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Abstract 

Cellular senescence is characterized by cell cycle arrest, resistance to apoptosis, the expression of senescence markers, and the 
acquisition of senescence-associated secretory phenotype (SASP). In this review, we discuss the role of cellular senescence within 
the tumor microenvironment. Some senescent innate immune cells fail to sustain their antitumor function and may even promote 
tumor progression. Senescent CD8+ and CD4+ T cells become dysfunctional and are implicated in immunosuppression, 
angiogenesis, and resistance to immunotherapy. Research on stromal senescence primarily focuses on the SASP. The SASP 
functions as a double-edged sword. It promotes immune surveillance in the early stages of a tumor while inhibiting tumor immunity 
in its advanced stages. Strategies to target senescence in cancer therapies include four main approaches: inducing senescence, 
inhibiting tumor-promoting SASP, clearing senescent cells, and reversing senescence. Although not yet in clinical practice, these 
approaches hold promise for future cancer treatments. 
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1. Introduction 
Aging is an inevitable biological process that all 

humans experience. Given the global impact of aging, 
advancing research into aging and age-related 
diseases is crucial. Numerous studies widely 
acknowledge that cancer is associated with age, 
demonstrating increased susceptibility among older 
individuals [1]. Indeed, the hallmarks of aging and 
cancer share remarkable similarities. Kroemer et al. 
have identified meta-hallmarks common to both 
aging and cancer, including genomic instability, 
epigenetic alterations, dysbiosis, and chronic 
inflammation [2]. Cellular senescence was first 
described in the 1960s when human fibroblasts 
exhibited a decline in proliferative capacity after 
numerous cell cycles in vitro [3]. Arne N Akbar and 

Sian M Henson have outlined the three phases of 
senescence induction: induction by stimuli, DNA 
damage response, and growth arrest [4]. In 2022, 
Douglas Hanahan introduced four new hallmarks to 
the previously established ten hallmarks of cancers 
[5], including the presence of senescent cells [6]. This 
underscores the critical importance of research on 
cellular senescence within the TME.  

The tumor microenvironment (TME) is the 
habitat in which tumor cells live and proliferate. 
Beyond neoplastic cells, the TME encompasses a 
heterogeneous assemblage of innate and adaptive 
immune populations, cancer‐associated fibroblasts, 
endothelial cells, mesenchymal stromal cells, and 
resident stem‐like cells. Numerous reviews have 
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established the link between the senescence of tumor 
cells and the onset and progression of cancers [41-45]. 
Therefore, our work will mainly focus on the 
senescence of non-cancerous components within the 
tumor microenvironment. In particular, accumulating 
evidence highlights the induction of senescence in 
both immune cells and stromal compartments [46-50]. 
Senescence exerts multifaceted effects on antitumor 
immunity. On the one hand, senescent cells secrete 
chemokines and surface ligands that recruit and 
activate immune surveillance [7-9]; on the other, 
senescent immune cells may become dysfunctional. 
Senescence may assist in evading immune clearance 
through transient cell‐cycle re‐entry or the release of 

immunosuppressive factors, thereby fostering 
resistance to therapy and adverse clinical outcomes. 
Deconvoluting this paradox is essential for a better 
understanding of senescence’s dualistic roles within 
TME. Table 1 summarizes the common inductions of 
cellular senescence within the TME, their triggers, 
senescent cells involved, and their roles within TME 
(Table 1). Here, we review the changes in senescence 
within innate immunity, adaptive immunity, and 
stroma. We will elaborate on their contributions to 
tumor progression and cancer therapies, and the 
extent to which patients may benefit from targeting 
senescent cells within TME. 

 
 
 

Table 1. Types of senescence and their roles within the tumor microenvironment 

Type of senescence Triggers  Role in TME Mechanism Senescent cell Ref. 
TIS Chemotherapy 

Radiotherapy 
Targeted therapy 

Anti-tumor Immune surveillance by NK cells and 
macrophages 

Tumor cell [7-9] 

Complement activation Tumor cell [10] 
Recruitment of DCs and T cells Tumor cell [7, 9] 
Sensitization of chemotherapy and ICB in 
PDAC 

Tumor cell [11] 

Pro-tumor Metastasis promotion Tumor cell 
Fibroblast 
EC 

[8, 12, 13] 

Invasion promotion EC [12] 
Stemness induction Tumor cell [8] 
Immunosuppression CD8+ T cell 

Fibroblast 
[14-16] 

Chemoresistance and EMT Neutrophil 
Fibroblast 

[8, 17] 

ICB resistance Macrophage 
CD8+ T cell 

[18, 19] 

OIS Oncogene activation Anti-tumor Recruitment of CD4+ T cells Tumor cell 
EC 

[8, 20, 21] 

Macrophage polarization towards M1 Fibroblast [22] 
Pro-tumor Tumorigenesis promotion Macrophage 

Fibroblast 
[8, 23] 

Metastasis promotion  Tumor cell 
EC 

[8, 13] 

Invasion promotion Tumor cell [8] 
Chemoresistance Tumor cell [8] 
Immunosuppression Fibroblast [8] 

SIPS Stress signals Pro-tumor Tumorigenesis promotion(x2) Fibroblast [24, 25] 
Immunosuppression  Tumor cell [26] 

RS Shortened telomere length Pro-tumor Angiogenesis EC [27, 28] 
Tumorigenesis promotion Fibroblast [29] 
Impaired immune surveillance CD8+ T cell [30, 31] 

Anti-tumor Growth arrest Tumor cell [32] 
Age-related immune 
dysfunction 

Physiological aging Pro-tumor Macrophage polarization towards M2  Macrophage [33, 34] 
Impaired immune surveillance NK cell [35] 
Metastasis promotion  Neutrophil [36] 
Impaired antigen presentation DC [37-39] 
ICB adverse events CD4+ T cell [40] 

TIS, therapy-induced senescence; OIS, oncogene-induced senescence; EC, endothelial cell; DC, dendritic cell; NK cell, natural killer cell; ICB, immune checkpoint blockade; 
PDAC, pancreatic ductal adenocarcinoma; EMT, epithelial-mesenchymal transition. 
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2. Aging, Immunosenescence, and 
Cellular Senescence 

In 2013, Kroemer et al. proposed nine molecular 
hallmarks of aging, with cellular senescence as one of 
them [51]. This underscores the link between 
physiological aging and cellular senescence. Cellular 
senescence denotes a state of permanent proliferative 
arrest that cells enter following extended in vitro 
replication or upon exposure to sublethal stressors or 
oncogenic stimuli [52]. Senescent cells exhibit several 
characteristics: morphological abnormalities, 
irreversible cell cycle arrest, apoptosis resistance, 
expression of senescence markers, mitochondrial 
dysfunction, metabolic alterations, and the acquisition 
of senescence-associated secretory phenotype (SASP) 
[52, 53]. The onset of senescence is triggered by a 
variety of insults—irreparable DNA damage, 
telomere attrition, mitochondrial perturbations, 
metabolic derangements, and oncogene 
activation—all of which accrue with chronological 
aging [54]. Consequently, cells subjected either to a 
finite replicative lifespan or to diverse stressors 
during organismal aging undergo senescence, which 
in turn contributes to the pathogenesis of multiple 
age‐related disorders. Specifically, metabolism, 
mitochondrial function, and senescence are 
interrelated in a bidirectional manner, each 
influencing and being influenced by the others. 
Senescent cells exhibit hallmark metabolic alterations, 
such as heightened aerobic glycolysis, sustained 
tricarboxylic acid (TCA) cycle activity, increased 
glutaminolysis, and lipid accumulation [55, 56]. For 
example, glycogen overload elevates reactive oxygen 
species (ROS), precipitating senescence [57], whereas 
methionine deprivation induces DNA damage–
mediated senescence [58]. On the other hand, 
mitochondrial dysfunction—manifested as reduced 
respiratory capacity and membrane potential, 
aberrant organelle biogenesis, and mtDNA 
mutations—drives cells into senescence [59]. 

Senescence resulting from repeated cell divisions 
is termed replicative senescence (RS) [3], driven by 
telomere shortening. Stress-induced premature 
senescence (SIPS) encompasses senescence triggered 
by stress signals such as oncogene activation, hypoxia, 
and DNA damage [60-62]. Specifically, cellular 
senescence induced by treatments such as radiation, 
conventional chemotherapies, or targeted therapies is 
termed therapy-induced senescence (TIS) [16, 43, 63]. 
Senescence induced by the aberrant activation of 
oncogenic signaling is termed oncogene-induced 
senescence (OIS) [64]. TIS and OIS are both 
categorized into SIPS. 

Differentiating cellular senescence from 
immunosenescence is critical, as these interrelated yet 
distinct phenomena both drive organismal aging and 
age-related pathology. Cellular senescence denotes a 
cell-intrinsic, irreversible proliferative arrest, whereas 
immunosenescence refers to the age-associated, 
systemic decline of immune competence across both 
innate and adaptive immunity. Immunosenescence 
can result from thymic involution, persistent antigen 
exposure, chronic inflammation, etc. [49, 65-68]. 
Importantly, cellular senescence of immune cells 
partly contributes to immunosenescence [48, 49]. 
Among these factors, thymic involution represents the 
most prominent and specific change associated with 
immunosenescence [69, 70]. As individuals age, 
thymic involution leads to thymic atrophy, reduction 
in thymocytes, and a decreased output of naïve T cells 
[69, 70]. Subsequently, older individuals may 
experience an altered phenotype of peripheral T cells, 
replicative senescence, and ultimately dysfunction in 
adaptive immunity [71], potentially leading to a 
higher mortality [72]. Concurrently, 
‘inflammaging’—a state of sterile, chronic, low-grade 
inflammation driven predominantly by innate 
immune cells—both contributes to and is exacerbated 
by immunosenescence [73]. Some researchers believe 
that inflammaging is a component of physiological 
aging. Once influenced by frail gene variants, it may 
lead to age-related diseases, termed as ‘Second hit 
theory’ [74]. Some may view inflammaging as the 
counterpart to immunosenescence [75], with each 
promoting the other. Although senescent cells 
potentiate inflammaging via pro-inflammatory SASP 
factors, they represent only one facet of this 
multifactorial process, which also encompasses 
accrual of cellular debris, accumulation of 
damage-associated molecular patterns (DAMPs), and 
a decline in proteasomal and autophagic clearance 
mechanisms [41, 76]. Moreover, immunosenescence 
will drive systemic aging [77]. Researchers have 
modeled physiological immunosenescence by 
knocking out Ercc1, a gene encoding a specific DNA 
repair protein, to reveal the senescence of 
non-lymphoid organs [77], highlighting the 
interaction between immunosenescence and aging. 

3. Tumor Cell Senescence: Friend or Foe? 
3.1. Senescence and Cancer Prior to 
Oncogenesis 

 Aging elevates oncogenic risk through chronic 
inflammation, genomic instability, dysbiosis, and 
epigenetic drift [78]. Under genotoxic stress—such as 
DNA damage or aberrant oncogene 
activation—normal cells either undergo apoptosis or 
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enter a permanent growth arrest termed senescence, 
thereby acting as a potent tumor‐suppressive barrier 
[79]. Mitochondrial pyruvate dehydrogenase (PDH) 
activation acts as a pivotal metabolic mechanism 
driving oncogene-induced senescence (OIS), linking 
enhanced mitochondrial respiration and redox stress 
to OIS-driven tumor suppression. This indicates the 
significant role of mitochondrial function in cellular 
senescence. Moreover, senescent cells propagate 
senescence to neighboring cells via paracrine SASP 
factors and juxtacrine signals [44], and are cleared by 
immune cells, a process called senescence surveillance 
[44, 45, 80]. For example, pre-malignant hepatocytes 
undergoing OIS are cleared by macrophages recruited 
through CD4⁺ T-cell–derived SASP chemokines, and 
both CD4⁺ and CD8⁺ T cells can mediate senescent‐
cell clearance [9, 20, 81]. Thus, senescence serves as a 
physiological barrier to oncogenesis. 

