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Abstract 

Rationale: Accurate diagnosis and understanding of gastrointestinal (GI) diseases such as ulcerative colitis and Hirschsprung's 
disease remain challenging due to the limitations of traditional two-dimensional (2D) histopathology in capturing the intricate 
three-dimensional (3D) architecture and dynamic microenvironment of GI tissues. This study explores the potential of integrating 
3D imaging techniques with artificial intelligence (AI)-based analysis to improve histological evaluation and diagnostic accuracy.  
Methods: Using advanced imaging and computational tools, we identified critical structural and functional details of the enteric 
nervous system and associated tissues that are often missed by 2D approaches. 
Results: The results showed that 3D imaging coupled with AI significantly improves diagnostic accuracy and provides new insights 
into disease mechanisms, enabling earlier and more precise detection of pathological changes. In addition, this approach enhances 
our understanding of the pathophysiology of GI diseases, bridging gaps in both clinical and basic research. 
Conclusions: These findings underscore the transformative potential of 3D imaging and AI to revolutionize diagnostic workflows 
and advance our knowledge of GI diseases, ultimately contributing to improved patient outcomes and innovative research 
methodologies. 
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Introduction 
The gastrointestinal (GI) system contains an 

autonomous neural network, known as the enteric 
nervous system (ENS), responsible for regulating 
various GI functions. The ENS is comprised of 
plexuses, ganglia, and motor neurons, where the 
myenteric and submucosal plexuses are the essential 

constituents. The ENS, extending from the esophagus 
to the anal sphincter and even influencing organs 
such as the liver and pancreas, plays a vital role in the 
regulation of GI functions [1]. Nevertheless, 
disturbances in the ENS can lead to enteric 
neuropathies, including Hirschsprung disease 
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(HSCR), a congenital disorder caused by the absence 
of ganglion cells in the distal colon, leading to 
impaired motility and functional obstruction. This 
condition leads to severe constipation, abdominal 
distension, and, in some cases, life-threatening 
enterocolitis [2]. Prompt diagnosis and timely 
intervention are crucial for managing HSCR 
effectively [3]. Accumulating evidence indicates a 
correlation between the ENS and other GI diseases 
including colorectal cancer and inflammatory bowel 
disease (IBD), highlighting its possible importance in 
the progression of such diseases [4, 5]. 

For decades, conventional two-dimensional (2D) 
pathology has been the cornerstone for diagnosing 
and understanding GI diseases [6]. Efforts are 
ongoing to utilize artificial intelligence (AI) in these 
traditional histopathologic assessments to enhance 
clinical metrics [7]. However, limitations in 2D 
histopathology highlight its inability to fully capture 
the structural complexity and three-dimensional (3D) 
context of GI tissues, including various cell types, 
extracellular matrices, and vasculature [8]. This led to 
a study in which optical tissue clearing of the mouse 
intestine was performed to observe the myenteric 
plexus (MP), small nerve fibers, and epithelium by 
fluorescent antibody staining [9]. Additionally, 2D 
pathology cannot provide insight into dynamic GI 
tissue microenvironments, such as cellular 
interactions and immune responses within complex 
three-dimensional neuron structures. This inadequacy 
results in incomplete understanding of disease 
mechanisms and sampling bias [10]. Practical 
constraints also limit the number of tissue sections 
analyzed from a specimen, potentially overlooking 
crucial regions or variations containing essential 
diagnostic information. The preparation process for 
2D histology, involving fixation, sectioning, and 
staining, can introduce artifacts that compromise 
diagnostic accuracy [11]. These limitations hinder 
comprehensive visualization and study of intricate 
tissue interactions in their natural context [12, 13]. 

Recent studies highlight the substantial 
advantages of 3D imaging in analyzing tissue 
structure and disease [8]. Unlike traditional 2D 
methods, which offer limited depth and obscure 
spatial relationships, 3D histology techniques like 
tissue clearing and volumetric imaging have 
revolutionized understanding of complex tissues. 
These methods have demonstrated potential for 
comprehensive structural analysis in human lungs, 
liver, lymph nodes, and brain disease tissues, 
including Alzheimer’s and Parkinson’s diseases 
[14-17]. Although the critical roles of the ENS in GI 
and central nervous system (CNS)-related disorders, 
the ENS remains less well-characterized than the 

