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Experimental
Materials

All reagents and chemicals were commercially available. Glacial acetic acid (CH3COOH),
sodium acetate (CH3COONa), hydrochloric acid (HCl), sodium hydroxide (NaOH), absolute
ethanol (CH3CH;OH), hydrogen peroxide (H202, 30%), ferrous sulfate heptahydrate
(FeSO47H20), calcium chloride (CaCl,), N, N-dimethylformamide (DMF), glutathione (GSH),
and potassium hexacyanoferrate (IIT) (K3[Fe(CN)g]) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Beijing, China). Tris(hydroxymethyl)aminomethane (C4H11NO3), glutathione
reductase (GR), 1,1-diphenyl-2-picrylhydrazyl (DPPH), reduced nicotinamide adenine
dinucleotide phosphate (NADPH), polyetherimide (PEI), and indocyanine green (ICG) were
ordered from Macklin Biochemical Co., Ltd. (Shanghai, China). 5,5-Dimethyl-1-pyrroline-N-
oxide (DMPO) was obtained from Dojindo Laboratories (Kumamoto Ken, Japan).
Polyvinylpyrrolidone (PVP, kW=30 K), hexahydrate chloroplatinic acid (H2PtCls6H20),
3,3°,5,5 -tetramethylbenzidine (TMB), Mal-PEG2000-COOH (PEG), and pyrogallol (PG) were
provided from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). DMEM, RPMI-
1640 medium, paraformaldehyde fixative, lipopolysaccharide (LPS), physiological saline, and
hematoxylin and eosin (HE) staining kits were bought from Servicebio Technology Co., Ltd.
(Wuhan, China). 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) and 5-ethynyl-2'-
deoxyuridine (EdU) were acquired from Beyotime Biotechnology (Shanghai, China). Horseradish
peroxidase-conjugated goat anti-rabbit IgG was purchased from Proteintech (Chicago, USA).
Anti-Arg-1 (1:1000) and anti-GAPDH (1:2000), and anti-CD86 (1:1000) were purchased from
Affinity Biosciences (USA). The anti-iNOS (1:200), anti-Arg-1 (1:200), and anti-F4/80 (1:1000)
were purchased from Cell Signaling Technology (Danvers, MA, USA). TNF-a, IL-1B, and IL-6
assay kits were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Unless specified,
all reagents used in this study were of analytical grade. All experimental water used was deionized
water (resistivity Q > 18.2 MQ cm). All animal experiments were performed at the First Affiliated
Hospital of Hunan Normal University and were approved by the Institutional Animal Committee

of Hunan Provincial People’s.
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Instrumentation

UV-vis absorption spectra were acquired via a UV-19001 ultraviolet-visible
spectrophotometer (Shimadzu Corporation, Japan). X-ray photoelectron spectroscopy (XPS)
analysis was conducted on an Escalab 250X-ray photoelectron spectroscope (Thermo Fisher
Scientific Co. Ltd., USA). The crystallographic structure was achieved via X-ray powder
diffraction (XRD, D/max-2500 with a source of Cu Ka radiation (A=1.54056 A), Rigaku Co., Ltd.,
Tokyo). Fourier transform infrared (FTIR) spectroscopy was performed with a Nicolet 1S20
spectrometer (Thermo Fisher Scientific, USA). Transmission electron microscopy images were
obtained via an FEI instrument (Tecnai G2 F20 TMP, USA) (TEM, JEM-F200) equipped with
energy dispersive spectroscopy (EDS, JED-2300T) analysis. Dynamic light scattering (DLS) data
were collected with a Brookhaven 90 plus analyzer (NanoBrook Omni, USA). Protein
quantification was conducted via nucleic acid protein quantification analyzers (NanoDropone,
Thermo Fisher Scientific, China). The staining state of the cells was observed via laser scanning

confocal microscopy (Olympus FV3000, Olympus Corporation, Japan).
DFT calculations

The DFT computations were carried out using the projector augmented wave (PAW)
method via the Vienna ab initio simulation package (VASP) [1, 2]. The exchange correlation
potential was represented by the Perdew-Burke-Ernzerhof (PBE) function in the generalized
gradient approximation (GGA) [3]. The total energy was corrected via the DFT-D3 method and
used to describe van der Waals interactions [4]. A 2x2 supercell Cri-Pt-CaFeps (111) surface was
constructed. The vacuum layer was set to 15 A. The cutoff energy for the plane-wave basis
expansion was set to 450 eV, using a 2x2x1 k-point sampling grid. During the optimization process,
the bottom five layers of atoms were fixed, while the other layers were relaxed. All the structures
were optimized to have equivalent energy and convergence tolerance of force on the atoms below
1.0x10° eV and 4.0x102 eV/A, respectively. The Gibbs free energy change (AG) of the

elementary step was calculated as follows:

