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Abstract

Rationale: Isoniazid-induced liver injury (INH-ILI) poses a significant clinical challenge due to the lack of reliable, non-invasive, and
real-time diagnostic tools. Here, we present an integrated platform that combines label-free confocal Raman spectroscopy imaging,
machine learning (ML), and targeted metabolomics to identify and classify INH-ILI in a murine model.

Methods: An INH-ILI mouse model was established, and Raman imaging and subsequent data analysis were performed on the
control and INH-ILI at 7, 14, 21, and 28-day groups. Alterations in hepatic metabolites following INH-ILI were elucidated.
Furthermore, ML techniques were employed to identify subtle differences between the control and INH-ILI groups.

Results: Distinct Raman spectral shifts, notably the emergence of a 1638 cm™ peak in injured liver tissues compared to
characteristic peaks at 1203, 1266, and 1746 cm™ in controls, were observed. ML models including support vector machine (SVM),
random forest (RF), extreme gradient boosting (XGBoost), and convolutional neural network (CNN) have achieved accurate
staging and classification of INH-ILI (AUC > 0.95). Metabolomic analysis further confirmed disruptions in lipid and aromatic amino
acid metabolism, particularly involving phenylalanine—tyrosine imbalance linked to oxidative stress.

Conclusions: This method enables precise, high-throughput, and spatially resolved diagnosis of INH-ILI, with strong potential for
clinical translation in drug-induced liver injury assessment.
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Introduction

Tuberculosis (TB) remains one of the most
pressing global health challenges, ranking as the
second leading cause of death from infectious
diseases worldwide in 2022, surpassed only by
COVID-19 [1-3]. Despite decades of public health
efforts, TB continues to infect millions and exerts a
profound burden on patients, families, and healthcare
systems. Isoniazid (INH), a first-line anti-tuberculosis
agent, plays a critical role in TB treatment due to its

high efficacy, affordability, and broad use in both
active and latent TB cases. However, INH is also one
of the most frequent causes of drug-induced liver
injury (DILI), leading to a spectrum of hepatic
manifestations ranging from asymptomatic enzyme
elevation to acute liver failure and death [4-6].
INH-induced liver injury (INH-ILI) has been reported
to occur in up to 20% of patients and is a major reason
for treatment interruption and poor clinical outcomes.
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Clinically, the diagnosis of INH-ILI remains
challenging. Liver biopsy, though considered the gold
standard, is invasive, associated with procedural
risks, and often suffers from sampling variability and
inter-observer inconsistencies. The pathological
features of INH-ILI are heterogeneous, involving
hepatocytes, bile ducts, and vascular endothelium in
varying degrees [7, 8]. Moreover, access to
experienced pathologists and histopathology services
is uneven, especially in resource-limited settings
where TB burden is highest. Serum biomarkers such
as alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) are routinely used but lack
specificity and spatial resolution. These limitations
highlight the urgent need for a non-invasive, accurate,
and dynamic method for identifying INH-ILI and
monitoring its progression.

Raman spectroscopy, a label-free and
non-destructive optical technique based on inelastic
light scattering by molecular vibrations, has emerged
as a powerful analytical tool in biomedicine [9-12]. It
offers molecular “fingerprints” of biological samples,
enabling the detection of subtle biochemical changes
associated with disease processes. In recent years,
Raman spectroscopy has shown promise in the
diagnosis of various cancers, infections, and metabolic
disorders, including applications in tissue analysis,
biofluid screening, and intraoperative margin
assessment [13-15]. However, its application in
detecting  hepatotoxicity, particularly INH-ILI,
remains underexplored.

A critical barrier to the clinical translation of
Raman spectroscopy lies in the complexity of spectral
data, which necessitates labor-intensive expert
interpretation prone to subjectivity. To overcome this,
we developed an integrated diagnostic platform
combining label-free confocal Raman imaging,
machine learning (ML)-driven spectral decoding, and
targeted metabolomic validation. This synergy
enables automated recognition of disease-specific
molecular fingerprints, achieving rapid,
operator-independent  classification  of  tissue
pathology while simultaneously providing spatially
resolved metabolic insights [16-19]. Such capabilities
address the unmet clinical need for non-invasive,
real-time assessment of DILI.