CNS, particularly with respect to image-based 
quantitative analysis. Consequently, there has been an 
increase in the number of efforts aimed at refining the 
structural mapping of the ENS through the use of 
whole-mount tissue processing and 3D imaging 
approaches. Given the utility of 3D imaging and its 
advantages in disease-related research, this technique 
has also been applied to the human ENS [18]. 
Recently, full-thickness samples of the sigmoid colon 
were rendered transparent without sectioning, 
followed by whole-mount immunolabeling and 3D 
imaging. This approach enabled detailed 3D graphical 
rendering of the ENS architecture within the 
muscularis externa, and allowed for comparative 
analysis of signal intensities for various neuronal 
markers localized to that layer [19]. A novel 3D 
approach for characterizing intestinal mucosal 
structures in IBD, particularly in ulcerative colitis 
(UC), Crohn’s disease (CD), and non-IBD cases, 
introduced a standardized method to quantify 
structural differences between normal and 
IBD-associated lesions [20]. Furthermore, a 3D 
method analyzing human ENS anatomy without 
tissue sectioning revealed significant differences in 
ENS features between HSCR colons and pediatric or 
adult donor tissues, highlighting age-related changes 
and unique features in the HSCR transition zone [12, 
21].  

Combined with 3D imaging, AI-powered image 
analysis significantly enhances tissue analysis 
accuracy and efficiency [22]. AI software employs 
machine learning algorithms requiring user training 
for data analysis and pattern recognition, enabling 
custom optimizations for specific research purposes 
[23, 24]. In contrast, non-AI software is immediately 
usable, focusing on image processing and 3D 
visualization [25]. AI-powered technology has clear 
advantages over non-AI methods in image analysis 
and pattern recognition, offering greater accuracy and 
efficiency. Previous studies have demonstrated that 
AI-powered methods excel in pathology [26], yet 
despite these advances, AI-powered 3D imaging has 
not yet been applied to the study of the ENS, 
highlighting an area that remains unexplored in 
current research. 

The objective of this study was to investigate the 
efficacy of tissue clearing, antibody staining, 3D 
imaging, and AI-powered analysis in facilitating 
rapid and accurate diagnoses. We hypothesized that 
AI-powered 3D imaging and analysis would 
significantly enhance diagnostic efficiency, accuracy, 
and reproducibility compared to traditional methods, 
enabling faster processing, improved visualization of 
crypts and neural structures, and more precise 
quantitative analysis for GI diseases. Additionally, we 
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set out to compare the diagnostic accuracy and 
efficiency of non-AI and AI-powered visualization 
and analysis in human colon biopsy and surgical 
samples. Moreover, it was hypothesized that the 
presentation of quantitative metrics from colon biopsy 
and surgical samples would facilitate the evaluation 
of histological structures and enhance diagnostic 
precision.  

Methods  
Tissue acquisition 

Colon biopsy specimen from a patient diagnosed 
with UC (IRB No. 2012-115-1183) and one from a 
healthy control subject (IRB No. 2011-202-1178) were 
obtained via colonoscopy with approval from the 
Seoul National Hospital of Institutional Review 
Board. Human surgical colon specimens, including 
those from HSCR (IRB No. 2320-072-1475), were 
acquired with the authorization of the Institutional 
Review Board for Human Subjects Research at Seoul 
National University Hospital. 

Subjects 
Tissue samples were obtained from three 

subjects: a patient with UC, a healthy control, and a 
patient diagnosed with HSCR. The UC patient was a 
34-year-old male with severe disease activity, as 
indicated by a Mayo Endoscopic Subscore of 3 at the 
time of sampling. The healthy control subject was a 
19-year-old male with no endoscopic abnormalities. 
The HSCR patient was a 1-month-old male infant who 
presented with delayed passage of meconium after 
birth. A rectal biopsy confirmed the absence of 
ganglion cells, establishing the diagnosis of HSCR. 