With advancing age, two factors conspire to 
weaken this barrier. First, cells accrue 
senescence-inducing insults—telomere attrition, 
oxidative damage, and oncogenic mutations—at a 
higher frequency [53, 64, 82]. Second, 
immunosenescence compromises surveillance: 
macrophage phagocytic capacity wanes, antigen‐
presenting cell function declines, naïve T-cell output 
diminishes, and T-cell receptor diversity contracts [48, 
75]. As a result, the presence of abundant senescent 
cells becomes a chronic feature of elderly people. 
Their chronic SASP secretion fosters a pro-tumor 
microenvironment by sustaining inflammation, 
promoting malignant transformation, suppressing 
immune clearance, and remodeling local stroma [44, 
45].  

3.2. Senescence and Cancer After Tumor 
Formation 

 Within established tumors, therapy‐induced 
senescence (TIS) is prevalent [63]. DNA-damaging 
chemotherapies and radiotherapy induce senescence 
in malignant cells [83-85]. TIS was also observed in 
breast cancer, Ewing sarcoma, and neuroblastoma 
following treatment with CDK4/6 inhibitors [86], or 
in lung cancers and pancreatic cancers following 
treatment with MEK and CDK4/6 inhibitors [11, 
87-90].  

Senescent tumor cells do undergo growth arrest 
comparable to that of normal senescent cells. In 
various cancer models, senescent tumor cells 
uniformly exhibit cell‐cycle arrest or markedly 
reduced proliferation [91]. Does this mean that 
senescence of tumor cells facilitates effective tumor 
suppression? Indeed, therapy-induced senescent 
tumor cells can attract NK cells and DCs into tumor 
sites via the upregulation of MHC-I and 

IL-15/IL-15RA complex [7, 9]. In lymphoma models 
with TIS, NK cells accumulate with enhanced 
response to tumor cells [92]. Similarly, in another 
metastatic melanoma model with OIS, the 
senescence-induced infiltration of myeloid cells 
inhibited tumor growth [93]. Preclinical evidence has 
also shown that therapy-induced senescent tumor 
cells induce complement activation and increase C3 
expression [10]. It seems that senescence brings hope 
to tumor suppression. 

However, senescent tumor cells may 
paradoxically fuel disease progression. First, the 
growth arrest of senescent tumor cells is not stable. 
The re-entry into the cell cycle of therapy-induced or 
oncogene-induced senescent tumor cells has been 
demonstrated in mice and patients with breast 
cancers, colorectal cancers, and acute myelogenous 
leukemia [63]. Mechanistically, increasing replication 
stress and DNA damage leads to genomic instability 
of oncogene-induced senescent tumor cells, enabling 
escape from growth arrest through various mutations 
[94]. Therapy-induced senescent tumor cells, on the 
other hand, escape from cell-cycle arrest through 
multiple mechanisms, including metabolic 
reprogramming, chromatin remodeling, and signaling 
pathway rewiring [94]. Second, preclinical and clinical 
observations have suggested that TIS may be 
detrimental. TIS has been associated with 
chemotherapy-induced cardiotoxicity, peripheral 
neuropathy, and ovarian damage in mice [16]. Using 
four immunohistochemical markers, including 
lipofuscin, p16INK4a, p21WAF1/Cip1, and Ki67, 
researchers have found that the tumoral senescence 
signature significantly affected overall survival (OS) 
in 155 NSCLC patients [95]. Single-cell analysis also 
revealed worse prognosis in patients with higher 
senescence signature [96]. Third, senescent tumor cells 
foster an immunosuppressive tumor microenviron-
ment. A higher senescence signature correlates with 
increased crosstalk between tumor cells and immune 
cells [96]. This is not only attributed to SASP factors 
secretion, but also to the metabolic alterations of 
senescent tumor cells. While senescence-associated 
secretory phenotype (SASP) factors critically establish 
a protumoral TME, these will be addressed 
subsequently. Similar to non-malignant senescent 
cells, senescent tumor cells exhibit enhanced 
glycolysis [55]. Such a metabolic shift not only 
promotes tumor invasion but also exacerbates the 
Warburg effect, driving lactate accumulation that 
impairs T cell and macrophage function [55, 97]. 
Senescent tumor cells further display increased lipid 
uptake and diminished catabolism [55, 56], alterations 
that correlate with poorer clinical prognosis and 
immunotherapy resistance in cancer patients [98, 99]. 
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Cellular senescence additionally heightens tumor cell 
dependence on glutamine metabolism, facilitating cell 
cycle re-entry [100, 101]. Notably, myeloid-derived 
suppressor cells (MDSCs) within the TME acquire 
mitochondrial DNA (mtDNA) released by senescent 
tumor cells, reinforcing their immunosuppressive 
activity [102]. Collectively, this evidence underscores 
the therapeutic potential of ablating senescent cells. 
Consequently, senescence-targeting strategies in 
oncology broadly fall into two categories: inducing 
senescence to potentiate immune-mediated clearance 
or eliminating senescent cells to mitigate their chronic 
protumoral effects on the TME, which will be 
discussed in the following section. 

4. Innate Immunity Senescence: From Bad 
to Worse? 

 Innate immunity acts as the first line of defense 
against pathogens. Recently, interest has grown in the 
role of innate immune cells within the TME [103, 104]. 
Our focus will be on their induction, functional and 
phenotypic changes, and contributions to tumor 
progression. 

4.1. Neutrophils 
Neutrophils, pivotal components of the innate 

immune response, primarily originate from the bone 
marrow (BM) [105]. Although neutrophils are 
short-lived, they can undergo senescence with 
functional consequences. One reason for their 
prolonged survival is impaired GM-CSF-induced 
apoptosis [106]. In addition to physiological aging, it 
has been found that apolipoprotein E (APOE) secreted 
by tumor cells induces a subset of senescent 
neutrophils expressing the triggering receptor 
expressed on myeloid cells 2 (TREM2), which 
correlates with poor prognosis [107]. Patients with 
breast cancer receiving chemotherapy harbor highly 
senescent neutrophils [17]. This indicates that both 
tumors and cancer therapies can induce the 
senescence of neutrophils. Neutrophils become 
dysfunctional in killing microbes. Although 
neutrophil counts remain stable with age [108, 109], 
their defense against infection declines [110, 111]. 
However, this does not necessarily mean that 
senescent neutrophils are dysfunctional within the 
TME. We will separately discuss the effects of 
senescence on the anti-tumor and pro-tumor 
functions of neutrophils. 

Senescent neutrophils are defined as 
CXCR4+CD62Llow neutrophils [36, 112, 113]. 
Neutrophils can exert antitumoral effects through 
various mechanisms [114], which can be potentially 
influenced by senescence. First, neutrophils can kill 
tumor cells opsonized with IgA or IgG via Fcγ- or 

Fcα-receptors [115], a process known as 
antibody-dependent cellular cytotoxicity (ADCC). 
Diminished Fcγ-mediated ADCC has been observed 
in senescent human neutrophils in both sexes, 
resulting from impaired free radical production [116]. 
However, FcαR1 (CD89) is the principal receptor 
mediating neutrophil cytotoxicity against cancer cells 
[117, 118]; therefore, it cannot yet be concluded that 
the overall ADCC capacity is reduced in senescent 
neutrophils. Neutrophils also exert antitumoral 
functions by secreting ROS and neutrophil 
extracellular traps (NETs) in certain scenarios. These 
functions will be focused on below. Moreover, 
neutrophils have been demonstrated to acquire 
antigen-presenting capabilities, bridging innate and 
adaptive immunity in lung cancer [119, 120]. Their 
potential as antigen-presenting cells is further 
supported by recent profiling [121]. However, further 
investigation is required to understand the influence 
of aging on this capacity. Overall, there is not yet 
sufficient evidence to definitively assess the impact of 
senescent neutrophils on tumor development. This 
may be due to the relatively recent association of 
neutrophils with tumors. Continued efforts are 
necessary to unravel the complexities surrounding 
neutrophil senescence. 

Neutrophils exert a protumoral effect 
throughout the development of tumors (Figure 1A). 
ROS, though observed to kill tumor cells in some 
research [122], has been demonstrated to promote 
chronic inflammation and carcinogenesis via nitric 
oxide (NO) production [123] and cause severe T cell 
immunosuppression [124]. Given the elevated ROS 
levels in the elderly group [125], this increase may 
further promote tumorigenesis. NETs represent 
another age-associated mechanism that contributes to 
tumor promotion. NETs consist of DNA, histones, 
neutrophil elastase, matrix metalloproteinases, etc. 
[126]. The impact of NETs on the tumor is complex. 
Certain components of NETs, including 
myeloperoxidase and defensins, can directly kill 
tumor cells [114, 126]. The DNA structure of NETs is 
capable of capturing tumor cells, thereby preventing 
tumor metastasis [114]. However, NETs can facilitate 
tumor proliferation, invasion, angiogenesis, and the 
formation of immunosuppressive TME [126]. 
Therefore, it can be hypothesized that impaired NETs 
function in senescent neutrophils [127] may attenuate 
the aforementioned process, yet their overall impact 
on tumor development remains uncertain. 
Furthermore, neutrophils facilitate tumor metastasis 
(Table 1) [36, 113]. Adoptive transfer of a subset of 
CXCR4highCD62Llow senescent neutrophils promotes 
tumor metastasis of breast and melanoma cancer cells 
to the liver [113]. Accumulation of CXCR4+CD62Llow 
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senescent neutrophils has also been found in the lung 
premetastatic niche at early stages of breast cancers, 
characterized by the expression of a specialized 
transcription factor SIRT1 [36, 128]. Finally, senescent 
neutrophils promote resistance to chemotherapy [17]. 
Senescent neutrophil-derived exosomal piRNA-17560 
stimulates the expression of fat mass and 
obesity-associated protein (FTO) in breast cancer cells, 
leading to chemoresistance and epithelial- 
mesenchymal transition (EMT) [17]. Altogether, 
neutrophil senescence favors tumor progression, 
making senescent neutrophils a potential therapeutic 
target. 

Indeed, emerging efforts to target neutrophils in 
cancer therapy are showing promise [114], although 
the influence of senescent neutrophils on these 
therapies remains unclear. Interestingly, researchers 
have recently trained neutrophils to eliminate tumor 
cells in a ROS-dependent manner [129], highlighting 
the ROS’s potential in defending against tumors. 
Though increased levels of ROS have been found in 
older populations [125], in patients with breast 
cancers, resistance to chemotherapy has been 
attributed to senescent neutrophils [17]. The efficacy 
of such approaches in elderly patients requires further 
exploration. 

