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Abstract 

Retinal images provide a non-invasive and accessible means to directly visualize human blood vessels and 
nerve fibers. Growing studies have investigated the intricate microvascular and neural circuitry within the 
retina, its interactions with other systemic vascular and nervous systems, and the link between retinal 
biomarkers and various systemic diseases. Using the eye to study systemic health, based on these 
connections, has been given a term as oculomics. Advancements in artificial intelligence (AI) technologies, 
particularly deep learning, have further increased the potential impact of this study. Leveraging these 
technologies, retinal analysis has demonstrated potentials in detecting numerous diseases, including 
cardiovascular diseases, central nervous system diseases, chronic kidney diseases, metabolic diseases, 
endocrine disorders, and hepatobiliary diseases. AI-based retinal imaging, which incorporates established 
modalities such as digital color fundus photographs, optical coherence tomography (OCT) and OCT 
angiography, as well as emerging technologies like ultra-wide field imaging, shows great promises in 
predicting systemic diseases. This provides a valuable opportunity for systemic diseases screening, early 
detection, prediction, risk stratification, and personalized prognostication. As the AI and big data 
research field grows, with the mission of transforming healthcare, they also face numerous challenges and 
limitations both in data and technology. The application of natural language processing framework, large 
language model, and other generative AI techniques presents both opportunities and concerns that 
require careful consideration. 
In this review, we not only summarize key studies on AI-enhanced retinal imaging for predicting systemic 
diseases but also underscore the significance of these advancements in transforming healthcare. By 
highlighting the remarkable progress made thus far, we provide a comprehensive overview of 
state-of-the-art techniques and explore the opportunities and challenges in this rapidly evolving field. This 
review aims to serve as a valuable resource for researchers and clinicians, guiding future studies and 
fostering the integration of AI in clinical practice. 
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Introduction 
The retina offers a unique, noninvasive, in-vivo 

visualization of the human body’s vasculature and 
neural tissues [1], serving as a window to the general 
health. The retinal nerve fibers are essentially an 
extension of the central nervous system (CNS) axons, 
and the retinal ganglion cells (RGCs) display typical 
properties of CNS neurons [2]. The retinal blood 
vessels, densely located in the fundus, not only mirror 
the features and regulatory mechanism of blood 
vessels throughout the body, but also act as indicators 
of general health. Given its vascularization and 
metabolic activities, the retina provides important 
clues on the presence of systemic diseases [3]. 

Over more than 100 years ago, Marcus Gunn 
described retinal vascular signs in patients with 
hypertension, kidney disease and stroke, marking the 
beginning of retinal examination as a source of 
important clues to systemic health [4]. At that time, 
Polish ophthalmologist Xavier Galezowski 
(1832-1907), one of the pioneers in the use of fundus 
examinations for the diagnosis of central nervous 
system disorders, published one of early textbooks on 
this subject and coined a term of cerebroscopy for this 
examination [5, 6]. In the last decades of 20th century, 
studies provided evidence of RGCs degeneration and 
retinal nerve fiber layer (RNFL) damages in 
Alzheimer’s disease (AD) (neurodegenerative 
diseases) [7-11], and pathological findings in the 
retinal vasculature of stroke (cerebral hemorrhage 
and infarction) [10]. This evidence indicates that 
retinal neural and vascular changes likely exist in the 
early stage even during asymptomatic period, when 
they are not distinguishable or cannot be detected by 
conventional diagnostic methods. These changes can 
be detected and used as biomarkers for systemic 
disorders. Insights from many current studies have 
also proven the correlation between retinal images 
and the risks of dementia and stroke, which are 
associated with neural and vascular abnormality, 
respectively [12-14]. These studies laid the foundation 
for using retinal images to predict systemic diseases. 