AG = AE + AEzpg - TAS (2)
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whereas AE is the total energy difference, AEzpk is the change in the zero-point energy and

the entropy, 7 is the temperature (7= 298.15 K), and AS is the entropy change.
Cell culture

RAW264.7 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) (Gibco,
China) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin G
sodium/streptomycin sulfate. AR42J cells were cultured in Dulbecco's modified Eagle's medium
(DMEM) (Gibco, China) supplemented with 1% penicillin G sodium/streptomycin sulfate and 20%
FBS (Gibco, China).

Cell toxicity assay

The cytotoxicity of Cri-Pt-CaFepp was evaluated via the Cell Counting Kit-8 (CCK-8) assay.
Briefly, AR42J cells s were seeded and incubated in a 96-well plate for 24 h. When the cell density
was approximately 80%, the medium was replaced with fresh medium containing 100 pL of Cri-
Pt-CaFepg solution at various concentrations (0, 50, 100, 200, 400, 800, and 1600 pg/mL). After
incubation at different time points (1, 6, 24, and 48 h), 10 uL of CCK-8 was added to each well,
followed by incubation for 1 h at 37°C. The main active component of CCK-8, 2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-8),
is reduced in living cells by mitochondrial dehydrogenases to form a water-soluble orange
formazan dye. The absorbance measured at 450 nm via a microplate reader can indirectly reflect

the number of living cells. Each group was tested with five replicates (n=5).
Hemolysis in vitro

Blood samples (1.0 mL) were collected from healthy mice and centrifuged at 2000 rpm for
5 min to remove the supernatant. The red blood cells were washed three times with PBS, and a red
blood cell suspension was prepared with 1 mL of PBS. Subsequently, 50 uL of the red blood cell
suspension was added to a centrifuge tube along with 150 pL of various solutions (PBS, NaCl,

H>0, and Cri-Pt-CaFepg). After incubation for 4 h, the images were collected.
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Figures and Tables

Figure S1. TEM images of CaFeps nanomaterial at different magnifications with scale bar of (A)

100 nm, (B) 50 nm, and (C) 20 nm, respectively. (D) HR-TEM image of CaFeps nanomaterial.
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Figure S2. TEM images of PtCapg at different magnifications with scale bar of (A) 50 nm, (B) 20
nm, (C) 10 nm, and (D) 5 nm, respectively.
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Figure S3. TEM images of PtFeps at different magnifications with scale bar of (A) 50 nm, (B) 20
nm, (C) 10 nm, and (D) 5 nm, respectively.
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Figure S4. (A) The size distribution histogram of Cri-Pt-CaFepg in an aqueous solution. (B) Long-

term stability assessment of Cri-Pt-CaFeps in an aqueous solution over 28 d (n = 3).
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Figure SS. UV-vis absorption spectra of oxidase-like activity of different nanomaterials.
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Figure S6. The optimized structure diagram of intermediate in reaction process: side view (top),
top view (bottom). I: Cri-Pt-CaFepg, II: Cri-Pt-CaFeps-H202, I1I: Cri-Pt-CaFeps-OH-H>0, IV: Cri-

Pt-CaFepp-OH, V: Cri-Pt-CaFepg-H>O.
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Figure S7. Cell vitality evaluation of Cri-Pt-CaFepg with different concentrations on AR42]J for 1,

6, 24, and 48 h by CCK-8 assay. The significant analysis between groups were depicted in Table

S1.

Table S1. Statistical significance of cell vitality of AR42J Cells treated with different
concentrations of Cri-Pt-CaFeps at 1, 6, 24, and 48 h (CCK-8 Assay)

Dose (ng/mL)

Time (h)
50 100 200 400 800 1600
1 ns ns ns % skskok skeskosk
6 ns ns ns ok kokk skesksk
24 ns ns ns ns oAk ok
48 ns ns ns ns oAk roxk

Notes: ns, not significant; *p < 0.05; **p < 0.01; ***p <0.001 (compared with 0 pg/mL).
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Figure S8. The protective effect of Cri-Pt-CaFepp at different concentrations on LPS-induced

RAW264.7 cells for 24 h. *P < 0.05, **P <0.01, ***P < 0.001, and ns = not significant.
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Table S2  In vitro and in vivo biocompatibility of PB-based nanozymes.