In this study, we propose a novel diagnostic
framework that integrates confocal Raman
spectroscopy imaging with ML and targeted
metabolomics to identify INH-ILI in a murine model.
We constructed a time-course mouse model of
INH-ILI and performed label-free Raman imaging of
liver tissues at different stages of injury. Using ML
algorithms, we classified liver injury stages with high
accuracy. Furthermore, we validated spectral findings
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through metabolomics, revealing key alterations in
lipid and aromatic amino acid metabolism. This
integrative approach offers a non-invasive, spatially
resolved, and molecularly specific method for
identifying INH-ILI and lays a foundation for future
clinical translation in DILI diagnosis and mechanistic
studies, as shown in Scheme 1.

Experimental Section

Reagents

INH (analytical standard, > 99%, lot number
[3377) and tribromoethanol (> 97%, lot number
T48402) were procured from Sigma Aldrich Co., Ltd.
(Shanghai, China), 4% paraformaldehyde solution (lot
number BL539A) was obtained from Biosharp
Biotechnology (Hefei, China), optimal cutting
temperature compound (OCT, lot number 4583) was
acquired from Sakura Finetek USA, Inc. (Torrance,
USA). Colorimetric assay kits for ALT and AST were
purchased from Elabscience Biotechnology Co. Ltd.
(Wuhan, China).

Animal Model

Previous research has shown that mice are more
suitable for developing animal models of INH-ILI that
closely resemble human physiology [20]. C57BL/6]
mice (male, 6-8 weeks, 18-22g, Liaoning Changsheng
Biotechnology Co., Ltd.) were housed under standard
pathogen-free (SPF) conditions at 24 + 2 °C, 12 h
light/dark cycle, and 50 + 5% relative humidity. After
a one-week adaptive feeding, 50 mice were randomly
assigned to a control group (n = 10) or an
experimental group (n = 40). The experimental group
was subdivided into four subgroups according to the
treatment duration: INH treatment for 7, 14, 21, and
28 days (n = 10 in each group). Mice in the
experimental group received INH via intragastric
gavage at a dose of 100 mg/kg once daily [21-23]. In
contrast, those in the control group received an
equivalent volume of purified water according to
body weight. Figure 1B shows the specific procedural
steps involved. After the final administration, the
mice were fasted for 24 h before being anesthetized
with tribromoethanol. Blood samples were collected
via orbital vein puncture and subsequently
centrifuged at 4 °C and 3500 rpm for 15 min to obtain
serum, then frozen at -80 °C for subsequent
biochemical detection. The liver tissue was taken and
weighed after the mice were killed by neck removal.
The liver index was calculated as (liver weight/body
weight) x 100. The liver tissue was divided into three
segments: one segment was fixed in a solution of 4%
paraformaldehyde for 24 h before embedding in
paraffin, another segment was frozen in OCT for
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Raman scattering imaging, and the last segment was  Institutional Animal Care and Use Committees of the
preserved at —80 °C for subsequent experiments. All ~ Harbin Medical University (ethics code: IRB3072724).

animal experiments were approved by the
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Scheme 1. Workflow for the metabolic component of INH-ILI liver tissue. (A) Construction of the INH-ILI model in ¢57BL/C] mice. (B) Flowchart illustrating Raman
scattering imaging of liver tissue. (C) Overview of the ML analysis process. (D) Validation of Raman scattering imaging analysis results through widely targeted metabolomics

utilizing UPLC-MS/MS.
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Biochemical Assay and Histological Analysis

Serum levels of ALT and AST were quantified
using colorimetric assay kits following all procedures
outlined by the manufacturer's instructions.
Paraffin-embedded liver sections (5 pm thick) were
stained with hematoxylin-eosin (HE) and Masson,
respectively. Images were captured using a DMI3000B
fluorescence microscope (Leica, Wetzlar, Germany).