On the other hand, the rapid updates of 
technology brought the chance to boost the 
development of this area, making the previous 
evidences been taken into clinical practice. In the past 
decades, advances in information technology have 
made artificial intelligence (AI) come in quantum 
leaps in nearly every aspect of our lives, including the 
medical field. AI, as computer systems capable of 
performing complex tasks that historically only 
human could do [15]. Machine learning (ML), a 
subfield of AI uses algorithms trained on datasets to 
create self-learning models that can predict outcomes 

and classify information without human intervention 
[16]. ML has been widely used in medical AI. Deep 
learning (DL), a branch of ML, trains computers to 
process information in a way that mimics human 
neural processes and is composed of a neural network 
with three or more layers (input layer, hidden layers, 
output layer) [17, 18]. Recently, deep convolutional 
neural networks (CNN), a specialized type of DL 
technique optimized for images, have produced 
highly accurate algorithms capable of diagnosing 
diseases from medical images with accuracy 
comparable to human experts [19]. Leveraging these 
remarkable advancements, subtle extraction and 
analysis of retinal images have demonstrated good 
efficacy in detecting various diseases. 

In 2012, Lambin et al. first proposed the concept 
of “radiomics”, the high-throughput extraction of 
image features from radiographic images. The 
combination of medical imaging and smart 
automated or semi-automated software offers the 
potential to revolutionize quantitative imaging. This 
approach has paved the way for the integration of AI 
and medical images in medical diagnosis, treatment 
and prediction, holding great promises for the future 
[20, 21].  

Ophthalmology is now a field that relies heavily 
on advanced imaging techniques. Digital color fundus 
photograph (CFP) is the most common examination, 
providing detailed images of the retina, optic nerve 
head, and blood vessels. Optical coherence 
tomography (OCT) offers cross-sectional details of the 
retina and choroid, imaging structures at different 
depths within tissues. OCT angiography (OCTA), a 
relatively new technology, can show vasculature and 
structure in specific single layers, imaging and 
quantifying blood vessels at different depths within 
tissues. OCT images can serve as biomarkers for 
neuronal pathways, due to their detailed imaging of 
RGCs, the RNFL, the inner plexiform layer (IPL) and 
other neural layers structures [11], while CFP and 
OCTA can be accessed for vascular pathways [22]. 
Besides, emerging technologies such as ultra-wide 
field (UWF) imaging provide a comprehensive view 
of the fundus, capturing details beyond the macula 
area. As retinal visualization techniques continue to 
evolve, they will increasingly be applied in retinal 
biomarkers extraction using AI techniques. 

Using the eye to study systemic health, based on 
these connections, has been given a term as 
“oculomics”. The term “oculomics” was first 
proposed in 2020 by Wagner et al. [23], indicating a 
comprehensive understanding of the macroscopic, 
microscopic, and molecular features associated with 
health and disease within the eye. With further 
insights and advancements, oculomics has expanded 
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beyond mere observation, to integrate big data and 
AI. 

Numerous studies have explored the 
applications of AI-enhanced retinal imaging in 
predicting different systemic diseases. Even though 
some of the studies tried to explain how AI works in 
this period, with interpretative heat map, we still have 
uncharted parts in this work. It is crucial to know how 
AI works in oculomics, and we need more 
investigation on the studies to explore more on the 
potential explanations. 

Therefore, based and progressed on the methods 
of published reviews in this study area [3, 24-29], we 
conducted an extensive literature search using the 
databases “PubMed”, “Medline”, and “Embase” up to 
May 2024. Search terms include retinal/fundus 
imaging/image/photo/photograph, OCT, OCTA, 
UWF; AI, ML, DL, CNN; oculomics, systemic 
diseases/disorders, and various systemic diseases 
names. We have extracted the key information of key 
studies (See Table S1 in the electronic supplementary 
material for details). We provide a classified summary 
of key studies on AI-enhanced retinal imaging in 
predicting systemic diseases, with discussing the 
mechanisms underlying oculomics and highlighting 
the challenges and opportunities in this area. 