Tissue processing and clearing 
A colon biopsy tissue obtained from endoscopy 

was fixed overnight in 4% paraformaldehyde (PFA) at 
4 °C. After washing in 1x phosphate-buffered saline 
(PBS) (30 min on a shaker at room temperature), the 
tissue was transferred to a decolorization solution (5% 
CHAPS, 12.5% N-Methyldiethanolamine in PBS) at 37 
°C for 1 day to remove residual blood. The tissue was 
then washed in PBS (30 min on a shaker at room 
temperature) and then placed in an electrophoretic 
tissue device (Binaree, Cat No. BDTC-003) with Rapid 
Clearing solution (Binaree, Cat No. BRTC-001), 
applying 1.5 mA at 35 °C for 4 hours to facilitate rapid 
lipid removal. The cleared tissue was washed in PBS 
(30 min at room temperature), incubated in 
electrophoretic tissue clearing (ETC) solution (4 hours 
on a shaker at 55 °C) to eliminate remaining lipids, 
and washed in PBS (30 min at room temperature). The 
timeline and procedure comparison for colon biopsy 

sample processing show that both 2D and 3D 
immunohistochemistry (IHC) methods take 
approximately one week. However, 2D IHC requires 
2.5 days for embedding and sectioning, plus one day 
for imaging, while 3D IHC minimizes manual labor 
and captures hundreds of high-resolution images in 
just 30 minutes.  

Surgical colon tissues were immediately resected 
into 1×1 cm2 and pinned with margins using insect 
pins. The tissues were fixed in 4% PFA at 4 °C for 2 
days, washed in PBS (1 x 3 hours on a shaker at room 
temperature), and placed in an ETC chamber (Logos, 
Cat No. C30001). With 4% electrophoretic tissue 
clearing solution circulated (Logos, Cat No. C13001), 
1.5 mA was applied across the tissue at 35 °C for 16 
hours to effectively clear lipids and other optical 
barriers. The cleared tissue was washed in PBS (1 x 3 
hours at room temperature), incubated in ETC 
solution (8 hours on a shaker at 55 °C) to further 
remove residual lipids, and washed in PBS (1 x 3 
hours on a shaker at room temperature). For surgical 
samples, the 2D and 3D IHC protocols each required 
12 days from tissue processing to imaging. However, 
the 3D IHC technique enabled high-resolution 
imaging in just one day, while the 2D approach 
required 3 days for embedding and sectioning, 
followed by at least 3 days for imaging. 

Tissue immunostaining 
Colon biopsy and surgical tissues were 

processed as follows: Both types of tissues were 
incubated with primary antibodies diluted in 
DeepLabel™ Solution B (Logos, Cat No. C33003) (26 
hours for colon biopsy tissue; 2 days and 12 hours for 
surgical tissues). The primary antibodies included 
rabbit anti-beta III tubulin (1:500; Abcam, Cat No. 
ab18207) for both colon biopsy and surgical tissues. 
Biopsy tissue was additionally incubated with mouse 
anti-E Cadherin (1:200; Abcam, Cat No. ab76055), 
while surgical tissues were incubated with mouse 
anti-NeuN IgG 488 conjugated (1:200; Merck, Cat No. 
MAB377X). After washing in PBS (30 min for colon 
biopsy tissue; 3 hours for surgical tissues), the tissues 
were incubated with secondary antibodies in 
DeepLabel™ Solution B: donkey anti-rabbit IgG H&L 
488 (1:500; Jackson, Cat No. 711-545-152) and donkey 
anti-mouse IgG H&L 594 (1:500; Jackson, Cat No. 
715-585-150) for colon biopsy tissue, and donkey 
anti-rabbit IgG H&L 488 (1:500; Jackson, Cat No. 
711-545-152) for surgical tissues, for 1 day. All tissues 
were then incubated in C Match solution (Crayon, Cat 
No. 50-3010) for 1 day to achieve refractive index (RI) 
matching. All procedures were performed at 37 °C in 
the dark with gentle shaking. 



Theranostics 2025, Vol. 15, Issue 15 
 

 
https://www.thno.org 

7443 

Image acquisition 
The colon biopsy tissue was placed on a 35 mm 

confocal dish and immobilized on a 25 mm glass 
coverslip. The tissue was then immersed in C Match 
solution and imaged using a C2+ upright confocal 
microscope (Nikon Instruments, Yokohama, Japan) 
with a Plan-Apochromat 10x lens (NA = 0.5, WD = 5.5 
mm) at 3 μm intervals. The excitation and long-pass 
emission filters employed were Alexa Fluor 488 and 
Alexa Fluor 594. For the surgical tissues, they were 
placed on a 60 mm confocal dish and immobilized on 
a 25 mm glass coverslip. These samples were also 
immersed in C Match solution and imaged using the 
C2+ upright confocal microscope at 15 μm intervals 
(15% overlap). Additionally, to visualize large regions 
of the surgical tissues, a Light-sheet 7 fluorescence 
microscope (Carl Zeiss, Oberkochen, Germany) with a 
5x imaging lens (NA = 0.1, RI = 1.53) and 5x 
illumination lenses (NA = 0.16, RI = 1.53) at 4 μm 
intervals (15% overlap) was utilized. For these images, 
the excitation and long-pass emission filter used was 
Alexa Fluor 488. 