 
 

 
Figure 1. Impact of senescent immune cells on tumor development and treatment within the tumor microenvironment. A TREM2-expressing senescent neutrophils are 
induced by APOE secreted by prostate tumor cells, correlating with a poor prognosis. Senescent neutrophils promote cancer metastasis via distinct pathways, including ROS, 
mitochondria-dependent NETs, and cytokines. They also produce exosomes containing piRNA-17560, which causes chemotherapy resistance by RNA methylation of tumor cells. Senescent 
neutrophils lead to T cell dysfunction by Arg2 production. B Senescent macrophages’ capability of killing tumor cells is inhibited, proven by decreased expression of MHC-II, B7, and impaired 
production of ROS and TNF-α. Senescent macrophages are another main force of SASP factors, leading to early tumorigenesis, angiogenesis, and immunosuppression. C Senescent T cells 
become dysfunctional as demonstrated by the expression of inhibitory receptors, including PD-1, Tim-3, and CTLA-4, and inhibitory SASP factors produced by senescent macrophages. In turn, 
senescent T cells enhance M2 polarization through CD40L and Tim-3 interaction. Moreover, senescent T cells secrete SASP factors to cause age-associated inflammation and deteriorate 
immune cell-related adverse events of ICB via IL-21-CXCL13-B cell-IgG axis. TNF-α, tumor necrosis factor-α; IL, interleukin; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; Tim-3, T 
cell immunoglobulin and mucin domain-containing protein 3; PD-1, programmed death 1; KLRG-1, killer cell lectin-like receptor subfamily G 1; CXCL, C-X-C motif ligand; CCL, C-C 
chemokine motif ligand; SASP, senescence-associated secretory phenotype; ir-AE, immune cell-related adverse event; IGF-1, insulin-like growth factor 1; TGF-β, transforming growth factor-β; 
piRNA, PIWI-interacting RNA; NETs, neutrophil extracellular traps; TREM2, triggering receptor expressed on myeloid cells 2; APOE, apolipoprotein E; Arg2, arginase 2; SIRT1, silent mating 
type information regulation 2 homolog-1; MMP-9, matrix metallopeptidase 9; VEGF, vascular endothelial growth factor; ROS, reactive oxygen species; SPP1, secreted phosphoprotein 1; PDGF, 
platelet derived growth factor; TLR1, Toll-like receptor 1; MHC-II, major histocompatibility complex II. This figure was created with BioRender (https://biorender.com/). 
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4.2. Macrophages 
Macrophages are critical TME components, 

categorized as classically activated M1 macrophages 
and alternatively activated M2 macrophages based on 
their activation pathways [130]. M1 macrophages, 
predominantly antitumoral, are identified by 
CD14highCD16-MHC-IIhigh expression, while M2 
macrophages, which are protumoral, exhibit 
CD14lowCD16high MHC-IIlow expression [130, 131]. 
Senescent macrophages comprise a heterogeneous 
subset characterized by elevated CD38 expression 
[132]. The senescence of macrophages can be induced 
by tumors. In a glioblastoma model, the 8B cells 
induced a senescence-like state of macrophages by the 
production of IL-6 [133], typical components of SASP 
[8]. This subset of macrophages, similar to M2 
macrophages, produced high levels of Arginase-1 and 
inhibited T cell function within the TME [133, 134]. 
Radiotherapy has also been found to induce 
senescence of myeloid cells in MC38 colon cancer 
models [19]. 

M1 macrophages are activated by Th1 cells or 
IFN-γ and kill tumor cells with mechanisms similar to 
those employed during infections, including ROS, 
lysosomal enzymes, and NO. Recruited by CD4+ T 
cells, M1 macrophages acquire the ability to eliminate 
pre-malignant senescent hepatocytes [20], thereby 
preventing tumor initiation. They also serve as 
antigen-presenting cells (APCs) to activate adaptive 
immunity. However, the antitumoral capacity of 
senescent M1 macrophages is compromised in several 
ways (Figure 1B). Firstly, reductions in CD14+CD16- 
macrophages, representing M1 subsets, have been 
observed in both aged humans and mouse models in 
the peripheral blood [33, 34]. Using single-cell 
techniques, the M2 expansion in aged humans was 
also supported [135]. In liver models with chronic 
damage, however, p53-expressing senescent hepatic 
satellite cells have been proved to polarize M2 subsets 
into M1 subsets [22], indicating the number of M1 
macrophages may be organ-dependent. Secondly, the 
production of cytokines such as TNF-α, as well as the 
expression of TLR1, was impaired [33]. The 
underlying mechanisms remain to be elucidated. 
Additionally, reduced ROS production in senescent 
macrophages was observed [8], weakening tumor 
immune surveillance. Furthermore, decreased 
expression of MHC-II and B7 costimulators in 
senescent macrophages indicates a diminished 
response to vaccination [136, 137]. These findings 
demonstrate significant impairments in the 
antitumoral functions of senescent M1 macrophages. 

M2 macrophages, driven by Th2 cells or Tregs, 
promote tumor growth through various mechanisms 

(Figure 1B). As previously mentioned, increased M2 
subsets are observed in elderly humans and mouse 
models [33, 34, 135]. The accumulation of senescent 
macrophages further promotes tumor progression 
[23, 138]. Prieto et al. have found that senescent 
alveolar macrophages expressing p16INK4a and Cxcr1 
increased in the lungs with aging in human and 
Kras-driven mice models, and their removal 
attenuated the tumor development [138]. These 
studies underscore the significant role of senescent 
macrophages in early tumor initiation. M2 
macrophages further promote tumor progression by 
inhibiting adaptive immunity and NK cells through 
the production of IL-10, TGF-β, and the expression of 
PD-L1 [130]. In aged mice, senescent macrophages 
produce elevated levels of IL-10 in the lungs, further 
suppressing the IL-12 axis, which is crucial for NK cell 
functionality [139]. In an MC38 colon cancer model, 
radiotherapy-induced senescent M2 macrophages 
were sufficient to inhibit T cell functionality. The 
clearance of senescent cells reversed the proliferation 
of T cells, suggesting that senescence may foster an 
immunosuppressive TME regulated by M2 subsets 
[19]. Finally, M2 macrophages promote angiogenesis 
through the production of VEGF, PDGF, and TGF-β 
[134], although the anti-angiogenic effect of senescent 
macrophages is compromised by the loss of Fas ligand 
(FasL) [140]. Overall, these findings suggest that 
senescence makes macrophages more likely to 
promote tumor progression. 

4.3. MDSCs 
Myeloid-derived suppressor cells (MDSCs) 

comprise a heterogeneous group of myeloid 
progenitor cells and immature myeloid cells (IMCs) 
[141]. They are categorized into monocytic 
(Mo-MDSCs) and polymorphonuclear MDSCs 
(PMN-MDSCs) [142], analogous to macrophages and 
neutrophils, respectively. MDSCs suppress tumor 
immunity through various mechanisms [141] while 
aging further enhances these immunosuppressive 
effects. First, aged mouse models exhibit expanded 
MDSC populations that produces IL-6 relevant to 
inflammaging [143-145]. In the bone marrow of aged 
mice, MDSCs make up the majority of the 
NF-κB-expressing cells, suggesting NF-κB's role in 
their increase [145]. Secondly, with aging, SASP 
factors can enhance the proliferation and functionality 
of MDSCs [146]. p16Ink4a and p21Cip1/Waf1 are highly 
expressed in Mo-MDSCs and stimulate CX3CR1 
chemokine receptor expression, leading to the 
accumulation of Mo-MDSCs at tumor sites [147]. 
Third, single-cell analysis revealed that, in the 
high-senescence-signature group, malignant cells 
exhibited a greater degree of interaction with MDSCs 
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across many human cancers, indicating an enhanced 
immunosuppressive capacity of MDSCs [96]. This 
evidence strongly suggests that aging reinforces the 
immunosuppressive role of MDSCs. 

4.4. NK cells 
 NK cells are crucial for immune surveillance 

against cancers, consisting of immature 
CD3-CD56bright NK cells and mature CD3-CD56dim NK 
cells, with the latter accounting for the majority [148]. 
Mature NK cells directly eliminate tumor cells via the 
production of perforin and granzyme B, or expression 
of FasL and TNF-related apoptosis-inducing ligand 
(TRAIL) [148], while immature NK cells contribute to 
tumor cell elimination by producing cytokines such as 
IFN-γ, TNF-α, and GM-CSF [149]. Furthermore, NK 
cells play a critical role in neutralizing senescent cells, 
thereby preventing early tumorigenesis [8]. For 
example, uterine NK cells clear senescent decidual 
cells following the induction of IL-15 [150]. 
Senescence impacts both subsets of NK cells. In a 
study examining changes in aged NK cells, an 
increase in NK cell numbers with age was observed in 
11 out of 13 studies [151]. The absolute number of 
immature CD3-CD56bright NK cells has been shown to 
decrease with aging [152-154]. Additionally, the 
response of NK cells to IL-2 was impaired [152], and 
their ability to produce IFN-γ and IL-8 was 
significantly inhibited [155, 156]. In mature 
CD3-CD56dim NK cells, age-related declines in 
perforin lead to reduced NK cell cytotoxicity (NKCC) 
[153]. Additionally, the expression of NK cell 
activating receptors like NKp30 and NKp46 was 
reduced in elderly groups [154]. Consistent with the 
reduction in NKCC, compromised tumor 
immunosurveillance of senescent NK cells against 
acute myeloid leukemia has been found [35]. Overall, 
this evidence suggests that the senescence of NK cells 
leads to a diminished antitumoral effect. 

4.5. Dendritic cells  
Dendritic cells (DCs), as the quintessential APCs, 

play a critical role in bridging innate and adaptive 
immunity. DCs are classified as conventional DCs 
(cDC1 and cDC2) or plasmacytoid DCs (pDCs). cDC1 
and cDC2 are respectively tasked with antigen 
presentation to CD8+ T cells via MHC-I and CD4+ T 
cells via MHC-II, while pDCs are dedicated to 
antiviral and antitumor immunity through the 
production of type I interferons [157]. Aging impacts 
both cDCs and pDCs through several mechanisms. 
For cDCs, their absolute number remains unchanged 
with aging [37], and research has reported a 
diminished capacity for phagocytosis, migration, and 
T cell stimulation [37, 38]. In mouse models with 

B16-ovalbumin (OVA) melanomas, senescent DCs 
failed to effectively stimulate T cells due to defective 
CCR7 signaling, despite an unchanged capacity of 
antigen presentation [38], which led to tumor 
progression. In aged humans, a decreased expression 
of MHC peptide and CD40 in cDCs was observed, 
subsequently impairing CD4+ T cell expansion [39]. In 
pDCs, impaired production of type I and III interferon 
has been observed, resulting in reduced CD8+ T cell 
cytotoxicity [158]. Moreover, NK cells were unable to 
activate and eradicate lymphoma tumor cells due to a 
deficiency in IL-15, IL-18, and IFN-α production by 
pDCs [159]. Therefore, both DC subsets exhibit a 
functional decline in tumor immunity during aging. 

5. Adaptive Immunity Senescence: The 
Main Force of Immunosenescence 

 Adaptive immunity plays a central role in tumor 
defense, with CD8+ cytotoxic T lymphocytes (CTLs) 
serving as the primary effector cells. Besides, CD4+ T 
cells, regulatory T cells (Tregs), and B cells all 
participate in the interaction of tumors and the TME. 
Thus, exploring the senescence of adaptive immunity 
is essential in discussions of immunosenescence and 
tumor progression. Our focus will primarily be on the 
role of senescent T cells within the TME, with a brief 
overview of senescent B cells, whose role in the TME 
remains less defined. 

5.1. CD8+ T and CD4+ T Cells 
Following cross-presentation and costimulation 

primarily by cDC1 in secondary lymphoid organs, 
naïve CD8+ T cells become activated and migrate to 
tumor sites, where they directly eliminate tumor cells 
through perforin/granzyme-mediated or 
FAS/FASL-mediated cytotoxicity. CD4+ T cells, 
particularly Th1 cells, enhance antitumor immune 
responses by augmenting CD8+ T cell activity and 
activating M1 macrophages by producing IFN-γ [160]. 
Like other innate immune cells, both CD8+ and CD4+ 
T cells can eliminate senescent cells [9, 20, 81]. 
Oncogene-induced pre-malignant senescent 
hepatocytes were cleared by macrophages, which 
were recruited by CD4+ T cells through the secretion 
of SASP [20]. Furthermore, senescent cancer cells are 
highly immunogenic, facilitating their recognition 
and elimination by DCs and CD8+ T cells [9]. T cells 
are crucial in the clearance of senescent cells. 