Cardiovascular Diseases (CVD)  
Recent studies have explored the potential of 

retinal imaging in predicting CVD risks with 
promising results, marking a significant advancement 
in medical diagnostics. Rim et al. [30] employed CFPs 
to assess coronary artery calcium (CAC) scores, 
demonstrating a notable correlation with the risk of 
fatal cardiovascular events. This approach not only 
mirrors the predictive capability of traditional 
computerized tomography (CT)-measured CAC but 
also enhance risk prediction accuracy when integrated 
with established cardiovascular risk models, 
particularly for patients at borderline or intermediate 
risk levels. Cheung et al. [31] developed a fully 
automated AI/DL-based retinal vessel software 
(SIVA-DLS), comparing its performance with 
SIVA-human (retinal-vessel calibre measured by 
expert human graders) to predict CVD risks. They 
found narrower arteriolar caliber was associated with 
higher blood pressure, while wider venular caliber 
was linked to higher body mass index (BMI), 
hemoglobin (Hb) A1c, and smoking. SIVA-DLS 
demonstrated similar associations with CVD risk 
factors as human measurements and other software’s 
performance. Specifically, a narrower arteriolar 
diameter and a wider venular diameter were 
associated with a higher risk of incident CVD. Poplin 
et al. [19] predicted major adverse cardiovascular 

events (MACE) within 5 years using CFPs, achieving 
an area under the receiver operating characteristic 
(AUROC) of 0.73, and compared this model with the 
SCORE risk calculator. Additional research has 
applied retinal imaging to further understand the 
connection to CVD risk factors, traditional 
cardiovascular examination results or diagnosis 
standard, diseases detection and future incident risks. 

Cerebrovascular Diseases (CeVD)  
The CFPs combined with superficial and deep 

enface OCTA images [32] or CFP-originated 
vasculometry [33, 34] have been used to generate the 
AI algorithms for stroke events prediction. Different 
wavelength fundus photos have also been applied 
and compared in predictive work [34]. In addition to 
stroke prediction, Hong et al. [35] were the first to 
predict and stage moyamoya disease using a 
CFP-based algorithm. Notably, the retinal age gap, 
which was defined as the difference between 
predicted biological age based on CFP and 
chronological age, has been used to predict the hazard 
ratio (HR) for stroke events [36]. It has been shown 
that the highest stratified population by retinal age 
gap has an HR of 2.37 compared to the lowest. 
Another significant predictor is white matter lesions 
(WMLs) from magnetic resonance imaging (MRI) 
which reflects the severity of CeVD, used as the 
output prediction of CFP-based algorithm [37]. 
Retinal imaging can thus be used to output CeVD 
brain imaging results, directly detect CeVD, or predict 
future stroke incidents. 

Neurodegenerative Diseases 
Cheung et al. [38] used AI/DL algorithm to 

detect AD-dementia of 11 multi-ethnic, multi-country 
studies with 12949 retinal photos (648 AD-dementia 
cases vs 3240 controls). The algorithm used CFPs to 
detect AD with AUROC 0.93, whereas detect amyloid 
β-positive AD with AUROC 0.73-0.85. Another study 
[39] developed a model by CFPs and clinical dementia 
rating global scores. The model can automate estimate 
central retinal arteriolar equivalent (CRAE) and 
central retinal venular equivalent (CRVE), give the 
association with cognitive and incident dementia, 
which may be useful as a risk stratification tool. The 
study also showed narrower arteriolar diameter and 
wider venular diameter associated with higher risk of 
incident dementia. That proves the possibility AI/DL 
retinal vessel software predicts dementia. OCT 
images have been used to predict AD, Parkinson's 
disease (PD), multiple sclerosis (MS) [40-42] and 
long-term prediction of MS disability course [43]. 
OCTA images combined with OCT in predicting mild 
cognitive impairment (MCI) showed model efficacy 



Theranostics 2025, Vol. 15, Issue 8 
 

 
https://www.thno.org 

3226 

with area under the curve (AUC)=0.693-0.960 [44]. 
Other studies combined CFPs and metadata or risk 
factors to generate the models with better task 
performance (Table S1). Various retinal imaging and 
the multi-modality imaging have been widely used in 
different neurological diseases based on the intense 
connection between eye and brain. 