Image analysis 
To facilitate subsequent analysis, the raw images 

of the surgical samples obtained with the light-sheet 
system were converted to an image file with a 
resolution of 30% of the original, as the file size 
reached 374 GB. This was conducted using ZEN 
software (version 3.10, Carl Zeiss), as it was a setting 
that the analysis PC could handle. The acquired 
images were analyzed using IMARIS software 
(v10.0.3, Oxford Instruments) and Aivia software 
(v13.0, Leica Microsystems). These software tools 
were utilized for visualizing and quantifying crypt 
maximum and minimum diameters, single crypt 
length and area, single crypt volume and surface, 
multiple crypt volume, axon fiber count, neuron 
volume, axon fiber length and diameter, and MP 
volume and surface area. All statistical analyses, 
including the creation of bar graphs and violin plots, 
were conducted using Microsoft Excel and Prism 
(v8.0.2, GraphPad Software). 

Analysis timelines for colon biopsy samples 
show that manual 2D methods take at least 13 days to 
analyze 400 images. In contrast, the 3D analysis 
method reduces this to one day. A 3D AI-powered 
method, after a one-day training period, allows rapid 
analysis in 20 minutes, offering approximately a 
1000-fold increase in efficiency. For surgical samples, 
manual 2D analysis takes 30 days, whereas 3D 
analysis requires only one day. Following a one-day 
training, the AI-powered analysis completes the task 
in just 4 hours, improving efficiency by around 26 
times. 

Statistics 
Statistical analyses were performed using Prism 

8 (GraphPad Software, San Diego, CA). Single crypt 
volume values were compared among the manual, 
non-AI, and AI-powered methods using one-way 
ANOVA followed by Tukey’s HSD post hoc test to 
assess differences.  

Results 
Optimized workflow and timeline for 3D tissue 
clearing technology and AI-powered imaging 
analysis  

The overall workflow and efficiency 
improvements of the optimized 3D tissue clearing and 
AI-powered analysis are summarized in Figure 1A–E. 
Figure 1A shows the clearing process using 
decolorization, electroporation, and RI matching to 
enhance tissue transparency. Figure 1B compares the 
timelines for 2D and 3D IHC in colon biopsy samples, 
with 3D imaging completed in 30 minutes. Figure 1C 
demonstrates that analysis time for biopsy samples is 
reduced from 13 days using manual 2D methods to 
just 20 minutes with AI-powered 3D analysis. Figure 
1D presents similar processing durations for surgical 
samples between 2D and 3D IHC, but with faster 
imaging in 3D. Figure 1E shows that AI-powered 3D 
analysis shortens surgical sample analysis from 30 
days to 4 hours, offering approximately 25.7-fold 
increase in efficiency. 

Workflow for AI-powered 3D image 
processing of colon biopsy and surgical colon 
samples 

A detailed, step-by-step description of the 
AI-powered 3D image analysis pipeline is provided in 
Supplementary Material 1. Figure 2A presents the 
workflow for employing AI analysis software to 
process 3D raw image data obtained from tissue 
clearing samples. The use of pre-trained models 
enables the direct conversion of 3D raw images into 
3D reconstructed objects in tissue samples. In cases 
when pre-trained models are not available, training a 
pixel classifier on the dataset is required; this process 
involves classifying the raw images before generating 
the corresponding 3D reconstructed objects.  

