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Abstract 

Rationale: Chronic kidney disease (CKD) is a progressively debilitating condition leading to kidney 
dysfunction and severe complications. While dysbiosis of the gut bacteriome has been linked to CKD, the 
alteration in the gut viral community and its role in CKD remain poorly understood. 
Methods: Here, we characterize the gut virome in CKD using metagenome-wide analyses of faecal 
samples from 425 patients and 290 healthy individuals. 
Results: CKD is associated with a remarkable shift in the gut viral profile that occurs regardless of host 
properties, disease stage, and underlying diseases. We identify 4,649 differentially abundant viral 
operational taxonomic units (vOTUs) and reveal that some CKD-enriched viruses are closely related to 
gut bacterial taxa such as Bacteroides, [Ruminococcus], Erysipelatoclostridium, and Enterocloster spp. In 
contrast, CKD-depleted viruses include more crAss-like viruses and often target Faecalibacterium, 
Ruminococcus, and Prevotella species. Functional annotation of the vOTUs reveals numerous viral 
functional signatures associated with CKD, notably a marked reduction in nicotinamide adenine 
dinucleotide (NAD+) synthesis capacity within the CKD-associated virome. Furthermore, most CKD 
viral signatures are reproducible in the gut viromes of diabetic kidney disease and several other common 
diseases, highlighting the considerable universality of disease-associated viromes. 
Conclusions: This research provides comprehensive resources and novel insights into the 
CKD-associated gut virome, offering valuable guidance for future mechanistic and therapeutic 
investigations. 
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Introduction 
Chronic kidney disease (CKD) is defined as a 

decrease in kidney function (reduced glomerular 
filtration rate) or kidney damage lasting at least three 

months [1]. This condition has already created a major 
public health burden, affecting approximately 10% of 
adults worldwide and resulting in 1.2 million deaths 
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annually [2]. By 2040, CKD is projected to be the fifth 
leading cause of death globally [3]. Numerous risk 
factors contribute to CKD, including diabetes, 
hypertension, glomerulonephritis, cystic kidney 
disease and inappropriate medication use [4-7]. As a 
progressive disease, CKD increases all-cause 
mortality and often leads to systemic complications, 
such as cardiovascular disease, mineral bone disorder, 
arterial hypertension, and anaemia [6, 8], and can 
progress to end-stage renal disease (ESRD) requiring 
dialysis or renal replacement therapy. 

The aetiology of CKD remains largely unclear, 
likely influenced by both genetic and environmental 
factors [9-11]. The gut microbiota, reflecting 
environmental influences, plays a critical role in the 
pathogenesis and progression of kidney diseases. 
Metabolites produced by gut microbes can regulate 
host physiology and kidney functions [12]. 
Additionally, immune system components (e.g., 
lymphocytes, monocytes, and cytokines) facilitate 
communication between the gut and the kidney [13, 
14]. These interactions, termed the “gut-kidney axis” 
[15, 16], act as an essential regulator in maintaining 
the host’s metabolic and immunological balance. 
Direct links between CKD and the gut microbiota 
have been established through high-throughput 
sequencing of faecal samples, revealing that CKD 
patients have an altered gut microbiota characterized 
by an increase in harmful bacteria and a decrease in 
probiotics [17-19]. In ESRD patients, the gut 
microbiota shows significant aberrations, promoting 
the accumulation of uraemic toxins that worsen 
disease progression [20]. Recent research has also 
highlighted the connection between the gut 
mycobiome, faecal metabolome, and serum 
metabolome in ESRD patients [21]. 

Despite the established association between gut 
microbiota and CKD, the composition and function of 
the gut viral community in CKD patients remain 
poorly understood. Viruses exhibit vast diversity 
within the human intestine. A recent study, using the 
faecal metagenome datasets of approximately 2,000 
individuals, identified over 33,000 species-level viral 
populations, showcasing the extensive breadth of the 
human gut viral community [22]. Concurrently, 
large-scale exploration of publicly available faecal 
metagenomes reconstructed over 140,000 unique viral 
genomes, revealing 280 viral clades prevalent 
worldwide [23]. While viral genomes are typically 
small, they represent an important reservoir of genetic 
diversity in the ecosystem, facilitating lateral gene 
transfer of virulence factors, antibiotic resistance, and 
metabolic traits among microorganisms (e.g., bacteria 
and archaea) [24]. Some viruses are thought to exert 
immunomodulatory effects due to their intrinsic 

anti-inflammatory properties and ability to adhere to 
mucosal surfaces, allowing translocation to various 
tissues [25, 26]. The overall profile of the gut viral 
community (referred to as the gut virome) is relatively 
stable but can rapidly change in response to shifts in 
the host’s physical state or environment [27, 28]. 
Consequently, the dynamics of the gut virome 
correlate closely with various diseases, including 
colorectal cancer (CRC) [29, 30], inflammatory bowel 
disease (IBD) [31-33], liver diseases [34, 35], and 
autoimmune diseases [36-38]. Additionally, viruses 
encode unique auxiliary metabolic genes (AMGs) that 
may influence the metabolic and immunomodulatory 
capabilities of the microbiota, potentially affecting the 
risk of developing rheumatoid arthritis (RA) [39]. 
These findings suggest connections between the gut 
virome and kidney function, highlighting the need to 
evaluate the pathophysiological role of the gut virome 
in CKD patients and the gut-kidney axis. 

In this study, we devised and undertook a 
metagenome-wide exploration of the gut virome in 
CKD based on faecal metagenomic datasets from 425 
patients and 290 healthy controls (HCs). We utilized 
these data to create a study-specific viral catalogue, 
pinpointed numerous viral and functional signatures 
associated with CKD, and expanded our findings to 
encompass CKD-associated viral signatures in diverse 
common diseases. Our results offer a comprehensive 
view of the CKD gut virome and provide a paradigm 
for future studies on the virome in other relevant 
disorders. 

Materials and Methods 
Subjects and data processing 

The methods for subject recruitment, specimen 
collection, faecal DNA extraction, and 
whole-metagenome shotgun sequencing have been 
detailed in previous studies [19, 20]. Raw 
metagenomic datasets were downloaded from the 
National Center for Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) under project 
accession IDs PRJNA449784 and PRJEB65297 for 
Beijing and Shanghai cohorts, respectively. The 
Beijing cohort comprised 254 haemodialytic CKD 
patients and 179 healthy controls, while the Shanghai 
cohort included 111 healthy volunteers and 171 
patients diagnosed as CKD stage 3 (n = 12), CKD stage 
4 (n = 4), non-dialyzed CKD stage 5 (n = 31), and 
haemodialytic CKD (n = 124). In both cohorts, 
demographic characteristics such as sex, age, body 
mass index (BMI), and dietary habits were matched 
between patients and controls [19, 20]. CKD patients 
were classified based on the following criteria: stage 3, 
estimated glomerular filtration rate (eGFR) < 60 
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mL/min/1.73m2; stage 4, eGFR < 30 mL/min/1.73m2; 
and stage 5, eGFR < 15 mL/min/1.73m2. Individuals 
in the healthy group exhibited normal clinical 
parameters from routine tests (e.g., blood, urine, liver 
function, and renal function) and were excluded due 
to diseases such as hypertension, atherosclerosis, 
diabetes, obesity, IBD, cancer, and abnormal liver or 
kidney function. 

Quality filtering of the raw metagenomic 
sequencing reads was performed using fastp v0.20.1 
[40] with the parameters “-q 20 -u 30 -l 90 -y 
--trim_poly_g”. Reads that mapped to the human 
genome reference (GRCh38) were removed using 
Bowtie2 v2.4.1 [41] to eliminate human 
contamination. Paired-end clean reads were then 
assembled using MEGAHIT v1.2.9 [42] with a wide 
range of k-mer sizes “--k-list 21,41,61,81,101,121,141”. 
Assembled contigs with lengths less than 5kb were 
discarded, while the remaining contigs were used for 
the identification of viral sequences. 