Schizophrenia and Other Psychiatric Diseases 
Appaji et al. [45] developed a model to predict 

schizophrenia using CFPs. Their model was trained to 
distinguish individuals with schizophrenia from 
healthy subjects, achieving an AUC of 0.98. Although 
some literature mentioned that psychiatric diseases, 
such as bipolar disorder, have exhibit vascular 
abnormalities that can be detected in retinal images 
[46], further research and AI-based algorithms are still 
needed. Recent studies have proposed that changes 
detected by ML-based electroretinography (ERG) 
could serve as sensitive indicators of autism spectrum 
disorder [47]. It is hoped that more psychiatric 
diseases, including depression and anxiety that have 
seen a rise in prevalence in recent years, will be 
explored in AI-retinal imaging studies. 

Renal Diseases  
Kidney failure is typically defined by estimated 

glomerular filtration rate (eGFR) levels, several 
models have been developed to predict chronic 
kidney disease (CKD), diabetic kidney disease (DKD) 
or diabetic nephropathy (DN). Sabanayagam et al. [48] 
used CFPs and a combined model trained with risk 
factors to predict CKD, achieving AUCs of 0.911 and 
0.938. Kang et al. [49] predicted early renal function 
impairment with an AUC of 0.81. Similar studies have 
been conducted to directly predict eGFR, early CKD, 
CKD, and DKD labels [50-54]. Liu et al. [55] used OCT 
images to predict DN, with an accuracy of 91.68%, a 
sensitivity of 89.99% and specificity of 92.18%. Zhang 
et al. [56] also studies retinal age, calculating the HR of 
incident kidney failure using cohort data. Similarly, 
Joo et al. [57], used the Reti-CKD score, derived from 
CFPs in a cohort, to calculate the HR of CKD 
incidence. When the population was stratified by the 
Reti-CKD score, the HR were 3.68 and 9.36 in 2 
cohorts from the highest to the lowest scores. The 
retinal age gap and Reti-CKD score can successfully 
be applied as predictors of renal diseases incidence, 
showing great promise and inspiring more predictors 
contribution. 

Metabolic Diseases 
Algorithms based on CFPs have shown good 

performance in predicting hypertension, 
hyperglycemia, dyslipidemia with AUCs of 0.766, 

0.880 and 0.703 respectively [58]. Benson et al., have 
demonstrated that diabetes and diabetic peripheral 
neuropathy (DPN) can be detected using AI-CFPs 
models [51, 59-61]. Xiang et al. [62] innovatively 
combined CFPs with traditional Chinese medicine 
characteristics (tongue and pulse conditions) to 
predict diabetes, which inspired more hybrid models 
related to metabolic factors to enhance the 
performance of standalone AI models on retinal 
imaging. Studies on retinal age gap studies have also 
revealed a relationship between retinal age gap and 
metabolic syndrome and inflammation. The stratified 
population shows different odds ratios (ORs) 
indicating that retinal age gap could become a 
promising variable [63]. 

Hepatobiliary Diseases 
Xiao et al. [64] used CFPs to generate a screening 

model for hepatobiliary diseases and an identification 
model for 6 specific hepatobiliary diseases (including 
liver cancer, liver cirrhosis, chronic viral hepatitis, 
non-alcoholic fatty liver disease, cholelithiasis, hepatic 
cyst). The AUROCs for screening and identification 
were 0.68, 0.84, 0.83, 0.62, 0.70, 0.68 and 0.69 
respectively. Xiao’s model provided a non-invasive, 
convenient, and complementary method. In the same 
study, they also used slit-lamp photos to train models, 
which achieved good performance as well. 

Anaemia 
Anaemia is typically diagnosed by measuring 

Hb concentration through a blood assay test, which 
offered a quantitative variable as the ground truth. 
Some studies use anaemia diseases labels diagnosed 
by doctors. Haematocrit and red blood cell count have 
also been used as auxiliary variables in predicting 
anaemia. Mitani et al. [65] used CFPs, metadata (race 
or ethnicity, age, sex and blood pressure) and 
combined data to predict Hb concentration and 
diagnose anemia. The combined model showed better 
performance with Hb prediction (mean absolute error 
[MAE]=0.63g/dl), and achieved an AUC of 0.88 for 
detecting anemia and 0.95 for moderate anaemia. Rim 
et al. [1] also used CFPs to predict Hb, with an MAE of 
0.79g/dl. UWF images have been used by Zhao et al. 
[66] to predict Hb and anaemia, achieving an MAE of 
0.83g/dl and an AUC of 0.93 for anaemia. OCT 
images from anaemia patients and normal subjects 
were used by Chen et al. [67] and Wei et al. [68] to train 
classifiers, achieving accuracies of 0.8358 and 0.9865 
respectively. Automated non-invasive anaemia 
screening based on retinal imaging represents a 
breakthrough, especially for individuals with 
conditions such as diabetes, where anaemia can 
increase morbidity and mortality risks [65, 69]. 
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How AI Work with Retinal Imaging and 
Systemic Diseases Predicting? 

