 1203, (I) 1230, (J) 1266, (K) 1338, (L) 1638, and (M) 1746 cm−1 for 
both control and INH-ILI groups, respectively. All the data are presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus the control group. 



Theranostics 2025, Vol. 15, Issue 18 
 

 
https://www.thno.org 

9671 

Figure S5 shows the signal intensities of other 
Raman peaks in the control and INH-ILI groups. The 
peak intensities at 970 (Figure S5A), 1082 (Figure S5B), 
1306 (Figure S5C), 1395 (Figure S5E), 1441 (Figure 
S5F), and 1589 cm−1 (Figure S5G) were significantly 
higher in the INH-ILI 14-, 21-, and 28-day groups, 
respectively. Additionally, after 21 days of INH 
treatment, the peak intensity observed in the liver 
tissue at 1657 cm−1 (Figure S5H) exceeded that of the 
control group. Figure 4A illustrates a flowchart 
depicting the characteristic peaks of Raman scattering 
imaging for both the control and INH-ILI groups. 
Representative Raman scattering images 
corresponding to the characteristic peaks at 1203, 
1266, 1638, and 1746 cm−1 were acquired for each 
group and are presented in distinct colors (Figure 
4B-E). Identified the changes in the liver tissue 
metabolites based on the signal intensity of the two 
sets of Raman characteristic peaks. Together, these 
spectral analyses provided a reliable foundation for 
classifying healthy versus INH-injured tissue and 
demonstrated the capability of Raman spectroscopy 
to detect subtle biochemical transitions during 
hepatotoxic progression. The current Raman images 
were designed to provide preliminary spatial 
distribution data of target molecules, as the 
technique's primary strength lies in its label-free 
chemical mapping capability. While we acknowledge 
the need for deeper biological interpretation, the 
current dataset does not yet include paired 
histopathology or single-cell resolution data to 
correlate Raman patterns with cellular heterogeneity 
or disease states. Future research that combines 
Raman imaging with histology or spatial 
transcriptomics. 

Machine Learning Enables Precise 
Classification of Liver Injury Stages 

Although spectral differences were visually and 
statistically evident, manual interpretation remains 
labor-intensive and subjective. To overcome this 
limitation and achieve automated tissue classification, 
multiple ML algorithms were applied to the Raman 
spectral datasets (Figure 5A). Unsupervised 
dimensionality reduction techniques, including 
UMAP and t-SNE, were used to visualize all sample 
clusters of the control and INH-ILI groups (Figure 
S6A-B). However, it demonstrated a limited ability to 
address the nuances among the four separate INH-ILI 
groups. The INH-ILI groups showed obvious overlap 
in the UMAP and tSNE, making it very difficult to 
visually distinguish the clear boundaries between 
them. Although this overlap may reflect potential 
biological similarities or the limitations of the selected 
feature space for a specific visualization task, it does 

not provide the clear and unique clustering that 
pairwise comparisons offer to highlight the main 
contrasts. Therefore, the control group was subjected 
to UMAP and t-SNE cluster visualization analyses 
with the INH-ILI 7, 14,21, and 28-day groups 
respectively (Figure 5B and S7). The spectral data 
from control and INH-ILI tissues at 7, 14, 21, and 28 
days showed clear group separations, with minimal 
overlap—except between the control and day-14 INH 
groups, which may reflect mild or reversible injury 
stages.  

For quantitative classification, supervised 
learning was implemented using a SVM algorithm. 
The dataset was randomly split into a training set 
(60%) and a testing set (40%) to evaluate model 
performance. Unlike UMAP and tSNE, the confusion 
matrix of SVM (Figure 5D) performs well in 
classification at different time points. The overall 
(Figure S6C) and separately (Figure 5C) compared 
receiver operating characteristic (ROC) curves also 
demonstrated outstanding diagnostic capabilities, 
with the area under the curve (AUC) values compared 
at different time points all exceeding 0.95 (Table S2). 

In addition, we randomly divided the dataset 
into a test set (70%) and a validation set (30%), and 
conducted comparative analyses of RF, XGBoost, and 
CNN respectively to further evaluate the model 
performance. Similar to the SVM results, the 
classification performance of RF (Figure 5E and S8A), 
XGBoost (Figure 5F and S8B), and CNN (Figure 5G 
and S8C) confusion matrices at different time points is 
all very good. The accuracy rates of the three models 
are 88.4%, 83.7%, and 95.7% respectively. It is worth 
mentioning that CNN is significantly superior to RF 
and XGBoost models, and CNN can be given priority 
for subsequent studies with larger cohorts. The ROC 
curve (Figure S8D-F) also demonstrated excellent 
diagnostic capabilities. The AUC values of different 
models all exceeded 0.95. 