Identification and processing of viral sequences 
The workflow of viral identification is shown in 

Figure S1A. Metagenomically assembled contigs were 
recognized as viral sequences based on their sequence 
features and homology to known viral genomes. Raw 
viral contigs were identified when they satisfied one 
of the following criteria: 1) identified as a virus in 
VIBRANT v1.2.1 [43] with default parameters (-meta 
mode); 2) containing a greater number of viral genes 
than microbial genes based on searches against the 
CheckV marker gene set [44]; or 3) achieving a score 
>0.9 and P <0.01 in DeepVirFinder v1.0 [45]. Contigs 
that were recognized as “undetermined” sequences 
by CheckV were discarded. Parallelly, raw provirus 
sequences were extracted from the contigs by CheckV, 
with those shorter than 5kb removed. These 
procedures generated a total of 178,097 candidate 
viral sequences (132,172 viral contigs and 45,925 
proviruses). To decontaminate the viral sequences, 
according to the previous study [22, 46], we searched 
the bacterial universal single-copy orthologs (BUSCO) 
[47] within the raw viral sequence using hmmsearch 
[48] with default options and calculated the BUSCO 
ratio as the number of BUSCOs relevant to the total 
number of genes in each viral sequence. 
High-contaminated viral sequences with a BUSCO 
ratio ≥5% were removed, resulting in 170,759 
sequences considered as the final viral sequences from 
the metagenomic samples. 

The viral sequences were de-replicated based on 
the following steps: 1) all viral sequences were 
pairwise aligned using BLASTn v2.9.0 with the 
options “-evalue 1e-10 -word_size 20 
-num_alignments 99999”; 2) viral sequences which 

shared 95% nucleotide identity across 75% of their 
length were clustered into a viral operational 
taxonomic unit (vOTU) using custom scripts 
(https://github.com/RChGO/virusDectect); 3) The 
longest viral sequence was considered as the 
representative sequence for each vOTU. Additionally, 
shared vOTUs between different gut virus collections 
(i.e., Gut Virome Database [22] and Gut Phage 
Database [23]) were identified following the same 
steps as above, and the combined nonredundant 
vOTU catalogue (n = 45,849) was generated 
accordingly. 

Viral taxonomic classification and functional 
annotation 

Viral proteins of vOTUs were predicted using 
Prodigal v2.6.3 [49]. We compiled a reference 
database by aggregating protein sequences from three 
viral databases: the Virus-Host DB [50] (downloaded 
in May 2021), crAss-like phage proteins from Guerin’s 
study [51], and the protein catalogue from Benler’s 
study [52]. For accurate family-level taxonomic 
classification of viruses, we aligned the proteins of all 
known viral sequences from the NCBI-RefSeq 
database against the combined reference database 
using DIAMOND [53] with the options 
“--query-cover 50 --subject-cover 50 --id 30 
--min-score 50 --max-target-seqs 10”. A viral sequence 
was annotated to a viral family-level taxon when over 
25% of its proteins matched that family. This 
approach obtained an accuracy of 98.6% for 
family-level classification of the viruses from the 
NCBI-RefSeq database, which we applied to the 
taxonomic classification of the vOTUs. For functional 
analysis of viral populations, we performed BLAST 
searches of protein sequences of all vOTUs against the 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
database (downloaded in December 2020) using 
DIAMOND with the following options “--query-cover 
50 --subject-cover 50 -e 1e-5 --min-score 50 
--max-target-seqs 50”. The matched protein was 
annotated to a KEGG orthologue (KO) based on the 
best-hit protein. 

Virus-host prediction 
In our previous work, we assembled over 19,000 

high-completeness microbial genomes, representing 
1,303 bacterial or archaeal species, from the 715 faecal 
metagenomic samples in this study [54]. Based on 
these prokaryotic genomes, we used two approaches 
to implement virus-host prediction of vOTUs: the 
CRISPR-based approach and the homolog-based 
approach. For the CRISPR-based approach, firstly, the 
CRISPR spacer sequences of prokaryotic genomes 
were predicted via MinCED v0.4.2 [55] with the 
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option “-minNR 2”. All vOTUs were then aligned 
against the predicted CRISPR spacer sequences using 
BLASTn with the parameters “-evalue 1e-5 
-word_size 8 -num_alignments 99999”. We retained 
only matches with bit-score ≥45 across the entire 
length of the putative CRISPR spacer sequences, 
assigning one or more hosts to each vOTU based on 
these alignment results. For the homolog-based 
approach, we performed alignments between vOTU 
sequences and host genomes using BLASTn with the 
options “-evalue 1e-2 -num_alignments 99999”. If the 
match met the criteria of ≥90% nucleotide identity 
over 30% coverage of vOTU, the prokaryote 
associated with this genome was considered as the 
host infected by the corresponding vOTU. 

Reads mapping rate and metagenomic 
profiling 

We determined the read count for each vOTU in 
each sample by mapping clean reads to all vOTU 
sequences using Bowtie2 with the options 
“--end-to-end --fast --no-unal --no-sq --no-head”. The 
mapping rate of each vOTU was calculated as the 
read count for that vOTU divided by the total amount 
of clean reads in the corresponding sample. The 
mapping rate for each family was derived by 
summing the mapping rates of all vOTUs classified 
within that family-level taxonomy. For metagenomic 
profiling, to improve comparisons among samples 
with vastly different read counts, we randomly 
subsampled 2,000,000 mapped reads per sample to 
recalculate the read count for each vOTU. The relative 
abundance of each vOTU in every sample was 
defined as its read count divided by 2,000,000. For 
family-level profiles, the relative abundances of 
vOTUs sharing the same family-level taxonomy were 
added together to form the overall abundance for the 
family. 

Statistical analysis and data visualization 
Evaluation of the viral richness and evenness. We 

calculated three diversity indexes to assess the 
richness and evenness of vOTUs composition in each 
sample. The number of observed vOTUs was defined 
as the count of unique vOTUs in each sample. 
Shannon’s and Simpson’s diversity indexes were 
calculated using the vegan package (function diversity) 
in the R platform. The significant difference level in 
diversity indexes between the two groups was 
analyzed using the function wilcox.test. 

Principal coordinates analysis (PCoA). PCoA was 
performed with the R ape package by the function 
pcoa, and was visualized with the ggplot2 package. To 
quantify similarities or dissimilarities among 
individuals, we generated a Bray-Curtis dissimilarity 

matrix (calculated by the function vegdist in the R 
vegan package) based on the relative abundance 
profiles of vOTUs. 

The impact of host factors on vOTUs composition. 
The influence of host factor on vOTUs composition 
was assessed using permutational multivariate 
analysis of variance (PERMANOVA) via the function 
adonis (vegan package) with default arguments. 
PERMANOVA p-values were generated based on 
1,000 permutations. In addition, we evaluated the 
impact of CKD status on vOTUs composition after 
controlling for gender, age and BMI using the 
function adonis with the argument “formula = 
composition ~ gender + age + BMI + disease_status”. 
All R-squares obtained from PERMANOVA were 
further adjusted by the function RsquareAdj. 