Figure 2, B and C depict AI-powered 3D image 
processing of colon biopsy and surgical samples. In 
these cases, AI training of desired shapes, patterns, 
and signals is achieved by manually designating 
fluorescence channels in 2D raw images, followed by 
training the AI to distinguish between background 
and signals using the Pixel Classifier tool (Video S1). 
Preview images are used to evaluate and validate the 
learned patterns, and upon satisfactory training, a 
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pre-trained model including 3D reconstruction is 
generated. The final 3D outputs of these 
AI-segmented models are shown with rotational 
views in Video S2. For colon biopsy specimens, the AI 
was trained to identify crypt structures and nerve 
structures (Figure 2B). Additionally, for surgical 

specimens, since the full tissue thickness (from 
mucosa to serosa) can be imaged, the AI was trained 
on larger colonic structures, including the MP, neural 
structures in the muscle layer, and the submucosal 
plexus (SMP) (Figure 2C). 

 

 
Figure 1. Colon biopsy and surgical sample processing workflow and non-artificial intelligence (AI) and AI-powered image analysis. (A) Colon biopsy and 
surgical samples at various stages of the tissue clearing protocol. (B) Timeline and procedures for two-dimensional (2D) and three-dimensional (3D) immunohistochemistry (IHC) 
of colon biopsy samples. (C) Timeline for image analysis of colon biopsy samples using manual counting, non-AI, and AI-powered software. (D) Timeline and procedures for 2D 
and 3D IHC of surgical samples. (E) Timeline for image analysis of surgical samples using manual counting, non-AI, and AI-powered software. 
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Figure 2. Artificial intelligence (AI)-powered image analysis workflow for three-dimensional (3D) image processing of mucosal-submucosal colon biopsy 
and full-thickness surgical colon samples. (A) AI-powered workflow for a 3D raw image of tissue sample, with and without pre-trained models. (B) Training a pixel classifier 
on a raw image creates a pre-trained model for a 3D image of colon biopsy sample. (C) Training a structure per plexus layer results in a pre-trained model for a 3D image of a 
surgical sample. 
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Comparison of non-AI 3D reconstructed and 
AI-powered 3D reconstructed colon biopsy 
colon sample 

The 3D image of a colon biopsy sample, stained 
with the pan-neuronal marker Tuj1 and the crypt 
structure marker E-Cadherin, was reconstructed 
using simple fluorescence intensity-based software 
and compared with results from AI software training 
(Figure 3, A and L). The AI-powered 3D reconstructed 
object exhibited enhanced structure and connectivity 
in depicting crypts (red) and surrounding nerves 
(green) compared to traditional non-AI 3D 
reconstruction object (Figure 3, B and G). The 
AI-powered reconstructions of the mucosal layer's 
neural structures are notably more connected (Figure 
3, C and H). In the side view of the AI image, the 
nerve fibers passing between the crypts are more 
visible and the nerves are denser and more connected 
than in the non-AI 3D reconstruction (Figure 3, D to J). 
Additionally, AI-trained results showed improved 
connectivity among neural structures in the 
submucosal layer (Figure 3F and K). These 3D image 
results could also be viewed and compared from a 
variety of angles via video (Video S3). 

Magnification of a crypt section revealed that 
non-AI 3D reconstruction allowed for only rough 
identification of crypt and neural structures, with 
clarity diminished by background noise (Figure 3, M 
to P). In contrast, AI-powered 3D images (Figure 3, Q 
to T) displayed more interconnected neural structures 
and a clearly visible distorted crypt structure (Figure 
3, Q to T). 

In transverse and longitudinal sections of the 
traditional reconstruction, the anastomosis of crypts 
due to inflammation-induced distortion was difficult 
to observe in non-AI reconstructions (Figure 3U). 
Conversely, the AI-powered 3D reconstruction 
provided clearer visualization of the complex 
structures at the center and sides of the crypt, along 
with surrounding neural structures (Figure 3V). 

Quantitative analysis comparison between 
manual, non-AI 3D reconstructed and 
AI-powered 3D reconstructed colon biopsy 
sample 

The pre-trained model in the image analysis 
software enabled the semi-automated recognition of 
neurons in addition to the crypt, as well as the 
measurement and calculation of both structures. To 
assess the neural and crypt structures in colon biopsy 
samples, five regions of interest were randomly 
selected from the 3D images (Figure 4, A and B). 
These images were generated using AI-powered 3D 

reconstruction techniques (Figure 4C). 
A manual analysis was conducted to serve as the 

gold standard for comparison of the performance of 
AI and non-AI methods. This included the diameter, 
length, and area of the crypt, and were taken from one 
2D image layer of the 3D image (Figure 4, D to F). 
Additionally, circularity, a measure of structural 
roundness, was evaluated as a comparative 
assessment of distorted crypts in lesion tissue. A 
numeric value of 1 represents a circle, and lower 
values indicate more atypical and distorted crypts 
(Figure 4G). After excluding the off-screen crypt in 
one image layer, distinct IDs were assigned to the 
remaining recognized crypts (Figure 4H), and 
phenotypic comparisons were performed on 
individual crypts using plots that considered 
circularity and area (Figure 4I). This allowed a relative 
quantitative assessment of normal and abnormal 
crypt structure in the lesion. 