T cells are the most extensively studied immune 
cells in the context of immunosenescence. Multiple 
pathways contribute to T cell senescence, with p38 
and p53 being the most studied [4]. Senescent CD8+ T 
cells were induced in LCMV-infected mice and aged 
CMV-infected patients [161, 162], characterized by 
expression of killer cell lectin-like receptor subfamily 
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G 1 (KLRG-1) and impaired proliferation [162]. TIS is 
also observed in T cells. In non-small cell lung cancer 
(NSCLC) patients, chemotherapy induces T cell 
senescence [163]. Lately, researchers have found that 
chemoradiotherapy induced senescence of CD8+ T 
cells in human cervical cancers [14]. Mechanistically, 
concurrent chemoradiotherapy triggers expression of 
atypical chemokine receptor 2 (ACKR2) on tumor 
cells, thus increasing the production of TGF-β and 
driving T cell senescence [14]. Peripheral 
phospholipids were also responsible for T cell 
senescence [164]. Furthermore, in various cancers 
including breast cancers, melanomas, colon cancers, 
prostate cancers, ovarian cancers and head and neck 
cancers [165-167], tumor-derived immunoglobulin- 
like transcript 4 (ILT4) and PD-L1 in EVs 
reprogrammed lipid metabolism and induced CD4+ T 
cell senescence via MAPK ERK1/2 signaling, leading 
to tumor progression and a poor prognosis [165, 168]. 
Tumor-T cell contact can activate cAMP pathways to 
trigger CD4+ T cell senescence, a process reversed by 
tumor cell TLR8 activation [166]. Recently, emerging 
evidence indicates that tumor cells further promote T 
cell senescence via mitochondrial transfer [169]. 
Mechanistically, T cells internalize tumor-derived 
mutated mtDNA, promoting cellular senescence and 
compromising effector functions and memory 
formation [169]. These findings underscore the 
previously underappreciated role of mitochondrial 
dysfunction in driving T cell senescence. 

Senescence affects T cells in several ways (Figure 
1C). First, regarding surface markers, senescent T cells 
are typically characterized as 
CD28-CD57+CD4+/CD8+ T cells [170-172], which is 
observed in many types of cancer, including lung 
cancer, ovarian cancer, head and neck cancer, and 
glioblastoma, as mentioned above [173-176]. 
Additionally, senescent T cells possess an increased 
expression of Tim-3, KLRG-1, and re-expression of the 
naïve T cell marker CD45RA [177, 178]. Expression of 
PD-1 and CTLA-4 was also observed in patients with 
acute myeloid leukemia (AML) and visceral adipose 
tissue of obese mice [179, 180], suggesting potential 
immunosuppression. Second, the cytotoxicity of 
senescent CD8+ T cells is reduced, as evidenced by 
lower levels of perforins and granzyme B [30, 31, 181], 
which leads to impaired antitumor immunity [181]. In 
contrast, senescent CD4+ T cells maintain their 
cytotoxic potential, with unchanged levels of 
perforins and granzyme B [182]. Third, senescent T 
cells acquire SASP, which is related to age-associated 
inflammation [183]. However, its role within the TME 
remains unclear. Fourth, senescent T cells modulate 
monocytes/macrophages through upregulated 
surface markers Tim-3 and CD40L [177]. This leads to 

the production of pro-inflammatory cytokines and 
angiogenic factors, including TNF, IL-1β, IL-6, 
MMP-9, VEGF-A, and IL-8 [184]. Interestingly, when 
co-cultured with senescent T cells, monocytes/ 
macrophages exhibit increased CD16 expression, a 
characteristic of M2 macrophages [130, 131, 184]. It 
can be hypothesized that senescent T cells promote 
the polarization of macrophages from M1 subsets to 
M2 subsets. Fifth, senescent T cells undergo metabolic 
reprogramming akin to that of senescent somatic cells, 
characterized by enhanced glycolysis, mitochondrial 
biogenesis, and upregulated lipid metabolism [185, 
186]. Accumulation of lipid droplets in these cells 
impairs effector functions and diminishes the efficacy 
of T‐cell–based immunotherapies [187], while 
increased glycolytic flux further amplifies SASP 
secretion [185]. Overall, the evidence suggests that T 
cell senescence promotes a shift towards an 
immunosuppressive TME. 

Accurate discrimination between senescent and 
exhausted T‐cell phenotypes is essential, as both states 
are marked by functional impairment and co-express 
inhibitory receptors such as PD‐1 and CTLA‐4 [179, 
180]. First, exhausted T cells are induced by constant 
stimulation of antigen, including chronic infection 
and cancer [188], wherein naïve T cells exhibit 
impaired differentiation into effector/memory 
subsets. Instead, they progress through precursor 
exhausted to terminally exhausted states [188]. 
Conversely, senescent T cells derive from effector or 
memory T cells [189]. Second, senescent T cells are 
typically regarded as CD28-CD57+CD4+/CD8+ T cells. 
Early T cell exhaustion is identified by expression of 
PD-1, TCF-1, and low expression of EOMES, while 
terminal T cell exhaustion is identified by high 
expression of PD-1, EOMES, and loss of TCF-1 [188]. 
On the contrary, senescent T cells exhibit far lower 
levels of PD-1 and CTLA-4 compared to exhausted T 
cells [161]. Third, while immune checkpoint blockade 
(ICB) can rejuvenate exhausted T cells, it has little 
effect on senescent T cells [177]. This phenomenon can 
be attributed to the differential expression of 
inhibitory receptors [161]. Currently, there are no 
viable approaches to reverse T cell senescence. 
Moreover, an optimal therapeutic effect from ICB 
requires the coreceptor CD28, which is absent in 
senescent T cells [190, 191]. Fourth, senescent T cells 
display a highly differentiated phenotype marked by 
the loss of CD27 and CD28 [4], whereas exhausted T 
cells can be categorized into several subsets based on 
their differentiation [192]. Thus, T cell senescence 
appears to be an irreversible endpoint, whereas T cell 
exhaustion may represent a reversible process. 

 Clinically, both senescent CD4+ T and CD8+ T 
cells were associated with poor survival rates and 
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immunotherapy response in cancer patients [193-195], 
indicating that they may pose a barrier to effective 
cancer therapies. In metastatic breast cancer, patients 
undergoing chemotherapy exhibited a correlation 
between the increased number of senescent 
CD28-CD57+ T cells and shorter progression-free 
survival (PFS) [196]. This correlation may be due to 
the elevated levels of IL-6 and IL-10 [196], yet the 
mechanisms by which senescent T cells impact 
chemotherapy outcomes remain unclear. Regarding 
ICB, though it has minimal effects on senescent T 
cells, T cell senescence has been correlated with a lack 
of ICB benefit in elderly patients with distinct cancers 
[18, 194]. Furthermore, aged mice experienced more 
ICB-induced adverse events compared to young mice, 
mediated by the IL-21-CXCL13-auto-antibody axis in 
CD4+ T cells [40], highlighting senescence as a risk 
factor for ICB. Nonetheless, a multicenter study found 
that elderly patients with melanoma responded more 
efficiently to anti-PD-1 therapy [197]. This paradoxical 
finding warrants further investigation. It may be that 
senescent tumor cells become more susceptible to T 
cell immunity following PD-1-PD-L1 interaction 
blockade [198]. Together, senescent T cells become 
dysfunctional and contribute to an 
immunosuppressive TME, with their clinical 
implications necessitating further investigation. 

5.2. Tregs 
Regulatory T cells (Tregs), identified as 

CD4+FOXP3+CD25high T cells, play an important role 
in regulating tumor immunity. Tregs suppress tumor 
immunity through five primary mechanisms [199]. In 
addition, Tregs are capable of inducing 
immunosenescence [200, 201]. Firstly, Tregs induce 
DNA damage in T cells via glucose competition, 
subsequently leading to T cell senescence via p38, 
ERK1/2, and STAT pathways [200, 201]. Furthermore, 
a subset of Tregs, known as γδ regulatory T cells, can 
induce senescence of T cells and DCs in breast cancer 
models [202]. Interestingly, similar to tumor cells, 
activation of TLR8 with TLR8 ligands has been found 
to inhibit Treg-induced senescence by abrogation of 
Treg activity [201]. Tregs are also influenced by aging. 
Studies have demonstrated that aged mice exhibit 
increased numbers of Tregs and higher FOXP3 
expression. This subset of Tregs produces elevated 
levels of IL-10 and suppresses T cells and DCs more 
effectively compared to their younger counterparts 
[203]. Single-cell analysis similarly revealed that, in 
cancers exhibiting a high senescence signature, there 
was increased infiltration of regulatory T cells (Tregs), 
which facilitated immune evasion and consequently 
promoted tumor progression [96]. Together, aged 
Tregs in the TME exhibit enhanced 

immunosuppressive capabilities. 

5.3. B cells 
 Historically, B cells were considered minor 

contributors to tumor immunity, but recent studies 
have challenged this view [204]. It is now clear that B 
cells contribute to antitumor immunity through 
multiple mechanisms. First, activated B cells 
differentiate into plasma cells that secrete antibodies. 
IgGs have been found to coat tumor cells, facilitating 
their internalization by DCs and subsequent T cell 
activation [205]. Moreover, IgG-secreting B cells can 
inhibit cancer cell growth in early-stage NSCLC [206]. 
Different from IgGs, IgAs eliminate tumor cells in 
ovarian cancers through transcytosis [207]. Antibodies 
also indirectly enhance antitumor immunity through 
mechanisms including ADCC, antibody-dependent 
cellular phagocytosis (ADCP), and 
complement-dependent cytotoxicity (CDC) [204]. 
Second, B cells have been observed presenting 
antigens to CD4+ T cells by MHC-II or 
cross-presenting antigens to CD8+ T cells by MHC-I, 
thereby activating T cells [204]. Third, recent studies 
have demonstrated an association between B cells and 
tertiary lymphoid structures (TLSs) [208]. TLSs are 
ectopic lymphoid organs beyond classical lymphoid 
organs, which develop at sites with chronic 
inflammation [209]. The formation of TLSs relies on 
interactions between lymphoid tissue inducer cells 
(LTi cells) and stromal cells mediated by IL-7 and 
CXCL13 [209]. Subsequently, the production of VEGF, 
chemokines, and adhesion molecules facilitates the 
formation of high endothelial venules (HEVs) and the 
recruitment of lymphocytes [209]. In injured kidney 
models, TLS formation was observed in aged but not 
young mice [210]. Moreover, in aged tumor-bearing 
mice, IL-21 produced by CD4+ T cells induced 
CXCL13 secretion, thereby promoting TLS formation 
[40]. This suggests that aging may drive the formation 
of TLSs. Mature TLSs create an environment that 
allows B cells to exert antitumor immunity, while B 
cells act as 'administrators' of these structures [204, 
208]. Interestingly, though TLSs are generally 
associated with a favorable prognosis in some cancers 
[204], in aged mice, TLSs promoted by CD4+ T cells 
led to ICB resistance [40]. Currently, there is 
insufficient evidence to fully understand the impact of 
senescent TLSs on tumor development, highlighting 
the need for further research. 

 Aging influences B cells in several ways. 
Specifically, gut microbiota has been shown to induce 
B cell senescence [211]. With aging, there is a 
significant decrease in B cells among peripheral blood 
mononuclear cells (PBMCs) due to reduced B 
lymphopoiesis in the bone marrow [212]. Despite the 
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decreased number of B cells, an age-related increase in 
IgG and IgA levels was observed in elderly groups, 
along with a decrease in IgD and IgM levels [213]. 
Interestingly, these changes vary between genders 
[213]. Moreover, inflammaging in aged groups leads 
to a reduction in B cell progenitors and an 
accumulation of oncogenic mutations [214]. Although 
research focuses on the senescence of B cells, the link 
between senescent B cells and tumor immunity 
remains to be explored. 

6. Stromal Senescence: The Supportive 
Structure of the TME 

 We have sequentially introduced the senescence 
of immune cells, but it is far from illuminating the 
complexities of the entire tumor microenvironment. 
The stroma is important in providing support and 
structure, promoting angiogenesis, regulating 
immunity, facilitating metastasis, and conferring 
chemoresistance during tumor progression, especially 
in cancers such as pancreatic cancer. It primarily 
comprises fibroblasts, endothelial cells, pericytes, and 
adipocytes, together with the extracellular matrix 
(ECM). Our discussion will focus primarily on the 
first two types of senescent stromal cells—fibroblasts 
and endothelial cells—and their roles within the TME. 

6.1. Fibroblasts 
Fibroblasts play a primary role in stromal 

formation, with cancer-associated fibroblasts (CAFs) 
receiving significant attention for their role in tumor 
progression. CAFs segregate into inflammatory CAFs 
(iCAFs) and myogenic CAFs (myCAFs), 
differentiated by their spatial localization [215]. iCAFs 
are located away from tumor cells, whereas myCAFs 
are adjuvant to tumor sites [215]. By secreting 
cytokines, chemokines, and other effector molecules, 
CAFs directly or indirectly remodel the TME, which 
involves crosstalk with immune cells, including 
polarization of immune cells, regulation of immunity, 
reduction of cytotoxic cytokines, upregulation of 
inhibitory receptors, and remodeling of the 
extracellular matrix (ECM) [216]. 