Identification of CKD-associated vOTUs. To 
increase the reliability of the identified 
CKD-associated vOTUs, differential abundance 
analyses were performed based on two independent 
cohorts (Shanghai and Beijing). For each cohort, the 
mean relative abundances of vOTUs were used to 
calculate fold changes between healthy controls and 
CKD patients. Statistical significance was assessed 
using Wilcoxon rank-sum test for p-value calculation, 
with false discovery rate (FDR) correction applied via 
the function fdrtool in R platform 4.0.3. We identified 
9,363 vOTUs in the Shanghai cohort and 10,784 
vOTUs in the Beijing cohort as potential 
CKD-associated vOTUs with a fold-change of ≥ 1.2 
and q-value ≤ 0.2. Then, to test the consensus of two 
independent tests for each vOTUs, the combined 
p-value was used to further identify meaningful 
vOTUs associated with the CKD via the sumlog 
function in the R metap package. In total, 4,649 vOTUs 
that exhibited significant differences (combined 
p-value < 0.001)were considered as the final 
CKD-associated vOTUs. 

The bacterium-dependency of CKD-associated 
vOTUs. To explore the interaction network between 
CKD-associated vOTUs and bacteria, we categorized 
these CKD-associated vOTUs into 
bacterium-dependent and bacterium-independent 
groups based on virus-host predictions and statistical 
correlations with 1,303 gut prokaryotic species. Three 
methods were utilized to evaluate whether there is a 
relationship between CKD-associated vOTUs and 
prokaryotes: 1) host assignment mentioned above 
reported 4,486 phage-host pairs; 2) SparCC [56] 
co-abundance relationships were established based on 
the read count profiles of vOTUs and prokaryotes 
using fastspar v0.0.10 [57] with the option 
“--iterations 20”, where SparCC p-values were 
determined via 1,000 bootstraps; and 3) co-occurrence 
relationships were assessed based on the contingency 
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table using Fisher's exact test via the function 
fisher.test in the R platform. 

Functional comparison of gut virome. We focused 
on auxiliary metabolic genes (AMGs) of the 
CKD-associated viruses. According to the method 
provided by the previous study [43], potential AMGs 
were manually annotated based on the KEGG 
database. The occurrence rate of each AMG was 
calculated as the ratio of vOTUs containing that AMG 
to the total number of CKD-enriched or HC-enriched 
vOTUs. Differences in occurrence rates between 
groups were analyzed using the function fisher.test, 
with p-values adjusted using the function fdrtool. 
Gene arrow maps of vOTU were visualized using the 
R packages ggplot2 and gggenes. 

Performance of classification models. We built the 
random forest model to classify CKD status based on 
vOTU-level profiles from two cohorts via the function 
randomForest. For each cohort, 70% of the samples 
were randomly selected as the training set, and the 
remaining 30% of the samples were used as the testing 
set. The classification performance of the model was 
assessed by the area under the receiver operator 
characteristic curve (AUC) via the function roc. 
Additionally, this process was repeated 10 times with 
different random splits, and the average AUC from 
these 10 iterations was used as the final measure of 
model performance. We also built a model to evaluate 
the classification performance of CKD viral signatures 
on other disease states. Specifically, the random forest 
model was trained using the profiles of CKD viral 
signatures from 425 CKD patients and 290 healthy 
controls in this study. The model was then used to 
predict the case/control status of samples in various 
public datasets. The classification performance was 
again evaluated using AUC. 

Analysis of the public faecal metagenomic 
datasets 

For the Chinese populations, we downloaded 
the publicly available faecal metagenomic datasets 
from 9 studies, including atherosclerotic 
cardiovascular disease (ACVD) [58], diabetic kidney 
disease (DKD, which also classified as CKD patients 
with eGFR < 60 mL/min/1.73m2) [59], colorectal 
cancer (CRC) [60], hypertension [61], inflammatory 
bowel disease (IBD) [33, 62], liver cirrhosis (LC) [63], 
obesity [64], rheumatoid arthritis (RA) [65], and type 2 
diabetes (T2D) [66] from the NCBI-SRA (Sequence 
Read Archive) and EBI (European Bioinformatics 
Institute) databases. ACVD, hypertension, T2D, and 
obesity are common complications or primary 
conditions associated with CKD, while CRC, IBD, LC, 
and RA have recently been extensively studied in 

relation to the gut virome and are significant diseases 
with high prevalence in the population. For other 
CRC faecal metagenomes, we also downloaded the 
datasets from 3 European studies [67-70], a USA study 
[71], and a Japanese study [72]. All these faecal 
metagenomes were quality-controlled and follow-up 
processed using the same pipeline as the samples of 
this study. 

Results 
Metagenomic delineation of the gut viral 
community 

This study included faecal samples from two 
independent cohorts representing a total of 425 CKD 
patients and 290 HCs that were characterized in 
previous research [19, 20]. Deep whole-metagenomic 
shotgun sequencing of faeces generated 8.8 Tbp of 
data (12.3±2.0 Gbp per sample) for exploring gut viral 
communities. Metagenomic assembly of each faecal 
metagenome produced a total of 4.82 million long 
contigs (≥5 kb; total length 95.5 Gbp; Table S1), of 
which 2.6% (n = 125,332) were recognized as credible 
viral sequences using both homology-based [43, 44] 
and feature-based [45] methodologies, alongside 
45,427 proviruses identified using the CheckV 
algorithm [44]. These viruses and proviruses were 
clustered at the species level (>95% nucleotide 
similarity [73, 74]) to generate a catalogue of 46,011 
vOTUs (average length: 20,958 bp; N50 length: 35,355 
bp; Figure S1A). We compared these vOTUs with two 
large-scale human gut virus collections, the Gut 
Virome Database (GVD) [22] and Gut Phage Database 
(GPD) [23], which contain 32,300 and 71,868 
nonredundant vOTUs, respectively. Only 19.4% and 
31.6% of the vOTUs in our catalogue were shared 
with the GVD and GPD, respectively (Figure S1B). 
The proportions of high-completeness and 
high-confidence viruses in our catalogue were almost 
equal to those in the GVD but significantly less than 
those in the GPD (Figure S1C-D). However, the 
proportion of low-contamination viruses was 
remarkably high in both our catalogue (98.0%) and 
the GVD (94.6%) when compared with that in the 
GPD (83.4%) (Figure S1E). These findings suggested 
substantial novelty alongside the high credibility of 
the gut virome in our dataset. Finally, to facilitate 
universality, we merged the GVD/GPD-shared 
viruses into our catalogue and generated 45,849 
vOTUs (average length: 27,623 bp; N50 length: 45,002 
bp; Figure S1A) for follow-up analysis. The merged 
catalogue contained 23.3% high-completeness (>90% 
completeness) and 16.0% medium-completeness 
(50-90% completeness) vOTUs (Table S2). 
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Figure 1. Summary of taxonomic annotation, host prediction, and metagenomic profiling of the vOTU catalogue constructed from faecal metagenomes. 
(A) The number of vOTUs that are assigned into viral taxa at the family level. (B) Distribution of prokaryotic hosts of the vOTU catalogue. The vOTUs are grouped at the family 
level, and the host taxa are showed at the phylum (upper panel) and family (bottom panel) levels. The number of vOTUs that had more than one predicted host is labeled by red 
color. (C) Proportion of metagenomic reads mapped into the vOTU catalogue. Individuals demonstrate a wide range of compositional variations in their gut virome. Inset shows 
the read proportions for several most abundant families. 

 
A total of 47.3% of the nonredundant vOTUs 

were robustly assigned to known viral families. 
Siphoviridae (31.0%) and Myoviridae (10.6%) 
constituted the vast majority of taxonomically 
assigned vOTUs (Figure 1A), and the other 
representatives included Podoviridae, Microviridae, 
Autographiviridae, and some eukaryotic viruses (e.g., 
Phycodnaviridae). Notably, 483 vOTUs were classified 
as crAss-like viruses, distinct from other Podoviridae 
members due to unique genomic features [75]. 
Additionally, three new candidate families, including 
“Quimbyviridae”, “Gratiaviridae”, and 
“Flandersviridae”, that were recently identified from 
the human gut virome [52] were also frequently 
present in our catalogue. 