The neurons surrounding a crypt, rendered as a 
3D object, were quantified and compared using the 
manual, non-AI, and AI methods. For crypt volume, 
the AI-powered method showed no statistically 
significant difference from the gold-standard manual 
method (p > 0.05), indicating close alignment. In 
contrast, the non-AI method exhibited a statistically 
significant difference compared to the manual 
method (p < 0.05), suggesting that the AI-powered 
method more reliably approximates the gold standard 
(Figure 4J). There was no significant difference 
between the AI and non-AI methods for the crypt 
surface area and total volume of multiple crypt 
structures within the mucosal area rendered in 3D 
(Figure 4K). For axon fiber count, the AI-powered 
method was more similar to the gold standard 
manual method than the non-AI method due to the 
inaccurate and numerous three-dimensional object 
clutter caused by the fluorescence intensity-based 3D 
reconstruction of the non-AI method (Figure 4L). For 
neuron volume and neuron surface area, there were 
significant differences between the AI-powered and 
non-AI methods (Figure 4L). 

For the axon fiber length, there was no 
significant difference between the gold standard 
manual method and the AI-powered method. The 
non-AI method could not quantify the axon fiber 
length. Since the 3D volume and surface area of 
neurons cannot be manually measured, and metrics 
like total neuron path length and average length are 
also challenging to obtain with non-AI software, AI 
software was essential for calculating these 
three-dimensional metrics for neurons. 
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Figure 3. Comparison of non-artificial intelligence (AI) and AI visualization of a mucosal-submucosal colon biopsy sample. (A) Three-dimensional (3D) 
reconstructed non-AI image of the colon biopsy sample showing epithelial cells (red) and nerve fibers (green). (B) Top view and enlarged view of multiple crypt structures from 
the non-AI image. (C) Top view and enlarged view of a neuron structure in the non-AI image. (D) Side view and enlarged crypt structure in the non-AI image. (E) Side view and 
enlarged neuron structure in the non-AI image. (F) Bottom view of the neuron structure in the submucosal plexus (SMP) region of the non-AI image. (L) AI-powered image of 
the colon biopsy sample with epithelial cells (orange) and nerve fibers (green). (G) Top view of crypts and surrounding nerve fibers in the non-AI image. (H) Incomplete 
AI-powered 3D structure of the crypts (top view). (I) Side view and enlarged crypt structure in the AI-powered image. (J) Side view and enlarged neuron structure in the 
AI-powered image. (K) Bottom view of the neuron structure in the SMP region in the AI-powered image. (M-O) Internal views of crypt walls. (P) Crypts and surrounding nerve 
fibers. (Q) Complete AI-powered 3D structure of the crypts. (R-T) Internal views of crypt walls. (U) Cross-section of an incomplete crypt structure in the non-AI 3D image. (V) 
Cross-section of a fully reconstructed crypt in the AI-powered 3D image. 
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Figure 4. Comparison between non-artificial intelligence (AI) and AI-powered analysis of a colon biopsy mucosal-submucosa sample. (A and B) Five crypt 
region of interest (ROI) regions of a patient colon biopsy sample. (C) Three-dimensional (3D) reconstructed images of ROI regions from patient colon biopsy sample image. (D) 
A measurement of the maximum and minimum axes in a crypt cross-section. (E) A measurement of the length of the crypt depth. (F) A measurement of the crypt area. (G) 
Conceptual schematic for crypt circularity. (H) Categorization of crypts by type on a colon biopsy sample two-dimensional image. (I) Single-crypt phenotyping considers the area 
and circularity of the crypt. (J) A comparison of 3D image analysis methods using manual, non-AI, and AI method. (K) Comparison of 3D images and volume quantitative values 
between non-AI and AI for multiple crypts. (L) Comparison of 3D images and quantitative metric values between non-AI and AI for crypt neuronal axonal fibers. (M) Comparison 
of manual and AI-powered length measurements for axon fiber length. (N) Comparison of manual and AI-powered measurements of axon fiber diameter. 