Various factors can induce fibroblast senescence. 
Radiotherapy causes DNA damage in fibroblasts, 
thereby triggering DDR and inducing senescence 
[217]. Novel therapies, such as CDK4/6 inhibitors, 
induced senescence of fibroblasts through the 
downregulation of Mdm2 in a melanoma model [15]. 
Histone deacetylase (HDAC) inhibitors, used to treat 
various tumors including T cell lymphoma and 
multiple myeloma, induce fibroblast senescence 
without DNA damage [218]. Interestingly, obesity 
increases the levels of deoxycholic acid in the 
enterohepatic circulation, which in turn drives the 

senescence of hepatic stellate cells through DDR [219], 
highlighting obesity as a significant contributor to 
stromal senescence. 

The tumor-promoting nature of senescent 
fibroblasts was first suggested by A. Krtolica et al. in 
2001, demonstrating their role in tumorigenesis in 
aged organisms [29]. Subsequent research has 
reinforced this finding. During tumor initiation, 
senescent fibroblasts promoted ovarian 
tumorigenesis, as evidenced by reduced tumor 
growth following the abrogation of the senescence 
program [220]. Further studies indicate that IL-4 or 
IL-10-mediated Th2 immunity, which is activated by 
NF-κB, predisposes aged H-Ras-activated mice to 
squamous cell carcinoma compared to younger 
counterparts [221]. MMP-3, secreted by senescent 
fibroblasts, leads to the dedifferentiation of 
premalignant epithelial cells, thereby increasing 
tumorigenesis risk [222]. Moreover, stroma-derived 
osteopontin (OPN), a component of the ECM, 
facilitated premalignant cell growth in elderly groups 
[223]. Interestingly, beyond endocrine effects, 
senescent fibroblast also stimulates neoplastic 
epithelial cell proliferation through the production of 
amphiregulin (AREG) in prostate models [224]. 
Together, stromal senescence robustly induces 
tumorigenesis through multiple mechanisms. 

Although senescent fibroblasts are often 
tumor-promoting, some studies indicate that during 
early stages, stromal senescence aids in recruiting 
immune cells (Figure 2A), thereby facilitating the 
clearance of senescent cells and reducing cancer risk. 
In fibrotic murine livers, senescent HSCs exhibited 
increased ECM degradation, coupled with enhanced 
immune surveillance mediated by NK cells [225]. In 
another murine liver fibrosis model, p53-induced 
senescence of HSCs resulted in macrophage 
polarization towards M1 subsets, mediated by SASP, 
including IL6 and IFN-γ [22]. M1 macrophages, in 
turn, eliminate senescent HSCs, thereby limiting 
tumorigenesis [22]. Though evidence has shown that 
senescent tumor cells can induce immune surveillance 
in several models, in addition to livers such as 
multiple myeloma and lung cancers [8], data on 
similar properties in senescent fibroblasts outside the 
liver are limited and warrant further investigation. 

During advanced stages of tumors, senescent 
fibroblasts are pivotal in tumor invasion, metastasis, 
angiogenesis, and a poor prognosis (Figure 2B). First, 
senescent fibroblast-derived MMP-2 and TGF-β 
induced keratinocyte invasion in squamous cell 
carcinoma models [226]. Second, excessive IL-8 
secreted by senescent fibroblasts enhanced invasion 
and metastasis in pancreatic cancer [227]. The levels of 
IL-8 and stromal senescence, as represented by 
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expression of p16INK4a, were associated with a poor 
prognosis of patients with pancreatic cancer [227]. In 
another research, IL-6 and IL-8 induced EMT and 
stemness of breast cancer cells, as demonstrated by 
fibroblastoid morphology, increased expression of 
CD44, and enhanced self-renewal capabilities in 
tumor cells, making them more aggressive [228]. 
Third, regarding angiogenesis, while early studies 
suggested reduced vascularization in aged 
tumor-bearing mice [229], subsequent research 
supports the idea that stromal senescence promotes 
vascularization via increased production of VEGF and 
TGF-β [27, 28]. Fourth, extracellular vesicles (EVs), as 
heterogeneous types of membrane vesicles important 
for intracellular communication, were secreted by 
senescent fibroblasts [230, 231]. Exosome, as a special 
category of EVs, was also found to be released in 
prostate cancers [232]. Not only did EVs promote 
tumor proliferation through EphA2-ephrin-A1 
interaction [231], but they also resulted in drug 
resistance via inducing expression of ATP-binding 
cassette subfamily B member 4 (ABCB4) [230]. 
Interestingly, although traditional approaches 
emphasize inhibiting tumor angiogenesis [233], 
senescence-induced angiogenesis could be 
therapeutically employed [89, 90]. Induced by MEK 
and CDK4/6 inhibitors trametinib and palbociclib 
(T/P), senescence successfully triggers SASP, 
including a series of pro-angiogenesis factors, which 
surprisingly enhances the therapeutic effect of 
chemotherapy and ICB in KRAS mutant pancreatic 
ductal adenocarcinoma (PDAC) [89, 90]. This 
approach capitalizes on the desmoplastic nature of 
PDAC, which impedes drug delivery to tumor sites 
[234, 235]. However, the viability of promoting 
angiogenesis through senescence in other tumor types 
remains uncertain. Finally, senescent fibroblasts 
upregulated gene expression relating to immune 
regulation and SASP, resulting in impaired CD8+ T 
cell cytotoxicity and poor responsiveness to 
immunotherapy and chemotherapy [236-239]. The 
presence of senescent fibroblasts is correlated with a 
poor survival outcome using machine learning [238, 
239]. 

6.2. Endothelial Cells 
It is important to note that the stroma consists of 

more than just fibroblasts. Tumor-associated 
endothelial cells (ECs) also significantly impact the 
TME as a crucial stromal component. Analysis across 
various cancer types reveals that ECs exhibit the 
highest rate of cellular senescence among all cell types 
in the vascular compartment of cancers [240]. In liver 

sinusoids, the majority of p16INK4a-expressing 

senescent cells are ECs [241]. Indeed, ECs are 
particularly susceptible to senescence, being the first 
cell types affected by metabolites and senescence 
stimuli [46]. Due to their critical location, various 
factors contribute to the senescence of ECs. 
Metabolites and hormones, including insulin, glucose, 
triglycerides, cholesterol, amino acids, ROS, 
endothelin I, and angiotensin II, can induce EC 
senescence. Senescent ECs, in turn, produce higher 
levels of ROS, endothelin I, and angiotensin II, 
creating a vicious cycle [46]. Specifically, nitric oxide, 
crucial for vasodilation, is believed to attenuate EC 
senescence [47, 242]. Conversely, the endothelial nitric 
oxide synthase (eNOS) is impaired in senescent ECs 
[243], indicating the interplay between NO and 
senescence. Cytokines such as TNF-α and TGF-β can 
induce senescence of ECs [47, 244]. Moreover, like 
other cells, conventional cancer therapies [47, 
245-247], targeted therapies including receptor 
tyrosine kinase inhibitors, VEGF inhibitors, and 
CDK4/6 inhibitors can all induce senescence of ECs 
[47, 248, 249]. Interestingly, kisspeptin-10 (KP-10), a 
member of multifunctional peptides inhibiting 
metastasis of cancers, can induce endothelial 
senescence [250]. In melanoma models, ECs exhibit 
upregulation of Krüppel-like factor 4 (KLF4), which 
induces senescence of ECs [13]. This suggests indirect 
tumor cell involvement in EC senescence. 

Senescent ECs have a dual role in tumor 
development (Figure 3). On one hand, senescent ECs 
induce self-elimination by immune surveillance to 
evade tumorigenesis [21], with impaired angiogenesis 
capacity demonstrated by reduced proliferation and 
VEGF levels [247, 251]. The benefit of this for cancer 
patients remains to be determined. On the other hand, 
senescent ECs promote tumor metastasis and 
treatment resistance via secretion of SASP [12, 13, 
246]. Moreover, the sustained activity of Notch1 
receptors is observed in senescent ECs, which further 
promotes cancer metastasis through the production of 
VCAM-1 [249, 252]. Interestingly, though impaired 
angiogenesis was observed in senescent ECs, 
tumor-derived EVs can inhibit the senescence of ECs, 
thereby counteracting such effects [253]. Moreover, 
senescent EC-derived EVs can promote the 
proliferation and migration of tumor cells [253]. The 
pro-inflammatory profile of senescent ECs offers 
potential for survival prognostication and 
immunotherapy efficacy prediction using machine 
learning [240, 254], promising avenues for targeting or 
using senescent ECs as biomarkers. 
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Figure 2. Impacts of SASP produced by senescent fibroblasts within the tumor microenvironment. A At the initial stage, senescent fibroblasts release SASP factors that 
encourage antitumoral immune responses. M1 macrophage polarization and NK cell-mediated cytotoxicity are bolstered by these factors. Additionally, ECM degradation by SASP factors 
facilitates enhanced immunosurveillance by NK cells. Conversely, other SASP factors may promote tumorigenesis through interactions with Th2 cells, which upregulate the expression of 
PD-L1 on tumor cells. ECM components like OPN can aid in tumor growth. B At advanced stages, SASP factors play a pivotal role in tumor progression. On one hand, they can induce cancer 
stemness, promote epithelial-mesenchymal transition (EMT), confer chemotherapy resistance, and stimulate angiogenesis. On the other hand, SASP factors from senescent fibroblasts 
contribute to an immunosuppressive microenvironment. This includes the recruitment of MDSCs, M2 and N2 polarization, inhibition of NK cell cytotoxicity, and Treg cell enhancement, which 
collectively inhibit effective anti-tumor immune responses. The interactions between PD-1 on T cells and PD-L1 on tumor cells further facilitate immune evasion by the tumor. MMP, matrix 
metalloproteinase; OPN, osteopontin; ECM, extracellular matrix; AREG, amphiregulin; ICAM-1, intercellular adhesion molecule-1; TNF-α, tumor necrosis factor-α; IL, interleukin; IFN-γ, 
interferon-γ; TGF-β, transforming growth factor-β; EVs, extracellular vesicles; VEGF, vascular endothelial growth factor; PD-1, programmed cell death protein 1; PD-L1, programmed cell 
death protein ligand 1; EMT, epithelial-mesenchymal transition; NK, natural killer; Th2, helper T cell 2; rDC, regulatory dendritic cell; IDO, indoleamine 2,3-dioxygenase; ABCB4, ATP-binding 
cassette subfamily B member 4; EphA2, erythropoietin-producing hepatocellular A2; ephrin-A1, recombinant human Ephrin A receptor 1. This figure was created with BioRender 
(https://biorender.com/). 
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Figure 3. Induction and impact of endothelial cell senescence within the tumor microenvironment. Endothelial cells, as another important component of stroma, specifically 
become senescent when they encounter metabolites and hormones, including glucose, cholesterol, insulin, etc. M2-derived TGF-β can be another source of induction. Senescent endothelial 
cells produce increased levels of angiotensin II, endothelin 1, ROS, and decreased levels of NO, which in turn induce senescence of endothelial cells. Tumor-secreting KP-10 and upregulation 
of KLF4 on ECs can induce senescence of ECs. SASP factors produced by senescent endothelial cells have dual effects. On one hand, they lead to self-immunosurveillance mediated by CD4+ 
T cells. On the other hand, CXCL12 and CXCL11 can promote tumor cell metastasis and resistance to chemotherapy. Tumor-derived EVs are able to inhibit senescence of ECs, thereby 
counteracting the impaired angiogenesis of senescent ECs. Moreover, senescent EC-derived EVs and upregulation of VCAM-1 can promote proliferation, and migration of tumor cells. Using 
machine learning, ITGA5, TGM2, and FSCN1 were screened to be the potential prognostic pan-cancer biomarkers. EC, endothelial cell; NO, nitro oxide; Ang II, angiotensin II; ET-1, endothelin 
1; KLF4, Kruppel-like factor 4; KP-10, kisspeptin-10; CXCL, C-X-C motif ligand; CXCR, C-X-C motif receptor; ICOS, inducible T cell co-stimulator; ICOSLG, inducible T cell co-stimulator 
ligand; VCAM-1, vascular cell adhesion molecule-1; ITGA5, integrin subunit alpha 5; TGM2, transglutaminase 2; FSCN1, fascin actin-bundling protein 1. This figure was created with BioRender 
(https://biorender.com/). 