Three Pathways Linking Retina and Body 

AI-based retinal imaging has been intensively 
explored in predicting disorders across different 
systems or organs. To sum up, there are three 
pathways linking retina and body. First, when 
focusing on the onset of diseases such as etiology, 
pathogenesis and inducing factors, traditional risk 
factors like blood pressure, age, BMI, smoking, etc. 
can be used as predictors. Additionally, there are less 
understood or unidentified risk factors including 
genetic and inflammation factors. We can directly 
estimate the diseases risk factors, thereby linking 
these factors with different diseases. Second, we can 
predict established examination results that can be 
used to monitor or diagnose diseases, such as carotid 
ultrasound, cardiac computerized tomography, and 
MRI results. Retinal imaging offers a straightforward, 
non-invasive, and cost-effective alternative for 
replacing the biomarkers typically identified by these 
conventional methods. Third, we can directly estimate 
specific clinical diseases, distinguish between 
diseased and non-diseased individuals. Most notably, 
when adding metadata or risk factors into retinal 
imaging to develop hybrid algorithms, the predictive 
model showed improved effectiveness in predicting 
tasks. 

New Parameters as a Bridge between Retina and Body 

When we use AI-based retinal imaging to 
estimate risk factors or traditional biomarkers, we can 
also generate new variables derived from the 
predictive results. New variables originated from 
retinal images, such as Reti-Age, Reti-CKD, Reti-CAC, 
can be analyzed for their relationships with diseases 
outcomes. Another part of generating parameters is 
the direct retinal parameters, including caliber, 
geometry, fractals, bifurcation, tortuosity, and 
artery-vein nicking. While these parameters can be 
observed by ophthalmologists, they are better 
accessed and quantified by AI system for greater 
accuracy and subtlety, making these parameters 
quantitative and comparable. These direct and 
indirect variables extracted from retinal images using 
AI can be used to find correlations with clinical 
diseases through mathematical and statistical ways, 
rather than being limited to descriptive and 
qualitative analysis. 

Current Retinal Imaging Predicting Future 

With the availability of longitudinal data, it is 
possible to track the incidence of disease, mortality, 
and severe outcomes over time. By incorporating 

longitudinal data into AI model, we can predict the 
incidence and progression of diseases from baseline 
images. This enables risk stratification based on 
certain variables, which is particularly inspiring.  

Figure 1 shows the ideas and workflow of 
current AI-based retinal imaging for systemic diseases 
prediction. Here we summarized how AI works in 
this study area, also provided thoughts on how to 
begin an AI-oculomics study. 

Future Outlook and Considerations on 
AI-oculomics Studies 

Challenges in Data 

Despite remarkable advancements in this area, 
there are still many challenges and next steps to be 
determined. Firstly, the accuracy of AI predictions 
heavily relies on the quality and quantity of the 
available data. Limited or biased data may result in 
less accurate predictions. Additionally, AI models 
may struggle with rare or complex diseases that are 
underrepresented in the training sets. We need more 
real-world prospective studies. Another issue is, 
longitudinal data is much more limited compared to 
cross-sectional data. Large datasets containing 
ophthalmological imaging such as those from the UK 
biobank, Qatar biobank are still scarce. Local hospitals 
and health centers should be encouraged to enhance 
long-term and multi-modality data collection. This 
effort could significantly contribute to the global early 
detection and incidence and prognosis of systemic 
diseases. Khan et al. [70] reviewed the publicly 
available datasets for ophthalmological imaging, 
highlighting the need for more comprehensive 
datasets. 