Theranostics 2025, Vol. 15, Issue 15 
 

 
https://www.thno.org 

7449 

Comparison of non-AI 3D reconstructed and 
AI-powered 3D reconstructed surgical colon 
sample 

Figure 5, A and B show the 3D images of a HSCR 
patient surgical colon sample stained with the 
pan-neuronal marker Tuj1. These images were 
captured by light-sheet microscopy and subsequently 
processed using basic fluorescence intensity-based 
software (Video S2). The results were then compared 
with those derived from AI software training. The 
non-AI method showed autofluorescence from 
complex and unnecessary vascular structures in the 
serosal region of the intestinal tissue (Figure 5A). In 
contrast, the AI-powered method effectively 
identified not only signal of interest but also 
morphology and location, allowing for the exclusion 
of non-specific regions prior to 3D reconstruction 
(Figure 5B). The difference between the two methods 
can also be seen in 3D rendering results, as the non-AI 
method has difficulty separating 3D objects by layer 
from mucosa to serosa, while the AI-powered method 
can be trained by layer structure, highlighting and 
quantifying structural objects in a specific layer. 
Figure 5, C to G and H to L, captured by confocal 
microscopy, provide a comprehensive view of the 
full-thickness connectivity of nerve fibers in the 
normal region of HSCR patient's surgical colon 
sample, thereby depicting the neural structures within 
each individual layer. The SMP and myenteric plexus 
are clearly shown in the AI-powered reconstructed 
objects, highlighting the connectivity of the nerves. 
Figure 5, M to Q and R to V are also confocal images 
of normal region tissues of HSCR patients, showing 
detailed neural structures from the mucosal layer to 
the MP, and especially the MP and muscle neural 
structures are more clearly visualized with the AI 
method than in the non-AI method when comparing 
Figure 5, P and Q and T and U. 

Quantitative analysis comparison between 3D 
reconstructed and AI-powered 3D 
reconstructed surgical colon sample 

The comparison between non-AI and 
AI-powered quantitative analysis of surgical samples 
from a patient with HSCR is illustrated in Figure 6. 
Non-AI 3D imaging techniques were utilized to 
capture the surgical sample, with the ganglionic 
region detailed in multiple images to highlight the 
presence of ganglion (Figure 6, A to D). Additionally, 
the transition zone (Figure 6E) and the aganglionic 
region (Figure 6F) were depicted using non-AI 
methods. In contrast, the AI-powered technique 
provided layer-specific distinction via color coding, 
which was not achievable with the conventional 
method. It subsequently generated a 3D image of the 

same surgical sample, visualizing the ganglionic zone 
(Figure 6, G to J), as well as the transition and 
aganglionic regions (Figure 6, K to L). Quantitative 
comparisons between the metrics of the total ENS 
obtained through non-AI and AI-powered method 
analyses are presented (Figure 6, M to N). While the 
non-AI method yielded a high number of neurons 
that resulted in similar trends to the AI-powered 
quantification results, the values were generally 
higher in most regions. The MP was further examined 
through quantitative analysis using AI-powered 
images (Figure 6, O to P), as the non-AI method could 
not measure the MP alone. 

Discussion 
Our study introduces an efficient workflow for 

colon biopsy and surgical sample processing using 
AI-powered 3D tissue-clearing technology. 
Optimized protocols tailored to sample characteristics 
significantly reduce processing times compared to 
traditional methods, requiring approximately 8 days 
for biopsies and 12 days for surgical samples. By 
automating 3D reconstruction through AI-powered 
pre-trained models, analysis times were reduced by 
up to 1000-fold for biopsies and 30-fold for surgical 
samples. This automation also minimizes human 
error and enhances reproducibility and reliability. 

AI-powered image processing provided superior 
visualization and quantitative analysis compared to 
non-AI methods, delivering higher-resolution images 
with clearer structural details, such as intact crypts 
and well-connected nerve fibers. These advancements 
improve the accuracy and efficiency of pathological 
diagnoses while reducing labor intensity. 
Additionally, automated quantitative analysis 
ensures consistency, offering reliable data critical for 
clinical decision-making and highlighting the 
transformative potential of AI-powered 3D imaging 
in pathology. 