Raman Scattering Imaging of Liver Tissue

For Raman measurements, 10 pm frozen liver
tissue sections were prepared and mounted on glass
slides. Raman spectroscopy and imaging of liver
tissue were conducted using a WITec Alpha 300R
Raman instrument (Ulm, Germany). A laser with a
wavelength of 532 nm, objective lens of L x 100
(numerical aperture (NA) = 0.9, working distance
(WD) =1 mm), laser power of 12.5 mW per data point,
and exposure time of 0.35 s were selected. Spectra
were collected from a minimum of 100 randomly
chosen points on the surface of each tissue sample
within the range of 600-1800 cm™. The Raman
imaging area of the liver tissue was 80 x 80 pm; the
other conditions were the same as before, and the
temperature of the above operating experiment was
always maintained at 24 °C.

Before statistical analysis, spectral data were
processed using the WITec Project (version 5.3, Ulm,
Germany) and LabSpec software (version 5.0, Horiba,
Japan), including smoothing, baseline reduction,
cosmic ray removal, fluorescent background removal,
and signal-to-noise ratio improvement. Origin 2024
was used to compute the mean and standard
deviation (SD) for each spectra group.

Machine Learning

Spectra of 30 Raman shifts (from 600 to 1800
cm)  were obtained as uniform manifold
approximation and projection (UMAP) and
t-distributed stochastic neighbor embedding (t-SNE)
in each of the five groups of spectra. The Raman
spectra were mapped onto a score map using the
"error ellipse" function in UMAP and tSNE to draw an
error ellipse with a confidence of 95%. The support
vector machines (SVM), random forest (RF), extreme
gradient boosting (XGBoost), and convolutional
neural network (CNN) methods were adopted to
conduct spectral analyses of 1000 Raman shifts within
the range of 600-1800 cm™ for five groups of spectra
respectively. The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve was
used to classify identification performance. The above
spectral data were all analyzed in the R Studio 4.3.0
environment.
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UPLC-MS/MS Metabolomics and Data
Analysis

Based on the above findings, collected six liver
tissue samples from the control and INH 7-, 14-, and
28-day groups for this investigation. The data
acquisition system primarily consisted of electrospray
ionization (ESI), tandem mass spectrometry (MS/MS,
QTRAP®6500+ System), and ultra-performance
liquid chromatography (UPLC, ExionLC AD).

R Studio 4.3.0 software was used to perform
principal component analysis (PCA), partial least
squares-discriminant analysis (PLS-DA), orthogonal
partial least discriminant analysis (OPLS-DA), and the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database. The data were annotated using the
KEGG Compound database, which widely targeted
metabolomics data.

Statistical Analysis

Data are presented as the mean * SD. Student
t-test was used for comparisons between the two
groups. One-way analysis of variance (ANOVA) was
used for multiple comparisons. GraphPad Prism
software (version 9.5, San Diego, CA, USA) was used
for statistical analysis. P < 0.05 is regarded as
statistically significant (*P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001).

Results and Discussion

Establishment and Validation of the INH-ILI
Mouse Model

To validate the INH-ILI model, both serological
biomarkers and histopathological changes were
assessed at multiple time points (Figure 1A). Mice
treated with INH exhibited significant alterations in
liver index, body weight (BW), and liver weight (LW)
compared to the control group. These differences
were evident as early as days 7 and 14 (Figure 1C),
with further disparities observed at later time points
(Figure S1A and S1B). In particular, serum levels of
ALT and AST were markedly elevated following INH
administration, peaking at day 14 (Figure 1D-E),
indicating hepatocellular damage.

Histopathological evaluation of hematoxylin and
eosin (Hé&E)-stained sections revealed progressive
hepatic injury in the INH-treated groups, with
varying degrees of hepatocyte swelling, cytoplasmic
vacuolization, and necrosis observed on days 7, 14, 21,
and 28 (Figure 1F). Notably, the severity of liver injury
increased over time, reaching its peak at day 21 before
partially subsiding by day 28.
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Figure 1. Serologic and histopathologic characteristics of mice in the control and INH-ILI groups. (A) Schematic representation detailing serological and
histopathological characteristics observed in mice. (B) Methodology for establishing the INH-ILI mouse model. (C) Comparison of liver index between control and INH-ILI
groups, respectively (n = 10). Alterations in serum ALT (D) and AST (E) levels across control and INH-ILI groups at various time points are presented accordingly (n = 10). (F)
Representative HE staining alongside Masson's staining is conducted on liver sections from control and INH-ILI groups, respectively. Magnification, x100. All scale bars are 100
um. All the Data are presented as mean * SD. *P < 0.05, **P < 0.01, ¥**P < 0.001, ***P < 0.0001 versus the control group.