Prussian blue

Size (nm) Biocompatibility Disease Ref.
forms
In vitro: >90 % cell viable in HUVECs
PBzyme ~65 nm (Dosage: ~160 pg/mL) Skin flaps 5
In vivo: -
In vitro: >90 % cell viable in NPCs, 293T
Intervertebral
(Dosage: ~3.125 pg/mL) .
PBNPs ~160 nm ] o o disc 6
In vivo: Insignificant toxicity in SD rat .
degeneration
(Dosage: 2 mg/mL, 28 days)
In vitro: >90 % cell viable in BV2
PBzyme ~100 nm (Dosage: ~100 pg/mL) Ischemic stroke 7
In vivo: -
In-vitro: >90 % cell viable inBV2, SH-
SYSY Parkinson's
PBzyme ~106 nm . 8
(Dosage: ~80 pg/mL) disease
In vivo: Full metabolism in 30 days
In-vitro: >90 % cell viable in THP-1
USPBNPs ~3.5 nm (Dosage: ~10 p g/mL) Osteoarthritis 9
In vivo: -
In vitro: >90 % cell viable in BV2,
MPBzyme@N bEnd.3, SH-SY5Y Ischemic
~160 nm 10
CM (Dosage: ~40 pg/mL) Stroke Therapy
In vivo: -
In vitro: >90 % cell viable in mouse
primary neuron, microglia, astrocytes Adult ischemic
PB@PDA NPs ~115 nm 11
(Dosage: ~80 pg/mL) stroke
In vivo: -
HA In vitro: >90 % cell viable in RAW264.7,
VSMCs, HUVECs )
M@PB@(PC+ ~200 nm Atherosclerosis 12
(Dosage: ~100 pg/mL)
ART) .
In vivo: -
In vitro: >90 % cell viable in RAW264
Dosage: ~400 pg/mL
Sim@PMPB (Dosage: 400 uemb) |
NC ~150 nm In vivo: Insignificant toxicity in Kunming  Atherosclerosis 13
mice
(Dosage:20 mg/kg, 28 days)
In vitro: >90 % cell viable in SH-SY5Y, Alzheimer’s
PB/RBC ~74 nm 14

bEnd.3, BV2

disease
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(Dosage: ~40 pg/mL)

In vivo: -

In vitro: >90 % cell viable in SH-SY5Y

Spinal cord
RHPAzyme ~240 nm (Dosage: ~10 pg/mL) . 15
. injury
In vivo: -
In vitro: >90 % cell viable in HEK239T
Dosage: ~200 g/mL
( . s . .g ) L Acute kidney
PBNZs 4 nm In vivo: Insignificant toxicity in BALB/C . 16
. injury
mice
(Dosage: 50 mg/kg, 14 days)
In vitro: >90% cell viable in L929 . .
Diabetic wound
KBP@KH 250 nm (Dosage: ~100 pg/mL) . 17
. healing
In vivo: -
In vitro: >90% cell viable in BM Lin,
MS-5 Radiation-
(Dosage: ~100 pg/mL) induced
PB@MSCM 150 nm . o L . 18
In vivo: Insignificant toxicity in C57BL/6 hematopoietic
mice injury
(Dosage: 15 mg/kg, 14 days)
In vitro: >90 % cell viable .
Hepatic
(Dosage: ~100 pg/mL) . .
. L D ischemia-
PB Scavengers ~80 nm In vivo: Insignificant toxicity in ) 19
. reperfusion
C57BL/6JGpt mice o
injury
(Dosage: 1 mg/kg, 24 h)
In vitro: murine mammary carcinoma
(4T1) cells
PtPB ~110 nm (Dosage: ~160 ppm) Cancer therapy 20
In vivo: hemolysis test
(Dosage: 200 pg/mL, 24 h)
In vitro: >93 9% cell viable in AR42J.
dosage: <400 pg/mL This
Cri-PtCaFers  ~105nm (ot =400ugmb) , SAP
In vivo: Insignificant toxicity in ICR mice work

(Dosage: 5 mg/kg, 30 days)

Note: HA-M@PB@(PC+ART): hyaluronic acid and macrophage membrane-coated Prussian blue nanoparticles; KBP@KH:

S15

bovine serum albumin Prussian blue- embedded Konjac glucomannan and hydroxypropyl trimethylammonium chloride chitosan
composite hydrogel; MPBzyme@NCM: neutrophil-like cell-membrane-coated mesoporous Prussian blue nanozyme; PB: Prussian
blue; PB@MSCM: mesenchymal stem cell membrane camouflaged Prussian blue nanozyme; PBNPs: Prussian blue nanoparticles;
PBNZs: ultrasmall Prussian blue nanozymes; PB@PDA NPs: polydopamine-coated Prussian blue nanoparticles, PB/RBC: red

blood cell membranes-encapsulated Prussian blue nanoparticles; PBzyme: Prussian blue nanozyme; PtPB: platinum-doped