Currently, systemic biomarkers studied through 
CFPs are more common than those obtaied via OCT, 
OCTA and other novel modalities. There is a need for 
more algorithms to explore the feasibilities of these 
advanced imaging modalities. In addition, OCT can 
provide data on choroidal thickness, a crucial 
parameter reflecting choroidal circulation. However, 
this area is still an underexplored and requires more 
advanced imaging technologies like sweep source 
OCT (SS-OCT) for further investigation. We need to 
pay more attention to high-resolution instruments 
and reliable data. 

The current study is mostly based on single 
image. It is still difficult to combine different 
modalities imaging into one model. In comparison 
with physicians’ work, which typically use 
multi-modality imaging to achieve a comprehensive 
understanding of the disease, the AI’s capability in 
this regard remains incomplete (Table 1).  
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Figure 1. The overview of how AI-enhanced retinal imaging predicting systemic diseases and the future considerations. Based on various modalities of available 
retinal imaging, through the pre-trained AI algorithms, we can predict risk factors, traditional variables and diseases diagnosis, which already applied in disorders from nearly all 
systems, including cardiovascular, metabolic, hematological, renal, hepatobiliary, psychiatric, cerebrovascular, neurodegenerative and immune diseases. The prediction includes 
not only diagnosis, but also early detection, incident and prognosis of the disorders based on the training on longitudinal data. The emerging new era of generative AI brings 
promising opportunities on medical application and healthcare transforming times. CFP: color fundus photo; OCT: optical coherence tomography; OCTA: optical coherence 
tomography angiography; UWF: ultra-wide field; AI: artificial intelligence; ML: machine learning; DL: deep learning. 

 

 
Figure 2. Systemic disorders diagnosed on eye images developed AI models. Previous AI algorithms trained on EHR, individual information, and retinal images of 
certain population, that sets good basics to the coming new AI models. With the development of generative AI, multimodality new VLFMs may contain text, voice, images and 
video, linking previous AI models into a friendly human-computer interaction mode, applying oculomics studies into the GMAI system, potentially transforming ophthalmology 
healthcare. EHR: electronic health record; AI: artificial intelligence; LLM: large language model; VFM: vision foundational models; VLFM: vision-language foundational models; 
GMAI: generalist medical artificial intelligence. 
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Table 1. The current discussion and considerations on AI-oculomics studies. It is a double-edged sword, that the opportunities 
are in challenges, while challenges also imply the opportunities. We summarized the key points, giving a quick highlight of the discussion on 
the study. 

 Challenges Opportunities 
Data Limited data, limited real-world studies in rare diseases, 

limited longitudinal cohort and comprehensive biobanks. 
Call for more real-word studies in local hospitals and health centers. 
Physicians need the realization of biobank and data integration. Call 
for more consortium actions to combine data. 

Limited modalities and we need more advanced imaging 
equipment involved. 

Advanced imaging like SS-OCT, OCTA, UWF, Vis-OCT, PS-OCT, 
PD-OCT, AO-OCT, oximetry and etc. can be candidates in futural 
studies. Other functional examination also can be candidates in 
AI-based studies, such as microperimetry, visual acuity, intraocular 
pressure. 

Limited multi-modality algorithms. The physicians’ work are based on the comprehensive understanding 
of whole body. AI still has the potential to help with the process based 
on multi-modality work. 

Technology Controversial results accuracy, interpretability, usability and 
reliability. 

Call for more studies to strengthen oculomics concept through 
evidence, validation, mechanistic understanding and human-machine 
interaction testing. 

No generative AI systems have been reviewed by FDA. Call for more RCT clinical trials over the world. 

AI: artificial intelligence; SS-OCT: sweep source optical coherence tomography; OCTA: optical coherence tomography angiography; UWF: ultra-wide field; Vis-OCT: visible 
wavelength OCT; PS-OCT: polarization-sensitive OCT; PD-OCT: polarization-diversity OCT; AO-OCT: adaptive optics OCT; FDA: United States Food and Drug 
Administration; RCT: randomized controlled trial. 