Furthermore, Masson’s trichrome staining
showed increased collagen fiber deposition,
particularly at day 21, indicating hepatic fibrosis as a

consequence of sustained hepatocellular injury
(Figure 1F). These combined serological and
histological ~ findings confirm the successful

establishment of an INH-ILI model that captures the
temporal progression of liver injury, suitable for
subsequent Raman-based molecular analysis.

Confocal Raman Imaging Reveals Molecular
Signatures of INH-ILI

To explore the molecular changes associated
with INH-ILI, label-free confocal Raman scattering
imaging was performed using a 532 nm excitation
laser. The workflow of spectral acquisition and
analysis is illustrated in Figure 2A. Frozen liver
sections from the control and INH-treated mice at 7,
14, 21, and 28 days were imaged. Representative
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results are shown in Figure 2B-F, including corresponding three-dimensional surface plots of the
bright-field images, Raman intensity maps, and scanned areas.
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Figure 2. Raman scattering imaging of control and INH-ILI groups. (A) Schematic representation depicting the methodology employed for Raman scattering imaging.
(B-F) Representative comparative images representing liver tissues, bright field images, Raman images, and 3D surface profile images for the control and INH-ILI groups.
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The Raman signals obtained from liver tissues
were of high quality and reproducibility across
groups. Notably, no enhancement substrates or
nanoparticles were employed, avoiding potential
signal interference or biological risks associated with
nanomaterials. This substrate-free approach not only
simplifies sample preparation but also enhances
safety and feasibility for broader clinical or
translational applications, particularly in
resource-limited settings [24, 25]. Material-free
confocal Raman imaging thus offers a promising
route for visualizing biochemical changes in liver
tissue with high spatial resolution. The robust spectral
signals obtained provide a molecular basis for further
classification of healthy and diseased tissues, forming
the foundation for the integration of artificial
intelligence algorithms in the subsequent analysis.

Molecular Analysis of Liver Tissue Using
Raman Spectroscopy

To investigate the biochemical alterations
associated with INH-ILI, high-resolution Raman
spectral data were collected from frozen liver tissue
sections (Figure S2). At least 1,000 spectra were
randomly acquired per sample across each group to
ensure representative and statistically robust
profiling.

Seventeen and fifteen distinct Raman peaks were
consistently observed in control and INH-ILI tissues,
respectively. Figure 3A presents a flowchart of the
Raman  spectrum  processing. These  peaks
corresponded to major molecular classes, including
lipids, amino acids, proteins, and nucleic acids.
Specifically, peaks at 1128, 1266, 1366, 1441, 1657, and
1746 cm™ were predominantly lipid-associated. Peaks
at 749, 1004, 1169, 1203, 1395, and 1589 cm™ were
linked to aromatic amino acids such as tyrosine,
tryptophan, and phenylalanine. The Raman line at
1230 cm™ represents the antisymmetric phosphate
stretching of the amide III band (p-pleated sheet). The
Raman signature at 1082 cm™ corresponds to the
symmetric stretching of PO; in nucleic acids. The
Raman feature at 970 cm™ is attributed to the
phosphate monoester groups in the phosphorylated
protein. The peaks at 1306 and 1338 cm™ were
assigned to CHs/CH, twisting or bending and CH»
deformation of collagen, respectively. The band at
1638 cm™ represents the intermolecular bending
mode of water.

The difference in Raman spectra between the
control and INH-ILI groups reflects alterations in the
biochemical components of the liver tissue caused by
INH, providing a basis for distinguishing between
control and INH-ILI liver tissues. Table S1 presents
the leading positions of the Raman vibration peaks
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and the corresponding representative compounds
reported in the literature [26].