Prussian blue; RHPAzyme: rapamycin-loaded and hollow mesoporous Prussian blue-based nanozyme; Sim@PMPB
NC: simvastatin-loaded theranostic agent based on porous manganese-substituted Prussian blue analogues; USPBNPs: ultrasmall

Prussian blue nanoparticles.
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Figure S9. Zeta potential of various nanomaterials in an aqueous solution.
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labeled Cri-Pt-CaFeps in mice with dose-dependent. Fluorescence images of dissected major
organs (C) collected mice after injection of ICG-labeled Cri-Pt-CaFepp with various concentration
at 1, 4, 8 h, respectively. Fluorescence intensities (D) and corresponding fluorescence images (E)

of ICG-labeled Cri-Pt-CaFeps in blood at different dosage.
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Figure S11. The changes in Fe elements of pancreatic tissue after injection of Cri-Pt-CaFepp using

ICP-MS at different time points (n = 3).

S19



v N ¢

CaFe-Ptpg

O,
ey

&

RN Ty
o

Figure S12. The H&E staining of the pancreas in SAP mice treated with CaFe-Ptpg, PtCapg, and

PtFeps nanozymes.
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Table S3 Current Prussian blue nanomaterials as enzyme mimics and their typical applications
and representative references

Prussian blue

Enzyme-like

. Mechanism Application Ref.
forms activity
PBNPs@MCSs CAT ROS scavenging Bone repair 21
o Ischemic
MPBzyme@NCM CAT Inhibiting M1 responses 10
stroke therapy
e Ischemia-
Characteristic signal molecules of .
PBzyme POD, SOD . reperfusion(l/ 5
necroptosis .
R) injury
Myocardial
POD, SOD, L Ischemia- 22
PBNz@PSC Polarization from M1 toward M2 .
CAT Reperfusion
Injury
USPBNPs - Polarization from M1 toward M2 Osteoarthritis 9
Inhibiting endoplasmic reticulum stress
(IRE1/XBP1andATF4/CHOP axis) and Acute
HMPB@BA#GaNPs - o . ) . 23
restoring impaired autophagy (Beclin- pancreatitis
1/p62/LC3axis)
PPBzymes - Blocking JNK phosphorylation Osteoarthritis 24
POD, SOD, Periodontal
SPBzyme Photothermal-enhanced NO release . 25
CAT Disease
POD, SOD, ROS scavenging and enhancing
MPBZC . . SAP 26
CAT mitochondrial autophagy
CPB-Ce6NPs CAT Upregulating VEGF Antibacterial 27
o o Diabetic
Inhibiting of chronic inflammatory
KBP@KH - wound 17
factors .
healing
POD, SOD. RO/NS scavenging, inhibiting Th
is
Cri-Pt-CaFeps GPx, RNS inflammatory responses, and inducing SAP N
wor
scavenging M1 to M2 macrophages repolarization

Note: CPB-Ce6NPs: chlorin e6 loaded Prussian blue nanoparticles; HMPB@BA#Ga NPs: hollow mesoporous Prussian blue

nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety;

KBP@KH: bovine serum albumin Prussian blue- embedded Konjac glucomannan and hydroxypropyl trimethylammonium

chloride chitosan composite hydrogel; MPBZC: macrophage-membrane-coated and ZIF-8-modified PB-nanoparticles-loaded
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celastrol; MPBzyme@NCM: neutrophil-like cell-membrane-coated mesoporous Prussian blue nanozyme; PB: Prussian blue;
PBNPs@MCSs: Prussian blue nanohybridized multicellular spheroids; PBNz@PSC: Prussian blue nanozyme coated with
polydextrose-sorbitol carboxymethyl ether; PPBzymes: Prussian blue nanozymes coated with Pluronic; SPBzyme: integrate

sodium nitroprusside into PBzyme; USPBNPs: ultrasmall Prussian blue nanoparticles.
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Control SAP Cri-Pt-CaFepg

Figure S13. Whole-tissue scanning images of the number of macrophages (F4/80, pink
fluorescence), iINOS (red fluorescence), and Arg-1(green fluorescence) in pancreatic tissues, scale

bar 2 mm and 200 um, respectively.
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Figure S14. The quantitative colocalization ratios of the immunofluorescence images of M1/M2

macrophages.
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