 

Challenges in Technology 

Although AI can assist in detecting potential 
diseases or anomalies, it is crucial to involve human 
experts in reviewing and interpreting the results to 
ensure accurate diagnosis and appropriate treatment 
decisions. As we consider the future use of the AI 
technology, it is important to recognize that it will be 
used by a wide range of professionals, including 
ophthalmologists, optometrists, general physicians, 
neurologists, cardiologists, or patients themselves. 
The aim of this digital technology is to reduce the 
need for expensive complex examinations, providing 
an early detection method for diseases that is 
non-invasive, easy and cost-effective. However, the 
technology is still in the development stage, and more 
robust modeling is needed. The challenges of 
modeling also embody on integration of immense 
clinical and high throughput biological data, 
multi-task learning on disease diagnoses, therapy and 
outcome predictions and cost-effective computing 
capabilities. Hence, increasing the data by 
technological means, developing advanced 
multi-modal interpretative networks for prediction of 
multi-source ocular histology images, increasing the 
number of AI models for continuous learning and 
self-optimization, become much needed.  

Future Directions with Generative AI and 
Foundation Models 

Based on the previous findings in research, and 
numerous challenges and opportunities in data and 
technology. We propose that the novel technology in 
AI, including generative AI techniques and 
foundation models, can make up for the weaknesses 
in research and applications. These could give us 
inspirations in future directions and solve the existing 

problems. How these technologies apply into real 
medical situations and transform the healthcare? We 
explained in the following part and expressed our 
thoughts on how they could work in ophthalmology. 

Recent years have witnessed significant 
advancements in the state of art AI technology. 
Generative AI includes a wide array of applications, 
including the generation of images, videos, text, 
sound, software codes, virtual environments, designs 
and even drug compound [71]. It is based on various 
techniques, including DL, generative adversarial 
networks (GAN), autoencoders, variational 
autoencoders and etc. These models can be utilized in 
retinal images research and provide robust support to 
address the limitations of current research 
methodologies. You et al. [72] conducted a survey on 
studies using GAN in ophthalmology image domain 
and introduced its performance on image synthesis 
and image-to-image translation. It helps extend 
datasets and modalities in research, particularly in 
scenarios with limited sample size and varying 
images quality and opens up new research 
possibilities through translational work.  

Conversational large language model is a kind of 
generative AI, that makes sense of natural language. 
Large language model (LLM), including DeepSeek, 
GPT-o1 and 4o (OpenAI), LLaMA (Meta), PaLM 
(Google), BERT (Google), Gemini (Google), Copilot 
(Microsoft) and Claude (Anthropic) have recently 
drawn considerable interest from journalists, 
policymakers, and scholars across fields [73, 74]. By 
learning the probabilities of words sequences from 
extensive corpus of text, these models with billions of 
parameters, can respond to free-text queries without 
needing task-specific training [75]. 

LLMs have shown immense promise in the 
medicine field and are rapidly being integrated into 
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clinical practice. In clinical situations, it can be applied 
to automatically communicate with patients, draft 
clinical notes, and even provide clinical suggestions. 
Due to their ability to handle free-text input, 
LLM-based tools can manage documents, recognize 
and extract information from text databases in clinical 
studies. Therefore, it is useful to build the relevant 
medical LLMs. The implements are not only in the 
human-machine interface, automatically interactions 
with data collection part and model/program users, 
but also in model/program developing procedures, 
being utilized to filter and administrate text 
parameters or labels and helping enhance and 
accelerate the multi-modality model inputting work. 

Hence, we propose the clinical translation of 
generative AI-based input and output. 1) AI-assisted 
consultation: Nature language processing (NLP) 
framework combined with DL models, clinically 
relevant information and features can be extracted. 
Then, different AI-systemic prediction models can 
provide diagnostic systems for various systemic 
diseases and output medical recommendations. 2) 
AI-assisted teleconsultation. Currently, with 
AI-assisted consultation been used in different 
websites and APPs by chatbots, we have seen that 
there are already merchant products catering to the 
market. It is hoped that more generative AI 
approaches will make subjects more attractive and 
real experience. Recent SORA is also a breakthrough 
in video generation, which can be applied into 
human-computer interaction procedures (Figure 1). 