 

7. Role of SASP Within the TME: A 
Double-Edged Sword 

In the previous section, we have detailed the 
senescent immune and stromal cells within the TME. 
Notably, SASP is increasingly recognized as a key 
mediator of cellular senescence. Earlier perspectives 
suggested that senescent cells acquire SASP only 
when cellular senescence is triggered by DNA 
damage or the DNA damage response (DDR) [54, 
255]. However, current research suggests that SASP 
induction is a complex process mediated by multiple 
pathways [8, 41]. Four primary pathways are now 
identified as mediators of SASP induction: 
p53-p21/p16-Rb, DDR-NF-κB, p38 MAPK, as well as 
mTOR and cytoplasmic DNA-cGAS-STING pathways 
[8, 256]. Additionally, SASP is regulated by epigenetic 
mechanisms and oxylipins, such as dihomo-15d-PGJ2 
[256]. The heterogeneity of SASP is influenced by the 
cell type and the causes of senescence, with IL-6 and 
IL-8 being commonly identified SASP factors [8]. In 
this section, we will concentrate on the dual role of 
SASP in tumor progression. Research indicates that 

SASP secretion is influenced by tissue type, cell type, 
and stage of progression. Specifically, SASP dynamics 
within the tumor microenvironment can be 
categorized into two distinct stages. 

During tumor initiation, SASP factors help 
eliminate potential pre-malignant cells. Senescent 
hepatocytes contribute to tumor surveillance through 
SASP-mediated senescence surveillance [80, 257], 
which relies on the participation of immune cells. 
These two studies underscore the importance of 
timely senescence surveillance in the liver. This has 
also been demonstrated in other cancers, including 
lymphoma, melanoma, and osteosarcoma, where 
innate immunity-mediated clearance of senescent 
cells provides tumor-suppressive effects [8, 45]. 
Specifically, senescent pre-malignant cells may give 
rise to cancer if not cleared promptly. Senescent 
fibroblasts within the TME, as previously described, 
also exhibit anti-tumor activity during the early stages 
of tumor development. An exception arises in 
KRAS-driven lung cancer, where senescent 
macrophage SASP unexpectedly promotes early 
tumorigenesis [23], underscoring the need for deeper 
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investigation into immune-derived SASP. 
In established tumors, SASP fosters invasion, 

metastasis, and neovascularization, which we have 
elaborated on in the section on senescent fibroblasts. 
Senescent ECs produce SASP factors fostering 
metastasis in breast cancer [12] and melanoma models 
[13] and contributing to chemotherapy resistance 
[246]. Moreover, the immunosuppressive 
microenvironment created by SASP factors should be 
emphasized. IL-6 regulates both innate and adaptive 
immunity. In innate immunity, through IL-6-STAT3 
signaling, HCC-derived CAFs activate and maintain 
PD-L1+ neutrophils, thus impairing T cell function via 
PD-1-PD-L1 interaction [258]. What’s more, 
HCC-derived CAFs secreted IL-6 to generate 
regulatory DCs, which contribute to the dysfunction 
of T cells and the promotion of Treg activity via 
indoleamine 2,3-dioxygenase (IDO) upregulation 
[259]. CAF-derived IL-6 promotes the differentiation 
of monocytes into myeloid-derived suppressor cells 
(MDSCs), thereby mediating immune dysfunction, 
which has been observed in HCC [260], pancreatic 
cancer [261], and esophageal squamous cell carcinoma 
[262]. The extracellular matrix secreted by senescent 
fibroblasts was also able to limit NK cell cytotoxicity 
[263]. In adaptive immunity, CAFs can directly 
enhance Treg function while inhibiting T cell 
proliferation through IL-6 production [264]. 
Meanwhile, TGF-β, as another component of SASP 
[54], also acts as a regulator in tumor immunity. 
TGF-β not only promotes the transformation of 
monocytes into M2 macrophages [216] but also 

induces N2 neutrophil polarization in HCC [265]. 
Moreover, TGF-β blocks IL-15-induced activation of 
mTOR, which is essential for cytotoxicity and 
proliferation of NK cells [266]. Suppression of TGF-β 
successfully abrogated metastases in two mouse 
models [266]. TGF-β derived from CAFs also 
promotes both Th17 differentiation and the 
conversion of CD4+ naïve T cells into Tregs [267, 268] 
while inhibiting the production of perforin, granzyme 
B, FasL, and IFN-γ by CD8+ T cells [269]. Collectively, 
SASP factors produced by senescent cells are broadly 
immunosuppressive in advanced stages of tumors. 

8. Novel Therapies Targeting Senescence: 
Next Hope for Cancer Treatment? 

 The advent of novel immunotherapies, 
including ICB, engineered chimeric antigen receptor 
(CAR) T cells, and cancer vaccines, has ushered in a 
new era in cancer treatment. Despite its success, ICB 
faces resistance driven by genetic and epigenetic 
aberrations in tumor cells, T cell exhaustion, 
cancer-associated fibroblasts (CAFs), and 
immunosuppressive mechanisms [270]. 
Consequently, there is an urgent need to overcome 
these obstacles. Emerging evidence highlights the 
promising potential of targeting senescence to 
enhance the efficacy of ICB. These approaches fall into 
four categories—induction of senescence, regulation 
of SASP, clearance of senescence, and senescence 
reprogramming (Figure 4). 

 

 
Figure 4. Targeting senescence by modulation of SASP or clearance of senescent cells. A One strategy to target senescence involves preventing senescent cells from producing 
tumor-promoting SASP factors. These drugs, termed senomorphics, primarily act on pathways such as cGAS-STING, JAK-STAT, and p38α-MAPKAPK2. Key mechanisms include NF-κB and 
mTOR to inhibit SASP production. Drugs such as metformin and rapamycin are among those used to modulate these pathways and mitigate the detrimental effects of SASP. B Another widely 
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used strategy is to eliminate senescent cells with senolytics. The first-generation senolytics target anti-apoptotic pathways intrinsic to senescent cells, such as those involving BCL-2, PI3K-AKT, 
and mTOR. Second-generation senolytics find a new path by targeting specific surface markers on senescent cells. It utilizes innovative techniques like CAR-T cells, chimeric polypeptides, and 
vaccines. Notably, efforts are being made to enhance senescence surveillance mediated by T cells and NK cells. JAK, janus kinase; STAT, signal transducer and activator of transcription; NF-κB, 
nuclear factor-κB; cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase; STING, stimulator of interferon genes; mTOR, mammalian target of rapamycin; MAPKAPK2, 
mitogen-activated protein kinase-activated protein kinase 2; DDR, DNA damage response; BCL-2, B-cell lymphoma-2; PI3K, phosphatidylinositide 3-kinases; CAR-T, chimeric antigen 
receptor-T; GPNMB, glycoprotein nonmetastatic melanoma protein B; uPAR, urokinase-type plasminogen activator receptor; NKG2DLS, Natural killer group 2 member D ligands; SnC, 
senescent cell; SnTC, senescent tumor cell. This figure was created with BioRender (https://biorender.com/). 

 
8.1. Induction of Senescence 

In the early stages of tumors, senescence exerts 
antitumoral effects through several mechanisms, 
including clearance of senescent cells, activation of 
tumor immunity, and promotion of proper 
angiogenesis, as discussed above [89, 90, 225, 270]. 
Indeed, inducing senescence can improve the effect of 
cancer treatment (Figure 4). T/P-induced senescence 
fosters the accumulation of CD8+ T cells, leading to 
increased sensitivity to ICB and chemotherapy in 
human PDAC models [89, 90]. Interestingly, the 
desmoplastic nature of PDAC, which is typically 
resistant to drug treatment, was shown to benefit 
from T/P-induced SASP factor production, which 
promoted vascularization and improved drug 
delivery and chemotherapy response [89, 90]. 
Additionally, induction of senescence stimulated the 
production of antitumoral SASP factors, leading to 
NK cell-mediated tumor clearance [271]. EZH2 is a 
key gene regulating SASP secretion, whose blockade 
combined with ICB has successfully promoted the 
production of SASP chemokines, including CCL2 and 
CXCL9/10, leading to T cells and NK cells-mediated 
tumor immunity [11]. Nanoparticles co-delivering 
senescence inducers and TLR4 agonists extend 
survival in PDAC by activating T cells and NK cells 
[272]. Ali and JAK2 inhibitor ruxolitinib could also 
recruit T cells and NK cells within TME by inducing 
SASP secretion [273]. DC vaccines loaded with 
senescent tumor antigens or PD-1 blockade further 
potentiate T cell responses [198, 274]. Conclusively, T 
cells and NK cells are emerging as the primary force 
in eliminating senescent cells with the support of 
SASP. Beyond preclinical studies, clinical trials have 
explored inducing senescence with dexamethasone to 
re-sensitize response to ICB in patients with NSCLC 
(NCT04037462). 

To harness the antitumor benefits of TIS while 
mitigating its deleterious immunosuppressive effects, 
two principles may guide clinical implementation. 
First, the temporal window for senolytic intervention 
is critical. Extended persistence of senescent cells 
within the TME fosters immunosuppression, 
angiogenesis, and metastatic niche formation as 
discussed above. Thus, senolytics should be deployed 
once TIS has maximally engaged immune‐mediated 
tumor clearance but prior to the onset of a full‐blown 
SASP or escape from growth arrest by senescent cells 

[275]. Second, current senescence-inducing 
modalities—chemotherapy, radiotherapy, and kinase 
inhibitors—lack specificity and can inadvertently 
drive senescence in immune effector populations, 
exacerbating immune dysfunctions [14, 19]. To 
obviate this, agents that selectively target tumor‐cell 
senescence are required. For example, 
pharmacological inhibition of the replication origin 
kinase CDC7 induces senescence specifically in 
hepatocellular carcinoma cells without impairing 
normal immune cells [276]. Similarly, the natural 
alkaloid tryptanthrin (TRYP) rapidly triggers 
senescence in liver cancer cells, arresting proliferation 
while sparing systemic immunity [277]. 

8.2. Regulation of SASP 
Conversely, inhibiting the tumor-promoting 

SASP factors also emerges as a plausible alternative. 
(Figure 4A). Drugs targeting SASP pathways are 
referred to as senomorphics. Key intervention points 
include transcriptional regulators, signal transduction 
cascades, metabolic nodes, and the SASP factors 
themselves [8, 41, 48]. For instance, inhibiting the 
JAK2/STAT3 pathway, which is involved in 
SASP-associated tumor growth and chemoresistance, 
induces robust immune surveillance in Ptennull tumors 
with docetaxel-induced senescence [278]. Targeting 
PTBP1 via RNA interference prevented the 
protumoral effects of SASP factors in tumor-bearing 
mice [279]. NF-κB and mTOR have emerged as 
prominent targets for mitigating senescence [8, 92, 93]. 
Metabolic reprogramming in senescent cells further 
dictates SASP output: in pancreatic cancer models, 
elevated NAD⁺ flux enhances NF-κB–dependent 
proinflammatory SASP [280], whereas inhibition of 
nicotinamide phosphoribosyltransferase 
(NAMPT)—the rate‐limiting enzyme of the NAD⁺ 
salvage pathway—dampens SASP release and 
suppresses tumor growth [280]. In the hepatic niche, 
loss of the gluconeogenic enzyme 
fructose-1,6-bisphosphatase 1 (FBP1) in hepatocytes 
triggers secondary senescence of hepatic stellate cells 
via HMGB1 signaling; neutralization of extracellular 
HMGB1 attenuates HSC-derived SASP and impairs 
tumor progression [281]. Interestingly, metformin, a 
common medication for type II diabetes, can suppress 
NF-κB pathways [282]. It can also inhibit T cell 
senescence while maintaining its cytotoxicity [283]. 
Though metformin has shown potential in 
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attenuating aging [284], NF-κB suppression 
unfortunately led to drug resistance and a poor 
prognosis in murine lymphoma and melanoma 
models [92, 93]. Epidemiological studies suggest a 
decreased incidence of cancer in individuals receiving 
metformin [285], suggesting its potential role in 
cancer prevention rather than treatment. 