Nonetheless, the integration of Raman 
spectroscopy with ML significantly enhances 
diagnostic efficiency, enabling high-throughput and 
real-time tissue classification without the need for 
expert interpretation. This automated approach lays 
the groundwork for future implementation in clinical 
workflows, particularly in settings where rapid and 
accurate INH-ILI assessment is critical. Moreover, it 
demonstrates the potential of Raman-ML systems as 
decision-support tools in precision hepatology. 

Metabolomic Profiling Reveals Disrupted 
Pathways in INH-ILI 

Given the spectral differences identified via 
Raman analysis, we further explored the molecular 
mechanisms underlying INH-ILI by performing 



Theranostics 2025, Vol. 15, Issue 18 
 

 
https://www.thno.org 

9672 

widely targeted metabolomics on liver tissues from 
the control group and INH-treated mice at days 7, 14, 
and 28. UPLC-MS/MS was employed to identify and 
quantify small-molecule metabolites (Figure 6A). PCA 
(Figure S9A-C), PLS-DA (Figure S9D-F), and 
OPLS-DA (Figure S9G-I) demonstrated clear 
separations between control and INH-ILI groups, 

confirming distinct metabolic profiles associated with 
liver injury. Heatmaps (Figure 6B, S10A, and S11A) 
and volcano plots (Figure 6C, S10B, and S11B) 
revealed significant dysregulation of numerous 
metabolites, with 400–700 compounds found to be 
differentially expressed across time points. 

 
Figure 4. Raman scattering imaging reveals the characteristic peaks of control versus INH-ILI groups. (A) Schematic representation illustrating the methodology 
utilized for Raman scattering imaging of characteristic peaks. (B-F) Representative contrast images of characteristic peaks at 1203, 1266, 1638, and 1746 cm−1 of the control and 
INH-ILI groups and merge images of the above four images. All scale bars are 8 μm. 
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Figure 5. Flowchart illustrating ML processes applied to Raman spectra of liver tissue. (A) Schematic representation outlining ML methodologies employed. (B) 
UMAP plots for the control and INH-ILI groups. (C) ROC plots for the control and INH-ILI groups. (D) SVM plots for the control and INH-ILI groups. (E) RF test plots for the 
control and INH-ILI groups. (F) XGBoost test plots for the control and INH-ILI groups. (G) CNN test plots for the control and INH-ILI groups. 

 
A comprehensive qualitative and quantitative 

analysis of the identified metabolites was conducted 
to identify the top 10 upregulated and downregulated 
metabolites in each group (Figure 6D, S10C, and 
S11C). Chord diagrams were used to visualize the 50 
metabolites with the highest VIP scores (Figure 6E, 
S10D, and S11D). Details of the top 20 upregulated 

and downregulated differentially expressed 
metabolites for each group are provided in the 
supplementary materials (Figure S12, S13, and S14). 
Comprehensive findings from differential metabolite 
screening for each group are summarized in Table S3, 
S4, and S5. 
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Figure 6. A widely targeted metabolomics analysis compares the control versus INH-ILI 7-day groups. (A) Schematic diagram of the widely targeted 
metabolomics analysis process. (B) Cluster heatmap illustrating the differential expression of metabolomics between the two groups. (C) Volcanic plot depicting differences in 
metabolites between the two groups. (D) The bar chart displays differentially expressed metabolites across both groups. (E) Visualization of differentially expressed metabolites 
through string diagrams. Expression levels of L-phenylalanine (F), L-tyrosine (G), L-tryptophan (H), and Phenylalanine-Tyrosine (I). All the data are presented as mean ± SD. *P 
< 0.05, **P < 0.01, ***P < 0.001 versus the control group, ns, not significant. 