To better identify the differences, the average
Raman spectra of the control and INH-ILI groups
were plotted in the range of 600-1800 cm™ (Figure 3B)
and 2500-3300 cm™ (Figure 3C), respectively, and heat
maps were constructed (Figure S4A-B). In addition,
Figure 3B demonstrates the difference in the intensity
of the Raman characteristic peaks between the control
and INH-ILI groups within the 600-1800 cm™ range.

To further analyzed and examined the
differences in the metabolic components of the liver
tissues between the control and INH-ILI groups based
on the changes in the Raman characteristic peaks.
Most of the aromatic amino acids, amides, collagen,
and water-related peaks, such as 749 (Figure 3D), 1004
(Figure 3E), 1128 (Figure 3F), 1169 (Figure 3G), 1203
(Figure 3H), 1230 (Figure 3I), 1338 (Figure 3K), and
1638 cm! (Figure 3L), were higher in the INH-ILI
groups (P < 0.05). In contrast, some lipid peaks, such
as 1266 (Figure 3]) and 1746 cm™ (Figure 3M), were
lower in the INH-ILI groups (P < 0.05). Research has
indicated that the liver is crucial in drug
detoxification, including steatosis and
phospholipidosis [27-29]. This may serve as one of the
critical pathological foundations for the occurrence
and progression of INH-ILI. Peak intensities in the I
INH-ILI 7-, 14-, 21-, and 28-day groups at
wavelengths of 749 (Figure 3D), 1004 (Figure 3E),1128
(Figure 3F),1169 (Figure 3G),1230 (Figure 3I), and1338
cm? (Figure 3K) are found to be higher than those
observed in the control group. Additionally, the peak
intensity at wavelength 1366 (Figure S5D) cm™ was
elevated in the INH-ILI 14-, 21-, and 28-day groups
compared to that in the control. After treatment with
INH-ILI for 7 and 21 days, the peak intensity
corresponding to the liver tissue at 1203 cm™? (Figure
3H) exceeded that recorded for the control group.

Interestingly, 1203,1266, and 1746 cm™ were the
characteristic peaks of the control group, while 1638
cm™ was the characteristic peak distinctive of the
INH-ILI groups (Figure 3L). 1203 c¢cm™ linked to
aromatic amino acids (phenylalanine/tryptophan),
1266 cm™ assigned to amide III (B-sheet proteins) and
lipids, and 1746 cm™ characteristic of C=O ester
bonds in lipids. These peaks decreased in INH-ILI
tissues, consistent with disrupted lipid/protein
homeostasis. Control-associated peaks (1203, 1266,
and 1746 cm™) declined progressively with injury
duration, reflecting metabolic dysfunction rather than
acute drug deposition. The peak at 1638 cm™ is
explicitly attributed to the intermolecular bending
mode of water. This aligns with histopathological
evidence of hepatocyte swelling, cytoplasmic
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vacuolization, and edema in INH-ILI tissues. 1638
cm™! intensity peaked at day 21, mirroring maximal
histopathological injury (hepatocyte necrosis/fibrosis;
Figure 1F). It is worth noting that, the specificity of the
1638 cm™ peak for INH-ILI-induced liver injury arises
not from water itself, but from pathology-driven
alterations in the aqueous microenvironment. In
INH-ILI, cellular damage releases macromolecules
(proteins, nucleic acids, lipids) and disrupts ion
homeostasis. Increased bound water populations near
hydrophilic macromolecule surfaces, where water
molecules exhibit restricted mobility and altered
hydrogen-bonding networks. Modify local ionic
strength (e.g., K*/Ca?* leakage), perturbing water
structure through ion hydration effects. The 1638 cm™
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bending mode is highly sensitive to such constrained
hydrogen-bonding environments. Thus, its increase in
INH-ILI reflects liver-specific pathophysiological
restructuring of water, not generic hydration changes.
In our experiment, only the OH-stretch in the 7-day
INH-ILI group (with the center at approximately
3250-3350 cm!) originated from strong hydrogen
bond water, while the shoulders at 3400-3500 cm™
reflected weaker hydrogen bonds (Figure S3). In
addition, the OH-stretching region is susceptible to
fluorescence interference in biological tissues. It
indicates that the change of this bending mode has a
relatively small correlation with the wider OH-
stretching region.
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Figure 3. Raman spectral difference in characteristic peak intensity between control and INH-ILI groups. (A) Flowchart illustrating the processing of Raman
spectra. The average Raman spectra in the ranges of 600-1800 cm™' (B) and 2500-3300 cm™' (C) were obtained from the control and INH-ILI groups, respectively. The central
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both control and INH-ILI groups, respectively. All the data are presented as mean  SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus the control group.
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Figure S5 shows the signal intensities of other
Raman peaks in the control and INH-ILI groups. The
peak intensities at 970 (Figure S5A), 1082 (Figure S5B),
1306 (Figure S5C), 1395 (Figure S5E), 1441 (Figure
S5F), and 1589 cm™ (Figure S5G) were significantly
higher in the INH-ILI 14-, 21-, and 28-day groups,
respectively. Additionally, after 21 days of INH
treatment, the peak intensity observed in the liver
tissue at 1657 cm™ (Figure S5H) exceeded that of the
control group. Figure 4A illustrates a flowchart
depicting the characteristic peaks of Raman scattering
imaging for both the control and INH-ILI groups.
Representative Raman scattering images
corresponding to the characteristic peaks at 1203,
1266, 1638, and 1746 cm™ were acquired for each
group and are presented in distinct colors (Figure
4B-E). Identified the changes in the liver tissue
metabolites based on the signal intensity of the two
sets of Raman characteristic peaks. Together, these
spectral analyses provided a reliable foundation for
classifying healthy versus INH-injured tissue and
demonstrated the capability of Raman spectroscopy
to detect subtle biochemical transitions during
hepatotoxic progression. The current Raman images
were designed to provide preliminary spatial
distribution data of target molecules, as the
technique's primary strength lies in its label-free
chemical mapping capability. While we acknowledge
the need for deeper biological interpretation, the
current dataset does not yet include paired
histopathology or single-cell resolution data to
correlate Raman patterns with cellular heterogeneity
or disease states. Future research that combines
Raman imaging with histology or spatial
transcriptomics.