The mTOR-MK2 pathway also plays a crucial 
role in SASP production [286-289]. mTOR inhibitors 
like rapamycin reduce the secretion of 
tumor-promoting SASP factors [288, 289]. In a phase 
IIa randomized controlled trial, the use of rapamycin 
enhanced the response to influenza vaccination [290], 
demonstrating its potential to boost immunity. 
Moreover, unlike other mTOR inhibitors, brief 
administration of rapamycin can produce a sustained 
anti-SASP effect, thereby reducing the risk of adverse 
events associated with long-term treatment [291]. To 
date, clinical studies evaluating rapamycin's efficacy 
in targeting senescence remain in the early stages 
(Table 2) [292]. 

These findings raise the question: Can the 
regulation of SASP factors signify the next 
breakthrough in cancer therapy? The dual role of 
SASP in tumor development complicates its clinical 
application. Thus, balancing the antitumoral and 
protumoral effects of SASP factors is crucial. Based on 
current research on SASP so far, several key 

characteristics of SASP can be identified. The secretion 
of SASP factors is stage-dependent and 
tissue-dependent, which presents two major 
challenges. First, determining when SASP should be 
induced or inhibited remains a critical question. At 
present, it remains challenging to determine whether 
SASP is beneficial or detrimental for a particular 
patient. Nor can the exact point at which the role of 
SASP is reversed be identified. However, since many 
cancers are diagnosed at advanced stages, it may be 
more beneficial to inhibit the production of SASP 
factors to achieve improved clinical outcomes. 
Second, for certain tumor types, it remains unclear 
which strategy is optimal. The answer may lie in 
identifying which component of the SASP factors is 
dominant in regulating the TME as a whole. For 
instance, in pancreatic ductal adenocarcinoma 
(PDAC) models, pro-angiogenic factors produced by 
senescent cells can promote the formation of a more 
'open' microenvironment, thereby enhancing the 
response to chemotherapy and immunotherapy [89, 
90]. While in lymphoma models. In lymphoma 
models, IL-6 produced by senescent endothelial cells 
(ECs) has been shown to protect tumor cells from 
chemotherapy [246]. Overall, the future of regulating 
SASP as an effective cancer therapy is likely to be 
personalized. 

 

Table 2. Current clinical trials targeting senescence against cancers 

Category Drug Mechanism Combination 
therapy 

Condition Design Reference Status 

Regulation of 
senescence 

Dexamethasone Induction of 
senescence 

Anti-PD-1 therapy NSCLC Phase I/II NCT04037462 Terminated 

Rapamycin Inhibition of SASP Alisertib Advanced Solid 
Tumors 

Phase I [292] With result 

Clearance of 
senescence 

D plus Q 1st-generation 
senolytics 

None Childhood Cancer Phase II NCT04733534 Recruiting 
Anti-PD-1 therapy Head and Neck 

Cancer 
Phase II NCT05724329 Active 

None Triple-negative Breast 
Cancer 

Phase II NCT06355037 Recruiting 

Fisetin 1st-generation 
senolytics 

None Childhood Cancer Phase II NCT04733534 Recruiting 
None Breast Cancer Phase II NCT05595499 Recruiting 
None Breast Cancer Phase II NCT06113016 Recruiting 

ABT-263 (Navitoclax) 1st-generation 
senolytics 

Gemcitabine Advanced solid 
tumors 

Phase I [293] With result 

Docetaxel Advanced solid 
tumors 

Phase I [294] With result 

None Lymphoid 
malignancies 

Phase IIa [295] With result 

Rituximab Chronic lymphocytic 
leukemia 

Phase II [296] With result 

ABT-737 1st-generation 
senolytics 

None Ovarian Cancer Observational study NCT01440504 Completed 

“One-two” punch 
therapy 

Induction of 
senescence plus 
senolytics 

Decitabine plus 
navitoclax 

Acute myeloid 
leukemia 

Phase Ib NCT05222984 Active 

Olaparib plus 
navitoclax 

Triple-negative Breast 
Cancer 

Phase I NCT05358639 Active 

NSCLC, non-small-cell lung cancer; D, dasatinib; Q, quercetin; SCLC, small-cell lung cancer. 
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8.3. Clearance of Senescence 
Senescent cell clearance via senolytics, drugs that 

selectively ablate senescent cells, is a second 
therapeutic strategy (Figure 4B). Unlike SASP 
inhibitors, senolytics remove the SASP source and can 
be dosed intermittently [297]. Currently, there are two 
generations of senolytic drugs. First-generation 
senolytics target multiple antiapoptotic pathways 
(SCAPs) in senescent cells, such as BCL-2, SRC 
kinases, PI3K-AKT, etc. In contrast, targets of 
second-generation senolytics are discovered via 
high-throughput library screens, and include 
lysosome‑targeted agents, vaccine‑based approaches, 
nanoparticle delivery, and CAR‑T cell strategies [297]. 

Classic first-generation senolytics strategies 
include dasatinib (D) plus quercetin (Q) and 
navitoclax (ABT-263). D plus Q induces senescent cell 
death by inhibiting tyrosine kinase and PI3K 
signaling, respectively [298]. The combination of D 
and Q has been observed to alleviate symptoms and 
increase survival rates in various age-related diseases, 
including postmenopausal osteoporosis [299], 
intervertebral disc degeneration [300], diabetic kidney 
disease [301], and SARS-CoV-2 [302]. D plus Q can 
indirectly suppress tumor development and 
metastasis by mitigating stromal senescence [303, 
304]. This effect is attributed to the inhibition of 
protumoral SASP secreted by senescent fibroblasts 
and stem cells [303, 304]. Clinical trials (NCT04733534, 
NCT05724329, NCT06355037) are ongoing to 
determine whether D plus Q can be a viable approach 
to reverse chemoresistance or to improve survival as 
an effective and safe adjuvant therapy. ABT-263, one 
of the BCL-2 inhibitors, has demonstrated greater 
success in the context of cancer therapy, with the 
capacity to eliminate therapy-induced senescent cells 
in cancer models such as lung cancer, breast cancer, 
melanoma, ovarian cancer, and prostate cancer [45, 
298, 305]. In preclinical studies, ABT-263 reversed side 
effects associated with TIS, including bone marrow 
suppression, cardiac dysfunction, and cancer 
recurrence [306]. Clinical studies combining ABT‑263 
with chemotherapy are in progress (Table 2) [45, 
293-296, 307]. Finally, fisetin is another promising 
senolytic targeting senescence in cancers. Fisetin is 
extracted from vegetables and fruits, with a 
mechanism of action similar to that of quercetin [298, 
308]. In patients with small-cell lung cancers, fisetin 
successfully reversed the chemotherapy resistance 
induced by cellular senescence [309]. Several phase II 
clinical trials (NCT04733534, NCT05595499, 
NCT06113016) are underway to evaluate its efficacy 
and safety targeting cancers. 

Despite the promise, senolytics have drawbacks. 

First, patients receiving ABT-263 are at risk of 
developing thrombocytopenia and neutropenia [45, 
297], raising concerns about its safety. Second, 
resistance to BCL inhibition in senescent tumor cells 
has been reported [310, 311], though efforts are 
underway to target mitochondrial apoptotic 
pathways or employ sensitizer proteins to restore 
sensitivity to senolysis [310, 312]. Third, D plus Q 
failed to directly kill senescent cells and even 
exhibited tumor-promoting effects when used alone 
in animal HCC models due to the poor penetration in 
tumor sites [313, 314]. The potential of D plus Q in 
cancer treatment may be realized through novel 
delivery approaches, such as extracellular vesicles 
and nanoparticles [314, 315]. Fourth, the elimination 
of certain senescent cells may cause adverse 
consequences [241]. For example, acute clearance of 
senescent ECs in livers will compromise blood-tissue 
barriers, potentially accelerating liver fibrosis [241]. In 
light of these limitations, targeting specific markers to 
clear senescent cells, or eliminating certain types of 
senescent cells, has emerged as an alternative 
approach, namely the second-generation senolytics. 

 Second-generation senolytics exhibit enhanced 
target specificity, exploiting senescence-associated 
pathways through integrated immunotherapeutic 
strategies—including cancer vaccines, CAR-T cells, 
and antibody-drug conjugates (ADCs)—to achieve 
selective clearance (Figure 4B) [297]. SA-β-Gal is 
overexpressed in senescent cells, which is the most 
commonly used senescence marker [11, 47]. Not only 
can it be applied to specifically deliver ABT-263 [316], 
but it can also be recognized by engineered 
proteolysis-targeting chimeras (PROTACs), thereby 
selectively eliminating senescent cells [317-321]. 
Composed of a galactose (Gal) moiety, PROTACs like 
ARV-771 and MS999 can effectively clear senescent 
tumor cells without inducing significant adverse 
events [315, 318]. Another PROTAC drug 753b 
targeted BCL-xL and BCL-2 dually to inhibit tumor 
progression [321]. Moreover, new senescence markers 
are being found. For instance, urokinase-type 
plasminogen activator receptor (uPAR), a surface 
protein broadly expressed in T/P induced senescent 
cells, can be targeted by CAR-T cells, and its 
elimination improved the prognosis of mice with lung 
adenocarcinoma [87, 88, 322]. Moreover, using a 
chimeric polypeptide, uPAR-expressing senescent 
cells can be cleared by NK cells [323]. Natural killer 
group 2 member D ligands (NKG2DLs), another 
surface marker widely expressed in senescent cells, 
can be targeted by CAR-T cells safely [324]. The 
effectiveness of this approach in cancer treatment 
requires further investigation. Notably, CAR-T cells, 
like conventional T cells, may also undergo 
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senescence [48]. First, children and young adults with 
B-ALL have benefited most from CAR-T therapy 
[325], and current clinical trials have yet to report 
great benefits in elderly patients (NCT05523661, 
NCT04537442, NCT05707273, NCT04300998). Second, 
research has observed increased expression of CD57 
on CAR-T cells in the highly malignant glioblastoma 
multiforme models [326], and modulating p53 
signaling pathways helps enhance CAR-T therapy in 
patients with chronic lymphocytic leukemia [327], 
suggesting the potential for CAR-T cell senescence. 
Finally, targeting metabolic dependencies of 
senescent tumor cells offers an additional avenue for 
senolytic intervention, given their heightened reliance 
on glycolysis and glutaminolysis for survival [55, 56]. 
Indeed, inhibiting glucose uptake or metabolism 
induces apoptosis selectively in senescent tumor cells 
[328], while blockade of glutamine utilization 
suppresses their escape from growth arrest [100]. A 
potential of mitochondrial-targeted therapy is also 
suggested. Mitochondrial physiology likewise serves 
both as a vulnerability and a biomarker for senolytic 
sensitivity [329-331]. Specifically, pharmacologic 
inhibition of the TBK1–ATAD3A–Pink1 axis 
attenuates Pink1‐mediated mitophagy, mitigates 
cellular senescence, and enhances chemotherapeutic 
efficacy [329]. Moreover, mitochondrial dependence 
on BCL-XL and MCL-1 has emerged as a robust 
biomarker for forecasting senescent cell 
responsiveness to ABT-263 [330, 331]. Collectively, 
these findings position mitochondrial targeting at the 
forefront of next‐generation anti‐senescence therapies. 