A total of 42.6% of the 45,849 vOTUs could be 
assigned to one or more prokaryotic hosts based on 
their homology to genome sequences or CRISPR 
spacers of the microbial genomes reconstructed from 
original faecal metagenomes (representing over 
19,000 high-completeness genomes of 1,303 bacterial 

or archaeal species [54], with the archaea regarded as 
bacteria for simplicity unless specifically mentioned). 
The most common identifiable hosts of Siphoviridae 
and Myoviridae members were Firmicutes species 
(mainly Lachnospiraceae and Ruminococcaceae), while 
the major hosts of crAss-like viruses, “Quimbyviridae”, 
“Gratiaviridae”, and “Flandersviridae” were 
Bacteroidetes species, and the hosts of Podoviridae 
members were generally Proteobacteria (mainly 
Enterobacteriaceae) and some Firmicutes species 
(Figure 1B; Table S3). Only 1.9% (379/19,545) of 
annotated vOTUs had hosts from multiple bacterial 
phyla, and only 8.7% (1,709/19,545) of the vOTUs had 
hosts across different families (Figure S2), suggesting 
a narrow host range of most gut viruses. 

We profiled the viral composition of the faecal 
samples by mapping metagenomic reads to the vOTU 
catalogue. On average, 17.4% of reads (ranging from 
6.2% to 66.0%) could be robustly mapped into the 
catalogue (Figure 1C). Nearly half of these viral reads 
appeared to derive from proviruses, as they mapped 
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in parallel to the bacterial genomes; however, the 
virus-specific read mapping rate still reached an 
average of 8.3% in the samples. To ensure accuracy, 
we investigated 15 samples with the highest 
proportion (>30%) of viral reads and found that all of 
these samples were dominated by high-confidence 
vOTUs, including 2 samples with up to 40-50% of 
reads aligned to crAss-like viruses (Figure S3). An 
extremely high abundance (up to 95%) of crAss-like 
viruses was also reported in adult gut metagenomes 
by previous studies [51, 75, 76]. Thus, our findings 
suggested a considerably high or even predominant 
viral content in the human gut. 

Diversity and structure of the gut virome 
associated with CKD 

To illustrate alteration in the gut viral 
community associated with CKD, we conducted 
comparative analyses of virome diversity and 
compositional structure between CKD patients and 
HCs across two independent cohorts: Shanghai (171 
patients vs. 111 controls) and Beijing (254 patients vs. 
179 controls). First, we found that the CKD patients 
exhibited a lower viral richness (estimated by the 
observed number of vOTUs) than HCs. However, 
viral evenness (measured by Shannon and Simpson 
diversity indexes) did not differ significantly between 
the two groups (Figure S4A). Comparison of viral 
composition at the family level revealed that in both 
Beijing and Shanghai cohorts, the CKD patients were 
significantly enriched in Siphoviridae, Microviridae, 
Herelleviridae, and Drexlerviridae, while the HCs were 
more abundant in Phycodnaviridae (Figure S4B-C). 
“Flandersviridae” and “Gratiaviridae” were markedly 
enriched in CKD patients in the Beijing cohort and 
had the same trend in those of the Shanghai cohort, 
while Podoviridae was uniquely enriched in patients of 
the Shanghai cohort. Conversely, Myoviridae exhibited 
significant depletion in Beijing CKD patients but 
enriched in those from Shanghai. 

PCoA of the gut vOTU profiles showed that the 
CKD-associated virome significantly deviated from 
that of controls in both cohorts (Figure 2A). This result 
was confirmed using PERMANOVA analyses, 
showing that the CKD status independently 
explained 2.3% (adonis P <0.001) of the overall virome 
variability. In contrast, confounding factors like age, 
sex, and BMI explained less than 0.4% of variance 
each (Figure 2B). Cohort stratification accounted for 
2.7% of variance, suggesting that the population 
and/or geographic factors still exerted considerable 
influence on the gut virome [28]. We next trained two 
machine learning classifiers to distinguish CKD 
patients from HCs using the vOTU profiles of the 
Shanghai and Beijing cohorts separately. Receiver 

operating characteristic curve analysis showed that 
both classifiers achieved high discriminatory power 
with a minimum AUC of 0.90 (Figure 2C). Similar 
discriminatory ability was also obtained in 
cross-cohort prediction (Figure S5). These results 
demonstrated profound changes in the gut virome of 
CKD patients that could stratify them from HCs. 

To test whether the clinical stages of CKD could 
potentially impact the virome, we classified the 
patients of the Shanghai cohort into three groups, 
CKD stages 3-4 (n = 16), CKD stage 5 with 
haemodialysis (HD, n = 124), and CKD stage 5 
without dialysis (CKD5N, n = 31), and compared their 
vOTU profiles with that of the control population. The 
viromes changed in a similar fashion in all three 
patient groups (Figure 2D; Figure S6), likely reflecting 
the commonalities of the clinical stages. The virome of 
HD patients showed the farthest distance from that of 
controls and significantly differed from that of 
CKD5N patients, suggesting that the dialysis 
procedure might affect the gut virome. We next 
evaluated the contribution of underlying diseases to 
the gut virome by grouping the patients into chronic 
glomerulonephritis (CGN, n = 102), diabetic kidney 
disease (DKD, n = 28), hypertensive kidney disease 
(HKD, n = 14), and other (n = 27) subgroups based on 
their primary disease types. As expected, all 
subgroups revealed a similar trend apart from the HC 
group (Figure 2E; Figure S7A). We also found that the 
gut virome of DKD patients was most distinct from 
that of controls and showed a significant deviation 
from that of CGN patients (adonis P = 0.017), which 
was probably linked to the specific pathogenetic 
background of DKD patients [77]. Random 
forest-based classifier analysis also showed that the 
use of the gut virome could identify DKD and 
non-DKD patients with an AUC of 0.68-0.71 (Figure 
S7B). 

Identification of CKD-associated viruses in the 
context of the gut bacterial microbiota 

We identified 4,649 differentially abundant 
vOTUs between CKD patients and healthy subjects 
using the combined significance level of two 
independent cohorts (Wilcoxon rank-sum test 
combined with Fisher’s method, P <0.005, 
corresponding to q < 0.013; Figure 3A-B). Among 
these, 2,455 vOTUs were more abundant in CKD 
patients and 2,194 more abundant in HCs. The 
majority (81.7% in the Shanghai cohort and 92.6% in 
the Beijing cohort) of these vOTU abundance 
differences were also significant within each cohort, 
and 94.4% of them were still significant after adjusting 
for sex, age, and BMI (Figure S8A; Table S4). Both 
CKD-enriched and HC-enriched vOTUs were 
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dominated by members of Siphoviridae, Myoviridae, 
and unclassified taxa (Figure 3C). Notably, 
HC-enriched vOTUs included 29 crAss-like viruses, 
while CKD-enriched vOTUs contained only two; 
however, CKD patients had 10 Microviridae and 4 
“Flandersviridae” members enriched, which were 
absent in HCs. Notably, the 4,649 CKD-associated 
vOTUs had a higher detectable rate and relative 
abundance in the faecal metagenomes than other 
vOTUs and performed well in distinguishing CKD 
patients from the controls (Figure S8B-C), 
highlighting their considerable importance. 