Machine Learning Enables Precise
Classification of Liver Injury Stages

Although spectral differences were visually and
statistically evident, manual interpretation remains
labor-intensive and subjective. To overcome this
limitation and achieve automated tissue classification,
multiple ML algorithms were applied to the Raman
spectral datasets (Figure 5A). Unsupervised
dimensionality —reduction techniques, including
UMAP and t-SNE, were used to visualize all sample
clusters of the control and INH-ILI groups (Figure
S6A-B). However, it demonstrated a limited ability to
address the nuances among the four separate INH-ILI
groups. The INH-ILI groups showed obvious overlap
in the UMAP and tSNE, making it very difficult to
visually distinguish the clear boundaries between
them. Although this overlap may reflect potential
biological similarities or the limitations of the selected
feature space for a specific visualization task, it does

9671

not provide the clear and unique clustering that
pairwise comparisons offer to highlight the main
contrasts. Therefore, the control group was subjected
to UMAP and t-SNE cluster visualization analyses
with the INH-ILI 7, 14,21, and 28-day groups
respectively (Figure 5B and S7). The spectral data
from control and INH-ILI tissues at 7, 14, 21, and 28
days showed clear group separations, with minimal
overlap —except between the control and day-14 INH
groups, which may reflect mild or reversible injury
stages.

For quantitative classification, supervised
learning was implemented using a SVM algorithm.
The dataset was randomly split into a training set
(60%) and a testing set (40%) to evaluate model
performance. Unlike UMAP and tSNE, the confusion
matrix of SVM (Figure 5D) performs well in
classification at different time points. The overall
(Figure S6C) and separately (Figure 5C) compared
receiver operating characteristic (ROC) curves also
demonstrated outstanding diagnostic capabilities,
with the area under the curve (AUC) values compared
at different time points all exceeding 0.95 (Table S2).