The AI-powered 3D tissue imaging technology 
developed in this study offers transformative 
potential for clinical diagnosis and personalized 
treatment planning. It enables detailed evaluation of 
micropathological changes, such as crypt distortion in 
early IBD or high-risk populations [27, 28], through 
quantitative 3D analysis. Additionally, it supports 
precision medicine applications by predicting 
treatment responses and prognostic outcomes in IBD. 
AI-powered analysis also enhances the understanding 
of the ENS in GI diseases, such as its interaction with 
immune cells in IBD and its role in GI tumors [29, 30]. 
For instance, perineural invasion, a critical prognostic 
factor in colorectal cancer [31], is challenging to 
identify with traditional 2D imaging but is clearly 
discernible using AI-powered 3D imaging. 
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Figure 5. Comparison of non-artificial intelligence (AI) and AI visualization of surgical full-thickness samples. (A) Non-AI 3D light sheet image of full-thickness 
enteric nervous system (ENS) in an Hirschsprung disease (HSCR) patient’s surgical sample. (B) AI-enhanced three-dimensional (3D) light sheet image of full-thickness ENS in an 
HSCR patient sample. (B-V) Both non-AI and AI-generated 3D images of a HSCR surgical sample were color-coded by layer, with red representing the mucosa and blue the 
serosa. (C-G) Non-AI 3D confocal images of full-thickness ENS in an HSCR sample. (H-K) AI-powered 3D confocal images of full-thickness ENS in an HSCR sample. (M-Q) 
Non-AI confocal images of an HSCR sample. (R-V) AI-powered 3D confocal images of an HSCR sample. 
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Figure 6. Comparison between non-artificial intelligence (AI) and AI-powered analysis of patient surgical samples. (A) Non-AI three-dimensional (3D) image of 
a Hirschsprung disease (HSCR) patient’s surgical sample. (B-D) Non-AI 3D images of ganglionic region in a HSCR sample. (E) Non-AI 3D image of transition zone in HSCR sample. 
(F) Non-AI 3D image of aganglionic region in HSCR sample. (G) AI-powered 3D image of a HSCR patient’s surgical sample with a gradient color coding applied to tissue layers, 
showing the mucosa in red gradually transitioning to blue at the serosa. (H-J) AI-powered 3D images of ganglionic zone in HSCR sample. (K) AI-powered 3D image of transition 
zone in HSCR sample. (L) AI-powered 3D image aganglionic region in HSCR sample. (M and N) Quantitative comparison between Non-AI and AI-powered analysis in total 
enteric nervous system. (O and P) Quantitative analysis of myenteric plexus from AI-powered 3D images. 
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Beyond IBD and colorectal cancer, this 
technology addresses unmet needs in other conditions 
like irritable bowel syndrome (IBS) [32]. While IBS 
diagnosis currently relies on symptom evaluation and 
exclusion of other conditions, AI-powered 3D 
imaging can provide deeper insights into structural 
alterations in the ENS, complementing studies of 
neural changes observed in the brain. Moreover, 
advanced techniques, such as histo-cytometry [33], or 
3D imaging mass cytometry [34], enable multi-marker 
immune cell staining at single-cell resolution, 
revealing intricate interactions between the ENS and 
immune system. [35] These insights have the potential 
to inform novel therapeutic approaches. As AI 
continues to evolve, integrating 3D imaging with 
clinical and cohort data will expand its diagnostic 
applications, setting new standards in fields such as 
oncology, neuroscience, and immunology. 

To fully realize these benefits, future research 
should focus on refining AI algorithms and 
employing larger, more diverse datasets to enhance 
reliability and accuracy. Advanced deep learning 
models can uncover subtle patterns in complex 
medical data, offering deeper insights into disease 
mechanisms. The integration of AI-powered analysis 
with clinical and cohort datasets will further expand 
its utility, enabling comprehensive diagnostic 
frameworks and advancing the development of 
personalized treatment strategies. This AI-powered 
3D imaging approach holds the potential to 
revolutionize medical diagnostics and treatment by 
rapidly identifying novel clinical features in a 
cost-effective manner. 
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