Given that the majority of gut viruses are 
bacteriophages, their lifestyles (e.g., proliferation, 
migration) typically depend on host microorganisms 
[23]. Such phages might not act on disease 
independently but rather through certain 
bacterium-associated mechanisms [39, 78]. 
Accordingly, we examined relationships between 
4,649 CKD-associated vOTUs and 1,303 gut 
prokaryotic species to explore bacterium dependency 
of these vOTUs for affecting CKD status. Three types 

of relationships were investigated: 1) the host-phage 
pairs, 2) co-abundance (defined as SparCC correlation 
coefficient [56] >0.60, and q <0.001), and 3) 
co-occurrence (defined as Fisher’s exact test q <0.001). 
This procedure revealed 3,836 bacterium-dependent 
vOTUs that had at least one relationship with 
bacterial species, whereas the remaining 950 vOTUs 
were bacterium-independent (Figure 3D). 

The family-level taxonomic distribution of 
bacterium-dependent and bacterium-independent 
vOTUs seemed no different, with the exception of the 
four CKD-enriched “Flandersviridae” vOTUs being 
independent (Figure 3E). Although some 
“Flandersviridae” viruses are known to infect 
Bacteroidetes [52] (also see Figure 1B), these 4 vOTUs 
lacked a host or strong correlation with any bacterial 
species. Interestingly, we found that two of these 
“Flandersviridae” vOTUs encoded a bacterioferritin 
gene that was completely absent from other 
CKD-associated vOTUs (Figure S9A), probably 
related to their adaptation to the gut environment 
[79]. Next, we performed a comparison of the viral 

 

 
Figure 2. Structure distinction of gut virome associate with CKD. (A) PCoA analysis of the Bray-Curtis distances of the gut virome at the vOTU level. Samples are 
shown at the first and second principal coordinates (PC1 and PC2), and the ratio of variance contributed by these two PCs is shown. Ellipsoids represent a 95% confidence 
interval surrounding each group. The below and left boxplots show the sample scores in PC1 and PC2 (boxes show medians/quartiles; error bars extend to the most extreme 
values within 1.5 interquartile ranges). Student’s t-test: **, p < 0.01. (B) PERMANOVA results showing the effect size of phenotype indexes that contribute to the variance of 
the overall gut virome. Bar plots indicate the explained variation (effect size R2) of each phenotype factor. The residual effect size of disease/control stratification after adjusting 
gender, age, and BMI is also showed. (C) Receiver operating characteristic (ROC) analysis of the classification of CKD status using the random forest model. For each cohort, 
70% of the samples were randomly selected as the training set, and the remaining 30% of the samples were used as the testing set. The classification performance of the model 
was assessed by the area under the ROC curve (AUC). The AUC values and 95% confidence intervals (CIs) are shown. (D-E) PCoA analysis of the Bray-Curtis distances for the 
gut virome of samples stratified by their clinical stages (D) and CKD protopathy (E). Samples are shown at the top 3 principal coordinates (PC1, PC2, and PC3), and the ratio 
of variance contributed by these PCs is shown. The colored circles indicate the center of gravity (mean) of samples for each group, and the error bars indicate the standard 
errors of the mean. For (D) and (E), the right panels show the pairwise effect sizes among different groups. Adonis test with 1,000 permutations: *, p < 0.05; **, p < 0.01; ***, p 
< 0.001. 



Theranostics 2025, Vol. 15, Issue 5 
 

 
https://www.thno.org 

1650 

functions of bacterium-dependent and 
bacterium-independent vOTUs based on the KEGG 
database and found that their functional contents 
were visibly different (Figure S9B). Forty-three 
enzymes were more widespread in the 
bacterium-independent vOTUs, and 5 enzymes were 
encoded more frequently in the bacterium-dependent 
vOTUs (Figure S9C); subsequent analysis based on 
these differentially abundant enzymes may provide 
insights into the mechanisms of environmental 
adaptation and pathogenicity of the 
bacterium-independent viruses. 

Crosstalk between CKD-associated viruses 
and bacteria 

We identified a large network of relationships 
between 3,836 bacterium-dependent vOTUs and their 
related bacteria (Figure 4A). Within each bacterial 
family, we found that the host-linked and statistically 
associated viruses exhibited high similarity in 
taxonomic assignments (Figure S10). Considering that 
a large number of potential host-phage pairs could 
not be identified by current technology but might be 
identified as co-abundance/occurrence relationships, 
this result indicated that host-phage affiliation was 
the major driver of the virus-bacterium interaction 
network. 

 

 
Figure 3. Identification of CKD-associated vOTUs and exploration of their relationship with bacterial microbiota. (A-B) Volcano plots showing the fold change 
vs. q-values for all vOTUs in the Shanghai (A) and Beijing (B) cohorts. The X-axis shows the ratio (log2 transformed) of vOTU abundance in CKD patients (fold>0) compared with 
that in healthy controls (fold<0). The Y-axis shows the q-value (-log10 transformed) of a vOTU. The CKD-associated vOTUs with a consistent trend in the two cohorts are 
shown in red (CKD enriched) and blue (control enriched) circles. Horizontal dotted lines: q < 0.05 and q < 0.01; vertical dotted lines: fold<-1.2 and fold>1.2. (C) Family-level 
assignment of the CKD-enriched and HC-enriched vOTUs. Fisher’s exact test: *, q < 0.05; **, q < 0.01; ***, q < 0.001. (D) Workflow for the determination of 
bacterium-dependency of the CKD-associated vOTUs. The inserted Venn plot shows the overlap of three types of virus-bacterium correlations: host-phage pairs, co-abundance, 
and co-occurrence. (E) Family-level assignment of the bacterium-dependent and bacterium-independent vOTUs. Fisher’s exact test: *, q < 0.05. 
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Figure 4. Network analyses untangle the connections between CKD-associated vOTUs and bacteria. (A) A virus-bacterium network based on the relationships 
between 3,836 bacterium-dependent vOTUs and their related bacteria. Small circle nodes represent the vOTUs, and their colors indicate the enrichment: red, CKD-enriched; 
blue, HC-enriched. Large rhombus nodes represent the bacterial species, and some most frequent species are colored according to their genus-level taxonomic information. 
Lines connect the vOTUs and bacterial species that have phage-host or co-abundance/occurrence relationships. (B) Barplots showing the number of vOTUs correlated with 
bacterial species. The top 100 species with the largest number of connections are shown. The taxonomic names of bacteria are colored by their enrichment directions: red, 
CKD-enriched; blue, HC-enriched; black, not significantly differed. (C-D) Network showing the genetic distances between Bacteroides-connected vOTUs and existing phages (C) 
and between Faecalibacterium-connected vOTUs and existing phages (D). Nodes represent viruses colored by their taxonomic assignment, and lines show the average amino acid 
identity between two viruses. For (C), three subclades of the existing B. thetaiotaomicron-infecting phages are labeled. 
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The CKD-enriched vOTUs were dominantly 
connected to bacterial members that belonged to 
Bacteroides, [Ruminococcus], Faecalimonas, Enterocloster, 
Dorea, and Erysipelatoclostridium, followed by several 
species, including Flavonifractor plautii, 
Ruthenibacterium lactatiformans, and Hungatella effluvia 
(Figure 4B). Many of these species, such as 
[Ruminococcus] gnavus, Faecalimonas nexilis, 
Enterocloster bolteae, Enterocloster clostridioformis, and 
Flavonifractor plautii, have been identified as 
potentially harmful bacteria in human diseases (see 
Discussion), and consistently, most of these 
virus-related species have been found to be 
significantly overabundant in the gut bacteriome of 
CKD patients [54]. Viruses that correlated to 
Bacteroides spp. were particularly noticed because 
Bacteroides-infecting phages have been reported as the 
most abundant viruses in the human gut and might 
contribute to metabolic disorders [80, 81]. Twenty-six 
Bacteroides species had targeted to 207 vOTUs 
(including 159 CKD-enriched ones) in the 
virus-bacterium network, with B. thetaiotaomicron 
being the most frequently associated (Figure S11A). 
Twenty-two of 207 vOTUs belonged to the 
“Quimbyviridae” family, while most others were 
unknown taxonomy. Moreover, genome-level 
homology analysis of 207 vOTUs and known B. 
thetaiotaomicron-infecting phages [82] showed that 
nearly all of these vOTUs were newly identified 
(Figure 4C; Figure S12). These findings suggested 
largely unexplored phage diversity in the gut virome 
and raised further research on their relevance to CKD. 
In addition, some CKD-enriched vOTUs were linked 
to two crucial uraemic toxin-producing clades, 
Eggerthella and Fusobacterium [20], and showed direct 
positive correlations with the serum concentrations of 
several toxins in the individuals of the two cohorts 
(Figure S13), suggesting that they probably affect the 
toxin production process in the human gut. 