RETFound, one of the first AI foundation models 
in healthcare, and the first in ophthalmology, was 
developed using millions of eye scans from the 
National Health Service (NHS) [76]. Zhou et al. [77] 
provided a generalizable solution that enables broad 
clinical AI applications from retinal imaging, 
predicting conditions such as ischaemic stroke, 
myocardial infarction, heart failure, PD, in addition to 
ophthalmic diseases. This foundation model has 
inspired more foundation models, AI-agents even 
artificial general intelligence developing in this area, 
especially vision-language foundational models 
(VLFM) that combine LLM, progressing the 
prediction work wider-use, more user friendly and 
competitive of usability [78]. The developed AI 
models will apply oculomics studies into the 
generalist medical artificial intelligence (GMAI) 
system [79], potentially transforming ophthalmology 
healthcare, which is much inspiring (Figure 2). 

In addition, when we face formal clinical trials in 
following steps of AI models application in clinic, 
more ethical questions should be taken into 
consideration. Currently, no generative AI systems 
have been reviewed by the United States Food and 

Drug Administration (FDA) [71]. The problems 
contain data breach, privacy risks, medical 
responsibility, and supervision. Meanwhile, 
technically, it is not a totally correct system and still 
retains bias to some extent. The risks of misdiagnosis 
may bring more controversial problems (Table 1). 

AI-oculomics Applications in Real World 
We are thrilled to see emerging AI-related 

start-ups focusing on realizing the applications. It has 
been truly applying AI-oculomics studies’ findings 
into practice. Singapore Eye Lesion Analyser 
(SELENA+) is a deep-learning AI software system 
that can detect potential threatening eye conditions 
accurately and efficiently [80]. It initially focused on 
diabetic retinopathy (DR) screening, then expanded to 
encompass the screening of multiple chronic diseases, 
especially in CVD. AIFUNDUS is another software 
that can detect DR and other retinal diseases. 
Combining with their health risk assessment system, 
it can provide health report related to CVD, metabolic 
diseases and nervous system diseases [81]. The 
EyeArt system [82] and LumineticsCore™ [83] are 
also AI diagnostic systems, maily focusing on DR. 

There are still bunches of obstacles to face when 
the new start-ups make these technologies as 
products in our real life. Current bussiness modes are 
mostly business to business (B2B). The clients are 
mostly hospitals, pharmacy chains, optical chains, 
health screening outlets, and primary community 
healthcare settings. Apart from the lack of AI 
industrial standards and difficulty in registration and 
ethic review for AI products, whether doctors and 
patients can actually use the results report, and who 
will pay for the screening and detection under various 
coutries’ healcare policies, are still difficulties that 
start-ups need to find ways to survive. Expanding the 
bussiness mode into the business to consumer (B2C) 
market with the launch of a dedicated app, offering 
personalized health insights and enhance customer 
engagement, still need a long way to explore. 

However, as the global prevalence of chronic 
illnesses continues to rise, healthcare systems 
worldwide are increasingly challenged by escalating 
costs. Acting as an all-in-one (retina imaging) solution 
for the detection of multiple chronic diseases, we 
believe the existing and futural updating products 
will significantly streamline the screening process, 
eliminating the need for multiple tests. This not only 
boosts productivity and reduces costs but also 
expedites the delivery of critical results to patients. 

Conclusion 
Overall, while there are limitations, AI is 

continuously evolving and holds great potential in 
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transforming healthcare. AI has the potential to 
accelerate existing forms of medical analysis, but its 
algorithms require further testing to be fully trusted. 
For now, the idea of an AI doctor independently 
making new diagnoses without human oversight 
remains a distant prospect - like decades away rather 
than years. The path toward a new AI-powered 
paradigm is needed.  

With the emerging concept of “oculomics” and 
“retinomics” [84], more and more research are 
leveraging AI-derived methods to explore 
correlations between systemic biological factors and 
retina. The role of AI in retinal imaging for predicting 
systemic diseases is thus becoming more promising 
and sustainable. 
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