In addition, we randomly divided the dataset
into a test set (70%) and a validation set (30%), and
conducted comparative analyses of RF, XGBoost, and
CNN respectively to further evaluate the model
performance. Similar to the SVM results, the
classification performance of RF (Figure 5E and S8A),
XGBoost (Figure 5F and S8B), and CNN (Figure 5G
and S8C) confusion matrices at different time points is
all very good. The accuracy rates of the three models
are 88.4%, 83.7%, and 95.7% respectively. It is worth
mentioning that CNN is significantly superior to RF
and XGBoost models, and CNN can be given priority
for subsequent studies with larger cohorts. The ROC
curve (Figure S8D-F) also demonstrated excellent
diagnostic capabilities. The AUC values of different
models all exceeded 0.95.

Nonetheless, the integration of Raman
spectroscopy with ML significantly enhances
diagnostic efficiency, enabling high-throughput and
real-time tissue classification without the need for
expert interpretation. This automated approach lays
the groundwork for future implementation in clinical
workflows, particularly in settings where rapid and
accurate INH-ILI assessment is critical. Moreover, it
demonstrates the potential of Raman-ML systems as
decision-support tools in precision hepatology.

Metabolomic Profiling Reveals Disrupted
Pathways in INH-ILI

Given the spectral differences identified via
Raman analysis, we further explored the molecular
mechanisms underlying INH-ILI by performing
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widely targeted metabolomics on liver tissues from
the control group and INH-treated mice at days 7, 14,
and 28. UPLC-MS/MS was employed to identify and
quantify small-molecule metabolites (Figure 6A). PCA
(Figure S9A-C), PLS-DA (Figure S9D-F), and
OPLS-DA  (Figure S9G-I) demonstrated clear
separations between control and INH-ILI groups,
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confirming distinct metabolic profiles associated with
liver injury. Heatmaps (Figure 6B, S10A, and S11A)
and volcano plots (Figure 6C, S10B, and S11B)
revealed significant dysregulation of numerous
metabolites, with 400-700 compounds found to be
differentially expressed across time points.
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Figure 4. Raman scattering imaging reveals the characteristic peaks of control versus INH-ILI groups. (A) Schematic representation illustrating the methodology
utilized for Raman scattering imaging of characteristic peaks. (B-F) Representative contrast images of characteristic peaks at 1203, 1266, 1638, and 1746 cm™' of the control and

INH-ILI groups and merge images of the above four images. All scale bars are 8 pm.
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Figure 5. Flowchart illustrating ML processes applied to Raman spectra of liver tissue. (A) Schematic representation outlining ML methodologies employed. (B)
UMAP plots for the control and INH-ILI groups. (C) ROC plots for the control and INH-ILI groups. (D) SVM plots for the control and INH-ILI groups. (E) RF test plots for the
control and INH-ILI groups. (F) XGBoost test plots for the control and INH-ILI groups. (G) CNN test plots for the control and INH-ILI groups.

A comprehensive qualitative and quantitative
analysis of the identified metabolites was conducted
to identify the top 10 upregulated and downregulated
metabolites in each group (Figure 6D, S10C, and
511C). Chord diagrams were used to visualize the 50
metabolites with the highest VIP scores (Figure 6E,
510D, and S11D). Details of the top 20 upregulated

and downregulated  differentially = expressed
metabolites for each group are provided in the
supplementary materials (Figure 512, 513, and S14).
Comprehensive findings from differential metabolite
screening for each group are summarized in Table S3,
S4, and Sb.
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Figure 6. A widely targeted metabolomics analysis compares the control versus INH-ILI 7-day groups. (A) Schematic diagram of the widely targeted
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metabolites between the two groups. (D) The bar chart displays differentially expressed metabolites across both groups. (E) Visualization of differentially expressed metabolites
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< 0.05, #P < 0.01, **P < 0.001 versus the control group, ns, not significant.
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Among the top perturbed metabolites were key
lipids (phosphatidylcholine, triglycerides, oxidized
lipids), aromatic amino acids (L-phenylalanine,
L-tyrosine, L-tryptophan), and intermediates
involved in redox homeostasis. In the initial phase of
liver injury (INH-ILI 7-day), the expression levels of
L-Phenylalanine (Figure 6F), L-Tyrosine (Figure 6G),
and L-Tryptophan (Figure 6H) were increased (P <
0.05). In contrast, no significant difference was
observed in the Phenylalanine-Tyrosine ratio (Figure
6l) (P > 0.05). As the duration of liver injury increased
(INH-ILI 14- and 28-day), the expression levels of
Phenylalanine-Tyrosine also increased significantly
(Figure S15D, H) (P < 0.05). At the same time, no
notable  differences were detected between
L-Phenylalanine, L-Tyrosine, and L-Tryptophan
levels (Figure S15A-C and Figure S15E-G) (P > 0.05).
Phenylalanine, tyrosine, and tryptophan are aromatic
amino acids essential for human health. In cases of
acute liver injury, this phenomenon may be attributed
to inhibition of the conversion of phenylalanine to
tyrosine [30, 31]. Obstruction of the conversion of
phenylalanine to tyrosine, such as through the
inhibition of phenylalanine hydroxylase activity,
results in the accumulation of toxic intermediate
metabolites, including phenylpyruvate. This imposes
an increased metabolic burden on the liver,
diminishes detoxification efficiency, and
subsequently accelerates hepatocyte injury and
apoptosis via mechanisms such as oxidative stress
and mitochondrial dysfunction. Ultimately, these
processes contribute to the onset and progression of
INH-ILL