 
 



Theranostics 2025, Vol. 15, Issue 18 
 

 
https://www.thno.org 

9675 

Among the top perturbed metabolites were key 
lipids (phosphatidylcholine, triglycerides, oxidized 
lipids), aromatic amino acids (L-phenylalanine, 
L-tyrosine, L-tryptophan), and intermediates 
involved in redox homeostasis. In the initial phase of 
liver injury (INH-ILI 7-day), the expression levels of 
L-Phenylalanine (Figure 6F), L-Tyrosine (Figure 6G), 
and L-Tryptophan (Figure 6H) were increased (P < 
0.05). In contrast, no significant difference was 
observed in the Phenylalanine-Tyrosine ratio (Figure 
6I) (P > 0.05). As the duration of liver injury increased 
(INH-ILI 14- and 28-day), the expression levels of 
Phenylalanine-Tyrosine also increased significantly 
(Figure S15D, H) (P < 0.05). At the same time, no 
notable differences were detected between 
L-Phenylalanine, L-Tyrosine, and L-Tryptophan 
levels (Figure S15A-C and Figure S15E-G) (P > 0.05). 
Phenylalanine, tyrosine, and tryptophan are aromatic 
amino acids essential for human health. In cases of 
acute liver injury, this phenomenon may be attributed 
to inhibition of the conversion of phenylalanine to 
tyrosine [30, 31]. Obstruction of the conversion of 
phenylalanine to tyrosine, such as through the 
inhibition of phenylalanine hydroxylase activity, 
results in the accumulation of toxic intermediate 
metabolites, including phenylpyruvate. This imposes 
an increased metabolic burden on the liver, 
diminishes detoxification efficiency, and 
subsequently accelerates hepatocyte injury and 
apoptosis via mechanisms such as oxidative stress 
and mitochondrial dysfunction. Ultimately, these 
processes contribute to the onset and progression of 
INH-ILI. 

Targeted metabolomics (UPLC-MS/MS) 
revealed significant disruptions in hepatic lipid 
metabolism and aromatic amino acid pathways. 
These metabolic shifts correlate with the Raman 
spectral changes. Reduced intensity at 1266 cm−1 
(amide III/lipids) and 1746 cm−1 (C=O ester lipids) 
aligns with disrupted lipid homeostasis. Increased 
1203 cm−1 (tryptophan/phenylalanine) and 1638 cm−1 
(H₂O bending) signals reflect amino acid 
accumulation and cellular edema. 

KEGG pathway enrichment analysis (Figure S16) 
further confirmed that the most significantly affected 
metabolic pathways in INH-ILI were lipid 
metabolism, amino acid biosynthesis, and oxidative 
phosphorylation. These data not only validate the 
Raman spectroscopic findings but also provide 
molecular insights into the systemic reprogramming 
of hepatic metabolism in response to INH-induced 
stress. By combining spatially resolved spectral 
imaging with high-throughput metabolomics, we 
constructed a multidimensional metabolic landscape 
of INH-ILI, capturing both biochemical identity and 

distribution. This synergistic approach enhances the 
discovery of disease-relevant biomarkers and 
supports mechanistic interpretations of spectral shifts 
observed in Raman imaging. 

Conclusion 
Although this integrated Raman-ML- 

metabolomics platform demonstrates promising 
potential in the diagnosis of INH-ILI, its clinical 
translation still faces several key challenges that must 
be addressed. These challenges include (1) performing 
validation studies in human tissues to address the 
pathophysiological differences between mice and 
humans; (2) developing interpretable and robust ML 
models trained on diverse and representative clinical 
datasets; (3) improving the spatial correlation 
between metabolic changes and specific 
histopathological features to enhance tissue 
resolution; (4) conducting comprehensive time-course 
metabolomics analyses to align metabolic profiles 
with Raman spectral changes during disease 
progression; and (5) optimizing the clinical workflow 
by integrating solutions compatible with permanently 
fixed tissue sections and portable detection devices. 
Addressing these issues is essential for the successful 
implementation of this platform in real-world clinical 
settings. 

In summary, we established a novel, 
non-invasive diagnostic platform for INH-ILI by 
integrating confocal Raman spectroscopy imaging, 
ML, and metabolomic profiling. Raman spectroscopy 
enabled the label-free detection of biochemical 
changes in liver tissue, with ML algorithms achieving 
high-accuracy classification of injury stages (AUC > 
0.95). Furthermore, targeted metabolomics validated 
the spectroscopic findings and revealed metabolic 
disruptions involving lipids and aromatic amino 
acids. This integrative framework not only provides a 
spatially resolved and real-time approach for 
identifying hepatotoxicity but also uncovers 
underlying metabolic mechanisms of INH-ILI. The 
material-free nature of Raman imaging combined 
with ML-based spectral interpretation makes this 
method highly suitable for clinical translation, 
especially in resource-limited settings where 
traditional diagnostics are inaccessible or delayed. 
Our findings lay a foundation for future applications 
of Raman-based AI diagnostics in drug-induced liver 
injury and highlight the value of combining imaging 
and omics technologies to unravel complex disease 
processes. 
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