 Based on the success of immunotherapy in 
cancer treatment, there is growing interest in targeting 
senescence to reverse the immunosuppressive 
microenvironment, thereby resensitizing 
immunotherapy. Senescent tumor cell clearance has 
been proven to reverse the immunotherapy resistance 
associated with the accumulation of senescent cells 
[19]. Senolytics disrupted SASP-mediated 
PD-L1/TGF-β signaling axis and replenished 
intratumoral CD8+ T cells with restored granzyme B 
expression by normalizing TME arginine metabolism 
via arginase-1 suppression [19]. Neutralization of 
senescent‐cell–derived mtDNA reverses PMN‐
MDSC–mediated immunosuppression, enhances 
T-cell function, and potentiates chemotherapy [102, 
169, 332]. Beyond malignant cells, senescent immune 
and stromal populations are also amenable to 
targeting (Table 3). Inhibition of cholesterol 
biosynthesis and lipid droplet formation prevents T‐
cell senescence and restores checkpoint‐inhibitor 
efficacy [168, 187]. CD153, highly expressed in 
senescent T cells, can be recognized and eliminated by 

the CD153-CpG vaccine in mice with obesity-induced 
senescence [333]. One year after the first vaccine was 
invented, another seno-antigen glycoprotein 
nonmetastatic melanoma protein B (GPNMB) was 
screened via analysis of the transcriptome, and 
vaccination against GPNMB on senescent ECs was 
also effective in clearing senescent cells in mice with 
obesity-induced senescence [334]. Moreover, the 
elimination of senescent fibroblasts with senolytics 
awakened T cells and NK cells-mediated tumor 
immunity and resensitized response to chemotherapy 
in breast cancers and pancreatic cancers [236, 237, 
263]. Senescent macrophages can also serve as a 
target, with their elimination through senolytics 
ameliorating early tumor growth and facilitating 
ICB-based immunotherapy [19, 23, 138]. Together, 
second-generation senolytics hold promise for 
attenuating senescence. Further clinical trials are 
needed to determine their safety and efficacy as 
cancer therapies. 

Finally, a therapeutic paradigm known as the 
“one–two punch therapy” has emerged, whereby 
induction of tumor-cell senescence is immediately 
followed by selective senolysis to maximize antitumor 
efficacy while limiting chronic SASP-driven toxicity 
[41, 43, 45]. In TP53-mutated liver cancer, inhibition of 
the DNA-replication kinase CDC7 specifically 
induced senescence of liver cancer cells, while 
subsequent treatment with mTOR inhibitors sertraline 
markedly reduced tumor growth [276]. The 
combination of ‘one-two punch’ therapy and 
immunotherapy has demonstrated potent inhibition 
of tumor growth in colorectal cancer and lung cancer 
[336, 337]. Ongoing efforts are identifying inducers 
and senolytics with enhanced specificity for senescent 
tumor cells to improve the therapeutic index [277, 337, 
338]. Notably, perturbation of methionine catabolism 
precipitates DNA damage–mediated senescence in 
liver cancer cells, and follow-on senolytic therapy 
effectively attenuates hepatocarcinogenesis [58], 
suggesting that metabolic targeting may unlock a new 
frontier for precise, safe senescence induction. 

8.4. Senescence Reprogramming  
Finally, since T cell exhaustion is reversible by 

ICB [177], researchers are exploring methods to revert 
cellular senescence. Opinions once held that no viable 
strategy had been identified to achieve this reversal, 
but recently, approaches have emerged to reverse 
senescence [339, 340]. Gu et al. showed that FBP1 
suppression bypasses senescence in HCC progenitors, 
restoring their proliferative capacity [340].  
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Table 3. Preclinical studies clearing senescent immune and stromal cells within the tumor microenvironment. 

Target Treatment Condition Outcome Reference 
Neutrophil 3MRp16 model with ganciclovir suicide gene strategy Prostate cancer Suppressed tumor growth [107] 

Procyanidin C1 Melanoma Reduced tumor metastasis and restored T cell responses [128] 
Macrophage Diphtheria toxin targeting tagged cells Lung cancer Diminished lung tumor burden and prolonged survival [23] 

ABT-737 
ABT-263 Lung cancer Suppressed early tumorigenesis  [138] 
ABT-263 Colon cancer Restored CD8+ T cell proliferation and response to immunotherapy [19] 
Nicotinamide mononucleotide Glioblastoma Inhibited T-cell dysfunction and delayed tumor initiation [133] 
IL-4 Aging Improved the health span of aged mice [335] 

T cell Metformin NA Lowered IFN-γ and IL-6 and increased TNF-α production [283] 
CD153-CpG vaccine Obesity Improved obesity-induced metabolic disorders [333] 

Endothelial cell Anti-Notch1/ VCAM1 antibody Ovarian cancer Reduced tumor cell adhesion and lowered lung metastasis [252] 
GPNMB vaccine Atherosclerosis Improved metabolic disorders [334] 

Fibroblast ABT-199 Pancreatic cancer Restored CD8+ T cell function and response to immunotherapy [236] 
ABT-737 Breast cancer Enhanced NK cell function and infiltration [263] 
Anti-TSPAN8 antibody Breast cancer Resensitize the response to chemotherapy [237] 
Q Osteosarcoma Reduced tumor invasiveness [303] 
D plus Q Ovarian cancer Reduced tumor metastasis [304] 

D, dasatinib; Q, quercetin; GPNMB, glycoprotein nonmetastatic melanoma protein B. 

 
Bi et al. demonstrated that exosomes derived 

from human embryonic stem cells and their miR-302b 
content can reverse cellular senescence by targeting 
key cell cycle inhibitors, leading to rejuvenation in 
aging mice without safety concerns [339]. These two 
studies have unveiled the potential for reversing 
aging, raising anticipation for further research. 

Moreover, the aged immune system can be 
reprogrammed to generate rejuvenated immune cells. 
First, one of the characteristics of natural 
immunosenescence is the involution of the thymus 
[48, 49], leading to reduced output of naive T cells. 
Efforts to rejuvenate the thymus have shown promise. 
Aged mice receiving IL-7 have shown enhanced 
adaptive immunity, as evidenced by lower viral load 
[341], while the thymostimulatory property of IL-21 
was further demonstrated in the humanized mice 
model [342, 343]. Gene modulation targeting Foxn1 
can also partially rescue thymic involution and 
reduction of peripheral CD4+ T cells via exogenous 
FoxN1-cDNA [344], although recent research has 
indicated that Foxn1 overexpression does not prevent 
thymic involution [345]. The second approach is 
implementing hematopoietic transplantation. 
Through intrathymic injection of hematopoietic 
progenitor cells from healthy mice, thymic 
reconstitution could be achieved in mice with severe 
combined immunodeficiency [346]. Umbilical cord 
blood (UCB) can be an alternative source of HSCs 
[347]. Finally, CD8+ T cells isolated from HIV patients 
can be reprogrammed to pluripotent stem cells, which 
subsequently re-differentiate into CD8+ T cells with 
enhanced cytotoxicity and proliferation [348]. 

9. Conclusion and Perspectives 
In conclusion, senescence is a ubiquitous process 

affecting all components of the TME. In this review, 
we highlighted that senescence extends beyond 
chronological aging, representing the sum of diverse 
senescence triggers. Aging can be understood as the 
cumulative effect of senescence inducers. In clinical 
settings, conventional and novel cancer therapies, 
oncogene-induced senescence, and interactions 
within the TME are significant contributors [54, 
83-85]. This underscores the need for senescence 
studies to extend beyond just elderly populations. 

Next, we have reviewed the properties of 
senescent immune cells in both innate and adaptive 
immunity, as well as the impact of SASP factors 
produced by senescent stromal cells. While adaptive 
and stromal senescence are well characterized, innate 
immune senescence in cancer remains understudied. 
This knowledge gap reflects the recent recognition of 
senescence in neutrophils and macrophages [50, 349]. 
As increasing studies have elucidated the roles of 
neutrophils and macrophages in tumor immunity 
[114, 121, 130, 134, 350-352], it becomes imperative to 
investigate the controversial role of innate 
immunosenescence in tumors. 

Finally, we outline existing therapies targeting 
senescence. Though great progress has been made in 
targeting SASP and senescent cells, their clinical 
application remains distant, as discussed in the 
corresponding section above. Moreover, barriers to 
the clinical implementation of senescence-targeted 
therapy can be partly attributed to the classification of 
senescent cells in human samples, since it is essential 
for understanding how senescence influences 
responses to cancer therapy and clinical outcomes, 
and to what extent senescence-targeting therapy can 
benefit from cancer treatment [63]. Saleh et al. 
reviewed 21 studies that aimed to identify 
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therapy-induced senescent cells in patient samples 
[16] and highlighted current limitations, including 
limited approaches for senescence detection, the 
challenge of obtaining cancer samples from patients 
who have not undergone chemotherapy, the 
requirement for freshly frozen tissue for SA-β-gal 
staining, and variability in baseline expression of 
senescence markers across different cancer samples 
[16].  

To address these challenges, it is urgently 
necessary to find solutions for the following issues: 
(a)To identify reliable inducers of senescence. 
Numerous factors can induce senescence, but 
identifying the most suitable one for laboratory and 
clinical conditions is crucial. Chemotherapy or 
radiation-induced senescence is not suitable for all 
tumor types, especially for those treated with 
chemotherapy after surgery [16]. Finding an inducer 
that works universally across cell types or matching 
various tumors with their viable inducers is essential. 
Typically, Scott W Lowe et al. have utilized T/P to 
induce senescence of pancreatic cancers and lung 
cancers [11, 87, 89]. However, a stable inducer for 
research on immunosenescence is still lacking. (b)To 
standardize existing markers. So far, SenNet has 
recommended senescence markers across different 
tissues of humans and mice [353]. Standard protocols 
exist for senescence research in vivo. According to the 
minimum information for cellular senescence 
experimentation in vivo (MICSE) published in 2024 
[354], markers used to detect senescent cells should 
include at least three markers of different properties 
of cellular senescence, at least one of which should be 
increased p16INK4a or p21Cip1/Waf1 expression. 
However, no standard has been established for 
clinical trials since MICSE is not intended for clinical 
practice. In breast cancers, progress is being made 
toward standardizing senescence detection, including 
the establishment of baseline Lamin B1 expression 
and a three-marker signature approach to detect TIS, 
which involves downregulation of Lamin B1 and 
Ki-67 and upregulation of p16INK4a [355, 356]. (c)To 
discover emerging markers. Discovering specific 
markers will aid in understanding functional changes 
and targeting specific senescent cells. For instance, 
senescent cells can be isolated using flow cytometry 
by the differential presence of dipeptidyl peptidase 4 
(DPP4) [357]. Anti-DPP4 antibodies enable natural 
killer (NK) cell-mediated elimination of senescent 
cells, offering new perspectives on senescence- 
targeted therapy [357]. CD153, differentially 
expressed in senescent T cells, could be applied as a 
vaccine to selectively clear senescent T cells in mice 
[333]. Moreover, advances in technology, such as 
artificial intelligence, high-throughput sequencing, 

and single-cell sequencing, offer new opportunities 
for studying senescence. For instance, uPAR, as one of 
the targets of CAR-T, was discovered with 
RNA-sequencing [87, 88]. Discovery of novel 
senolytics can now be achieved using machine 
learning [358]. Whether these new markers can be the 
next-generation markers in clinical practices remains 
to be validated. (d) To create novel detection 
approaches. Machine learning and artificial 
intelligence are gaining popularity in detecting 
senescence [353, 359], although identifying specific 
types of senescent cells remains challenging. Recently, 
Zhou et al. have introduced a brand-new approach to 
specifically trace certain types of senescent cells [360]. 
In this study, they generated pulse-chase tracing 
(Sn-pTracer), Cre-based tracing and ablation 
(Sn-cTracer), and gene manipulation combined with 
tracing (Sn-gTracer) to track p16INK4a macrophages 
and ECs, thereby enabling the clearance of specific 
types of senescent cells [360]. It is believed that 
targeting senescent cells will become a reliable cancer 
therapy in the near future. 
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