Targeted metabolomics (UPLC-MS/MS)
revealed significant disruptions in hepatic lipid
metabolism and aromatic amino acid pathways.
These metabolic shifts correlate with the Raman
spectral changes. Reduced intensity at 1266 cm™
(amide III/lipids) and 1746 cm™ (C=O ester lipids)
aligns with disrupted lipid homeostasis. Increased
1203 cm™ (tryptophan/phenylalanine) and 1638 cm™
(H,O bending) signals reflect amino acid
accumulation and cellular edema.

KEGG pathway enrichment analysis (Figure 516)
further confirmed that the most significantly affected
metabolic pathways in INH-ILI were lipid
metabolism, amino acid biosynthesis, and oxidative
phosphorylation. These data not only validate the
Raman spectroscopic findings but also provide
molecular insights into the systemic reprogramming
of hepatic metabolism in response to INH-induced
stress. By combining spatially resolved spectral
imaging with high-throughput metabolomics, we
constructed a multidimensional metabolic landscape
of INH-ILI, capturing both biochemical identity and
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distribution. This synergistic approach enhances the
discovery of disease-relevant biomarkers and
supports mechanistic interpretations of spectral shifts
observed in Raman imaging.

Conclusion
Although  this  integrated =~ Raman-ML-
metabolomics platform demonstrates promising

potential in the diagnosis of INH-ILI, its clinical
translation still faces several key challenges that must
be addressed. These challenges include (1) performing
validation studies in human tissues to address the
pathophysiological differences between mice and
humans; (2) developing interpretable and robust ML
models trained on diverse and representative clinical
datasets; (3) improving the spatial correlation
between  metabolic  changes and  specific
histopathological features to enhance tissue
resolution; (4) conducting comprehensive time-course
metabolomics analyses to align metabolic profiles
with Raman spectral changes during disease
progression; and (5) optimizing the clinical workflow
by integrating solutions compatible with permanently
fixed tissue sections and portable detection devices.
Addressing these issues is essential for the successful
implementation of this platform in real-world clinical
settings.

In summary, we established a novel,
non-invasive diagnostic platform for INH-ILI by
integrating confocal Raman spectroscopy imaging,
ML, and metabolomic profiling. Raman spectroscopy
enabled the label-free detection of biochemical
changes in liver tissue, with ML algorithms achieving
high-accuracy classification of injury stages (AUC >
0.95). Furthermore, targeted metabolomics validated
the spectroscopic findings and revealed metabolic
disruptions involving lipids and aromatic amino
acids. This integrative framework not only provides a
spatially resolved and real-time approach for
identifying  hepatotoxicity ~but also uncovers
underlying metabolic mechanisms of INH-ILI. The
material-free nature of Raman imaging combined
with ML-based spectral interpretation makes this
method highly suitable for clinical translation,
especially in resource-limited settings where
traditional diagnostics are inaccessible or delayed.
Our findings lay a foundation for future applications
of Raman-based Al diagnostics in drug-induced liver
injury and highlight the value of combining imaging
and omics technologies to unravel complex disease
processes.
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