In contrast, HC-enriched vOTUs were frequently 
connected to the bacterial members of Prevotella, 
Ruminococcus, Faecalibacterium, Oscillospiraceae, 
Roseburia, Blautia, Acutalibacteraceae, and other taxa 
(Figure 4C). Prevotella spp. were the most prevalent 
members, connecting 363 vOTUs (311 of which were 
HC-enriched) in the virus-bacterium network, 
including 22 crAss-like and 21 “Quimbyviridae” viruses 
and many taxonomically unknown viruses (Figure 
S11B). Previous studies have widely validated that the 
depletion of Prevotella spp. was associated with CKD 
and ESRD [83]. Our results thus suggested that 
Prevotella phages could also be noted for their 
potential roles in CKD or related diseases. Another 
typical bacterial clade was Faecalibacterium, which 
contained 15 species in the virus-bacterium network 

(Figure S11C), including the widely reported 
butyrate-producing probiotic F. prausnitzii [84, 85]. 
The Faecalibacterium-related viruses (n=155 vOTUs, 
including 133 HC-enriched vOTUs) were 
concentrated in Siphoviridae and Myoviridae, and most 
of them (138/155) were novel viruses compared with 
the known Faecalibacterium phages [86] (Figure 4D); 
the potential roles of these viruses in the CKD gut 
virome are worth future exploration. In addition, 
several other species connected to numerous 
HC-enriched vOTUs were also butyrate producers, 
including Roseburia (mainly R. intestinalis), 
Butyrivibrio, and Lachnospira spp. [87, 88]. 

Functions of the CKD-associated viruses 
To explore the functional and metabolic 

capabilities of the CKD-associated viruses, we 
predicted a total of 221,424 protein-coding genes from 
4,649 vOTUs and annotated the functions of 17.3% of 
these genes by searching against the KEGG database. 
Most genes were categorized under typical viral 
functions such as DNA replication and repair, 
transcription, and prokaryotic defence system, with 
no significant deviation observed between 
CKD-enriched and HC-enriched vOTUs (Figure 
S14A). We next specifically focused on viral AMGs 
since phage-encoded AMGs are known to redirect 
host functional capacities, thereby directly influencing 
bacterial ecology [39, 89]. A total of 10,376 genes were 
identified as viral AMGs based on a previously 
curated list [43], which composed 27.1% of the 
annotated genes (4.7% of total genes) of the 
CKD-associated vOTUs. These AMGs were primarily 
linked to genetic information processing, particularly 
nucleotide (purine and pyrimidine) metabolism and 
peptidases and inhibitors (Figure S14B). Notably, 
genes related to peptidoglycan biosynthesis and 
degradation were frequently encoded by the viral 
genomes, with CKD-enriched vOTUs containing a 
higher proportion than HC-enriched vOTUs (5.9% vs. 
4.5% of respective AMGs; Fisher’s exact test q=0.002). 
Furthermore, genes involved in sulfur metabolism 
were also prevalent in vOTUs, in agreement with 
recent reports showing that human gut viruses 
actively participate in both organic and inorganic 
sulfur metabolism [90, 91]; these genes accounted for 
similar proportions between the CKD-enriched and 
HC-enriched vOTUs (4.5% vs. 4.7%, q=0.409). 

We compared the occurrence rate of AMGs 
between CKD-enriched and HC-enriched vOTUs at 
the enzyme level (representing 1,316 auxiliary 
metabolic enzymes based on the KEGG database; 
Table S5). The most frequent AMG was a 
DNA-cytosine methyltransferase (K00558), which 
mediates cytosine DNA methylation using 
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S-adenosylmethionine (SAM) as a methyl donor [92]; 
this enzyme was found to be more prevalent in 
HC-enriched vOTUs compared to CKD-enriched 
vOTUs (occurrence rate 17.3% vs. 11.9%; Fisher’s 
exact test q<0.001). Interestingly, 21 of the 50 most 
frequent AMGs showed significant differences in 
frequency between the two groups (Figure 5A). 
HC-enriched vOTUs had a higher frequency of 
enzymes such as K00986 (RNA-directed DNA 
polymerase), K01520 (dUTP pyrophosphatase), 
K01185 (lysozyme), and two enzymes involving 
assimilatory sulfate reduction (K00390 
[phosphoadenosine phosphosulfate reductase] and 
K00957 [sulfate adenylyltransferase]) compared to 
CKD-enriched vOTUs. In contrast, enzymes such as 
K21471 (peptidoglycan DL-endopeptidase), K00789 
(SAM synthetase), and K22409 
(N-acetylmuramoyl-L-alanine amidase) were more 
frequent in CKD-enriched vOTUs. Although it is 
outside the scope of this study to investigate the 
mechanism of all differentially abundant AMGs, we 
explored the prominent example of the enzymes 
involved in nicotinamide adenine dinucleotide 
(NAD+) biosynthesis. From the CKD-associated 
vOTUs, we identified 25 enzymes involved in several 
pathways of NAD+ de novo biosynthesis and salvage 
(Figure 5B), most of which were more likely to be 
encoded by HC-enriched vOTUs than by 
CKD-enriched vOTUs. In particular, 4 critical 
enzymes of the pathways, namely K01916 (NAD+ 
synthase, participating in the NAD+ de novo 
biosynthesis pathway), K00969 (nicotinate-nucleotide 
adenylyltransferase, participating NAD+ salvage 
pathways I and II), and K08281/K00763 (pncAB, 
participating salvage pathways I and V), were 
significantly higher in frequency in HC-enriched 
vOTUs (Figure S15A). Genome analysis further 
confirmed that these enzymes were usually encoded 
in multiple genetic contexts within HC-enriched 
vOTUs (Figure 5C; Figure S15B). Additionally, a 
comparison of gene expression in faecal metagenomes 
revealed a higher abundance of NAD+ 
biosynthesis-associated enzymes in HCs compared to 
CKD patients (Figure S16). Collectively, these findings 
suggest a higher NAD+ synthesis capacity in 
HC-enriched vOTUs as well as in the gut virome of 
HCs. Further investigations based on well-designed 
clinical and/or animal experiments will ultimately 
elucidate the mechanism underlying the interaction 
between this vital function and CKD aetiology. 

CKD viral signatures correlate with common 
diseases 

To test the specificity and universality of CKD 
viral signatures, we curated the faecal metagenomes 

previously studied for microbial alterations in 
common diseases and explored the changes in 
CKD-associated vOTUs in them. In total, 1,901 
available faecal metagenomes (993 cases and 908 
controls, Table S6) covering 9 different diseases were 
downloaded and processed using a standardized 
pipeline (see Materials and Methods). All data were 
sourced from Chinese cohorts to minimize the impact 
of inter-country variations in gut viromes [28]. Using 
this large cohort, we quantified the relative 
abundances of 4,649 CKD-associated vOTUs and 
compared them between cases and controls for each 
disease. For all 9 cohorts, the majority (ranging from 
86.8% to 99.4%) of vOTUs were frequently detected in 
over 20% of individuals (Figure S17), suggesting that 
CKD-associated vOTUs are widespread in the human 
gut virome regardless of region and disease status. 
For each disease, we calculated a “consistency rate”, 
defined as the proportion of vOTUs exhibiting a 
consistent trend in mean abundance between cases 
and controls compared with the observation in CKD 
patients vs. controls. Strikingly, the consistency rate 
was markedly high in the cohorts for ACVD, CRC, 
DKD, hypertension, IBD, and T2D, ranging from 
74.2% in the ACVD cohort to 81.2% in the 
hypertension cohort (permutated P <0.001 for all 
diseases) (Figure 6A). In contrast, consistency rates in 
the RA and obesity cohorts were lower, at 63.7% 
(permutated P =0.045) and 57.7% (permutated P 
=0.195), respectively. Furthermore, the gross 
abundances of CKD-enriched vOTUs were 
significantly higher in the patients with ACVD, CRC, 
DKD, hypertension, IBD, LC, RA, and T2D than in 
controls, while the gross abundances of 
CKD-depleted vOTUs were also significantly reduced 
in these patients, except in the RA cohort (Figure 6B). 
Combining these findings suggested that the CKD 
viral signatures are highly reproducible in patients 
with ACVD, CRC, DKD, hypertension, LC, and T2D, 
and partly reproducible in RA patients, but do not 
appear to be associated with obesity. In addition, we 
assessed CKD viral signatures in CRC-associated 
faecal microbiomes from European, USA, and 
Japanese populations (consisting of 6 studies with 248 
patients and 448 controls) and found that most of 
these signatures were reproducible (median 
consistency rate 66.2%; permutated P <0.05 in 4 of 6 
cohorts; Figure S18; Table S6), supporting the 
hypothesis that CKD and CRC may share common 
signatures within their associated gut viromes. 

Using the abundance of CKD-associated vOTUs 
in patients and healthy individuals in the current 
study, we trained a machine learning classifier to 
distinguish cases and controls for each disease cohort. 
This model achieved the highest AUC of 0.890 for 
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distinguishing DKD patients from controls, and it also 
demonstrated considerable discriminatory power for 
predicting ACVD, CRC, hypertension, IBD, and LC, 
with AUCs ranging from 0.702 to 0.795 (Figure 6C). 
These findings underscore the impressive diagnostic 
potential of CKD viral signatures in the external 
kidney disease cohort as well as in other related 
diseases. 

Discussion 
In addition to multiple epidemiological factors 

being associated with CKD, the gut microbiota 
remains an important aspect that likely influences 
CKD etiopathogenesis and development [83]. Given 
the vast diversity of viruses within the human gut 
microbiome and their impact on host health and 
disease [23, 93], we hypothesize that this 
often-overlooked component may be pertinent to 
CKD. Our study is the first to identify gut virome 
signatures associated with CKD, paving the way for 
further mechanistic investigations. 

 

 
Figure 5. Functional differences between the CKD-enriched and HC-enriched vOTUs. (A) Occurrence rate of 50 most frequent AMGs. The functional categories 
of each AMG are shown by colored squares. Fisher’s exact test: *, q < 0.05; **, q < 0.01; ***, q < 0.001. (B) Enzymes and pathways involving NAD+ de novo biosynthesis and salvage. 
This diagram is exacted from the KEGG pathway database with manual modifications. Enzymes are colored by their enrichment directions (red, CKD-enriched; blue, 
HC-enriched) and six key enzymes in the pathways are labeled by yellow boxes. Fisher’s exact test: *, q < 0.05. (C) Representative alignment of three viral contigs encoding 
multiple genetic contexts. The viral genes of the contigs are identified by CheckV. 
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Figure 6. Alterations of CKD-associated vOTUs in other diseases. (A) Volcano plots showing the fold change vs. q-values for vOTUs among 9 studies. The X-axis 
shows the ratio (log2 transformed) of vOTU abundance in disease cases (fold>0) compared with that in healthy controls (fold<0). The Y-axis shows the q-value (-log10 
transformed) of a vOTU. vOTUs are colored by their enrichment directions in CKD patients vs. healthy controls. Horizontal dotted lines: q < 0.05 and q < 0.01; vertical dotted 
lines: fold<-1.2 and fold>1.2. (B) Boxplots show the gross relative abundance of CKD-associated vOTUs in the gut virome of subjects from 9 studies. Boxes represent the 
interquartile range between the first and third quartiles and the median (internal line). Whiskers denote the lowest and highest values within 1.5 times the range of the first and 
third quartiles, respectively; dots represent outlier samples beyond the whiskers. Student’s t-test: *, q < 0.05; **, q < 0.01; ***, q < 0.001. (C) Receiver operating characteristic 
(ROC) analysis of the classification of case/control status using the random forest model trained by 425 CKD patients and 290 healthy controls. The classification performance 
of the model was assessed by the area under the ROC curve (AUC). The AUC values and 95% confidence intervals (CIs) are shown. 

 
To establish the material for virome analysis, we 

constructed a virus catalogue of 45,849 nonredundant 
vOTUs derived from 715 deeply sequenced faecal 
metagenomes based on the methodology developed 
by recent studies [22, 23, 94, 95]. A significant 
proportion of these vOTUs were newly found 
compared with the existing human virus databases, 
likely reflecting the advantage of deep metagenomic 
sequencing for viral genome recovery [96] or the 
specific characteristics of the Chinese population. The 
current virus catalogues included on average 17.4% of 

the sequencing reads in the original faecal 
metagenomes, with some samples exhibiting viral 
read proportions of 40-50%. This finding is 
remarkably higher than previous estimates (usually 
<3%) [81, 97, 98], although it aligns more closely with 
Nayfach et al.’s estimation of 8.6% [94], suggesting the 
presence of an unexplored extensive viral “dark 
matter” in the human gut. Overall, our virus 
catalogue and subsequent findings highlight the 
efficacy of metagenome-based methodology for 
exploring the complex human gut viral community. 
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Consistent with previous studies [28, 99], the gut 
viromes of both CKD patients and HCs were 
dominated by several families, including Siphoviridae, 
Myoviridae, and Podoviridae (containing crAss-like 
viruses), all belonging to the dsDNA virus order 
Caudovirales. Siphoviridae and Microviridae (a ssDNA 
virus family that is prevalent in the human gut) were 
significantly enriched in CKD patients. While most 
members of these two families are temperate viruses 
[100, 101], their specific functions in the CKD virome 
remain unclear. Another prominent CKD-enriched 
family was “Flandersviridae”, which contained 4 
vOTUs consistently enriched in CKD patients. This 
recently described viral taxon is highly abundant and 
widespread in the human gut, suspected to be an 
obligately lytic virus [52, 102]. Genome analysis of 
these 4 “Flandersviridae” vOTUs showed that they 
uniquely encoded a bacterioferritin gene, though their 
relevance to CKD is still under investigation. 
Importantly, all 4 “Flandersviridae” vOTUs were 
independently associated with CKD, regardless of the 
gut bacterial community, suggesting that they might 
act on CKD status in a certain way that warrants 
future exploration. To further investigate the 
CKD-associated vOTUs, we connected them to gut 
bacteria using both host-phage interactions and 
statistical relationships. CKD-enriched vOTUs were 
frequently connected to some widely reported 
harmful bacteria, such as B. thetaiotaomicron (a gut 
commensal that probably promotes enteric infections 
and obesity [64, 103]), [Ruminococcus] gnavus (a 
proinflammatory bacterium associated with multiple 
diseases [104, 105]), Erysipelatoclostridium ramosum 
(formerly Clostridium ramosum, an obesogenic 
bacterium [106, 107]), Enterocloster 
bolteae/clostridioformis (opportunistic pathogens 
previously included in the Clostridium XIVa group 
[108]), and Flavonifractor plautii (a 
flavonoid-degrading bacterium involved in CRC and 
uraemic toxin production in CKD patients [20, 109]). 
Conversely, HC-enriched vOTUs were generally 
connected to beneficial species, including Blautia (one 
of the most dominant gut microbial taxa with 
probiotic properties such as biological transformation 
and metabolic syndrome alleviation [110]), 
Faecalibacterium, and Roseburia members. Given that 
an extensive number of correlations existed between 
CKD-associated vOTUs and these species, our 
findings suggested that the viruses may interact with 
bacteria to further influence disease progression. 

To study the functional contents of gut viruses 
and their relevance to CKD, we functionally 
annotated the viral genes and performed a 
comparative analysis between CKD-enriched and 
HC-enriched vOTUs. The majority of the annotated 

viral genes represented typical viral functions, such as 
DNA replication/repair and nucleotide biosynthesis, 
in accordance with previous observations [44]. Viral 
AMGs were especially focused on because they can be 
actively expressed during infection to reprogram host 
metabolism and provide viruses with fitness 
advantages [43, 111]. A considerable proportion (>5%) 
of AMGs were involved in peptidoglycan 
biosynthesis and degradation, with these genes being 
more abundantly encoded by CKD-enriched vOTUs 
than HC-enriched vOTUs. Peptidoglycan metabolism 
genes are also enriched in the gut virome of RA 
patients who are anti-cyclic citrullinated protein 
antibody negative, indicating their potential 
interactions with the immune system [39]. The most 
prominent enzyme of these genes was peptidoglycan 
DL-endopeptidase (K21471), also known as 
peptidoglycan hydrolase cwlO, with cell 
wall-degrading activity [112, 113], which showed a 
several times higher prevalence rate in the 
CKD-enriched vOTUs than in HC-enriched vOTUs. 
Virus-encoded peptidoglycan hydrolases are lytic 
enzymes that locally degrade the peptidoglycan of the 
bacterial cell wall during infection [114]. The 
heightened production of peptidoglycan hydrolases 
in CKD-enriched vOTUs suggests a potential shift 
from lysogenic to lytic replication within the 
temperate phage population, leading to increased 
levels of proinflammatory bacterial debris that could 
influence local innate immune responses and mucosal 
immune system [115, 116], as previously observed in 
the gut virome of IBD patients [31]. In addition to 
K21471, several additional viral-encoded genes also 
showed peptidoglycan hydrolase activity [117], 
including lysozyme (K01185), peptidoglycan 
LD-endopeptidase (K17733), and three 
N-acetylmuramoyl-L-alanine amidases (K01447, 
K01449, and K22409). Of these, K22409 was more 
abundant in CKD-enriched vOTUs, whereas K01185 
and K01449 were less frequent; subsequent studies of 
these enzymes will help untangle the connections 
between virus-mediated peptidoglycan degradation, 
bacterial lysis regulation, and CKD pathogenesis. 

Another striking finding was the lower 
frequency of genes involved in NAD+ biosynthesis in 
CKD-enriched vOTUs compared to HC-enriched 
vOTUs, coupled with reduced expression in the gut 
virome of CKD patients. Various studies have verified 
the presence of NAD+ synthesis genes in viruses [118, 
119] and revealed their indispensable role in phage 
DNA replication and exploitation of host metabolic 
pathways and biochemical processes during viral 
infection [120]. The impact of reduced NAD+ 
synthesis in the virome of CKD patients is unknown 
and is probably linked to viral reproduction, 



Theranostics 2025, Vol. 15, Issue 5 
 

 
https://www.thno.org 

1657 

antioxidation, and other effects. Notably, there have 
been numerous studies highlighting the disruption of 
de novo NAD+ biosynthesis in human cases of acute 
kidney injury (AKI) [121-123]. Researchers have 
found that in mouse models of AKI, there is a 
decrease in renal NAD+ levels, an increase in 
quinolinate levels, and a reduction in the activity of 
quinolinate phosphoribosyltransferase [121]. 
Moreover, the randomized double-blind clinical trial 
has shown that the treatment aimed at restoring 
NAD+ could constitute a significant advance for 
patients at risk of AKI [121]. Our findings suggest that 
the gut virome of CKD patients also exhibits a de 
novo NAD+ biosynthetic downregulation, which 
seems to hint at a broader metabolic dysregulation in 
these individuals. This observation could open new 
avenues for understanding the role of viral 
communities in the pathophysiology of CKD and 
might point towards potential therapeutic strategies 
that target the gut virome to restore metabolic 
balance. 

Numerous studies have established associations 
between gut microbiota and common diseases, often 
identifying consistent microbiome changes across 
multiple diseases [124-126]. Typically, systemic 
diseases such as IBD and CRC are marked by the 
presence of certain opportunistic pathogens [69, 124], 
whereas cardiometabolic and immune diseases are 
characterized by a depletion of potentially beneficial 
microbes (e.g., the aforementioned short-chain fatty 
acid (SCFA)-producing bacteria) [58, 127]. To 
determine the generalizable scope of this knowledge 
regarding gut viruses, we profiled the gut virome of 9 
available Chinese cohorts with different diseases and 
found that most CKD-associated viral signatures were 
reproducible in cohorts with CVD, CRC, DKD, 
hypertension, IBD, LC, and T2D cohorts. The 
consistency of virus signatures across these diseases 
may not only be correlated to their common changes 
in the bacterial microbiome but also suggest that some 
viruses can independently influence multiple diseases 
through a consistent manner, such as 
immunoregulation or viral infection [128]. Our results 
highlight the importance of a broad exploration of the 
gut viromes of microbiome-related complex diseases. 

Unlike our whole-metagenome-based 
technology, virus-like particle (VLP) enrichment 
followed by subsequent metagenomic sequencing 
(referred to as VLP metagenomic technology) has 
shown promise in illuminating gut viromes across 
diseases [129]. However, recent studies have revealed 
that these two technologies substantially differ in 
efficiency and coverage for viral identification [22, 96], 
suggesting that a comprehensive “whole virome” in 
faecal specimens should be measured using both 

technologies. This represents a critical area for 
improvement in future studies. CKD is a complex 
disease with an uncertain aetiology and is often 
accompanied by various complications, such as 
hypertension, diabetes, and constipation. However, 
due to the limited sample size in our study, we did 
not conduct a specific analysis on the potential 
impacts of these factors on the virome of CKD 
patients. Future research should aim to further 
explore these associations, as a more detailed 
examination could uncover important insights into 
how these coexisting conditions may interact with the 
viral signatures associated with CKD. On the other 
hand, considering the remarkable effect of disease 
severity on the gut bacteriome of CKD patients [18, 
130], its effect on the gut virome also needs to be 
explored by future studies. 

Conclusions 
By a metagenome-wide analysis of the virome of 

faecal samples from CKD patients and healthy 
controls, we revealed that the gut viral community of 
CKD was substantially altered, occurring across 
different cohorts, host properties, disease severities 
and underlying diseases. Our study identified 
numerous CKD-associated viruses and uncovered 
their 1) interactions with gut bacteria and 2) specific 
functions that may be linked to substance metabolism 
in the gut ecosystem. Overall, this research describes 
an overview of the gut viral community of CKD 
patients and HCs and implicates specific viruses in 
CKD, offering new resources and insights to assess 
viral involvement in other complex diseases. 
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