Supplementary data

Targeting USP11 counteracts *SFTPC*^{I73T}-associated interstitial lung disease in hiPSCs-derived alveolar organoids and in vivo models

Janardhan Keshav Karapurkar^{1, †}, Sripriya Rajkumar^{1, †}, Ji-Hye Jung^{2, †}, Ji-Young Kim², Girish Birappa¹, D. A. Ayush Gowda¹, Jencia Carminha Colaco¹, Bharathi Suresh¹, Jung-Yun Choi², Sang Hyeon Woo¹, Won-Jun Jo¹, Jong-Hee Lee³, Kye-Seong Kim^{1,5*} Seok-Ho Hong^{2,4*}, and Suresh Ramakrishna^{1,5*}

¹Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.

²Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Republic of Korea.

³National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, South Korea.

⁴KW-Bio Co., Ltd, Chuncheon, Republic of Korea.

⁵College of Medicine, Hanyang University, Seoul, 04763, South Korea

Running title: Inhibition of USP11 alleviates SFTPC^{I73T}-associated interstitial lung disease

[†]These authors contributed equally.

*Corresponding authors

SR (E-mail: suri28@hanyang.ac.kr, suresh.ramakris@gmail.com)

SH (E-mail: shhong@kangwon.ac.kr)

KS (E-mail: ks66kim@hanyang.ac.kr)

Supplementary Figures:

Figure S1. Confirmation of SFTPC^{173T} mutation and validation.

Figure S2. Establishment of BEAS-2B cell lines stably expressing SFTPC^{173T} protein.

Figure S3. The stabilizing effect of USP11 on both SFTPC and SFTPC^{173T} protein levels was analyzed by increasing the concentrations of HA-USP11.

Figure S4. The stabilizing effect of USP11CS on both SFTPC and SFTPC^{/73T} protein levels.

Figure S5. Interactions between exogenous USP11 and SFTPC proteins.

Figure S6. The effect of silencing USP11 on the protein expression of SFTPC^{173T} in the presence or absence of MG132.

Figure S7. USP11 deubiquitinates Myc-SFTPC^{/73T}.

Figure S8. The half-life of endogenous SFTPC and SFTPC $^{/73T}$ in BEAS-2B cells.

Figure S9. The expression of USP11 in the presence of bleomycin in SFTPC and SFTPC^{173T} cells.

Figure S10. The stabilizing effect of USP11 on SFTPC^{173T} protein in BEAS-2B-SFTPC^{173T} cells.

Figure S11. The graphical representation of the protein level of α -SMA and COL1A1.

Figure S12. Screening of hiPSCs carrying SFTPC^{173T} mutation.

Figure S13. Validation of pluripotency status of hiPSCs carrying SFTPC^{/73T} mutation.

Figure S14. The expression of USP11 in USP11-depleted hiPSCs SFTPC-WT and hiPSCs carrying SFTPC^{173T} mutation.

Figure S15. qRT-PCR analysis of AOs using EMT markers.

Figure S16. TGF-β and BLM-induced fibrosis in AOs were analyzed by qRT PCR.

Figure \$17. Body weight and survival rate of mice.

Figure S18. Immunohistochemical staining of mouse lung tissues.

Supplementary Tables

Table S1. Target sequences used for sgRNA plasmid construction.

Table S2. Target sequences used for shRNA plasmid construction.

Table S3. Oligonucleotide sequences used to get PCR amplicon for T7E1 assay.

Table S4. PCR amplicon and cleavage sizes after T7E1 assay.

Table S5. Oligonucleotide sequences used to get PCR amplicon for *Scal* digestion.

Table S6. Primer sequences used for qRT-PCR.

Figure Legends

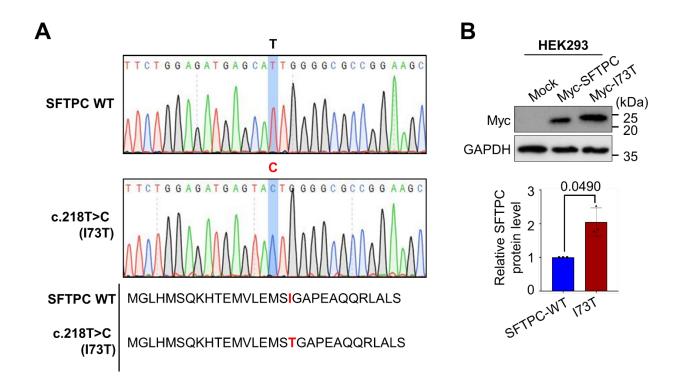
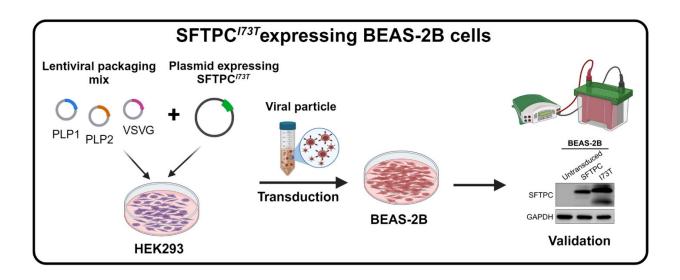
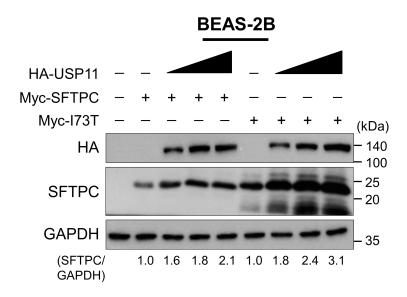




Figure S1. Confirmation of SFTPC^{I73T} mutation and validation. (A) Sanger sequencing analysis of SFTPC^{I73T} (T218C) missense mutations on the *SFTPC* gene. The amino acid substitutions for T218C and I73T are represented. The red font denotes the amino acid change from isoleucine (I) to threonine (T). (B) Western blot analysis of the basal level of SFTPC and SFTPC^{I73T} protein expression. Band intensity was estimated using ImageJ software, normalized to GAPDH, and represented graphically. Data are presented as the mean and standard deviation of three independent experiments (n = 3).

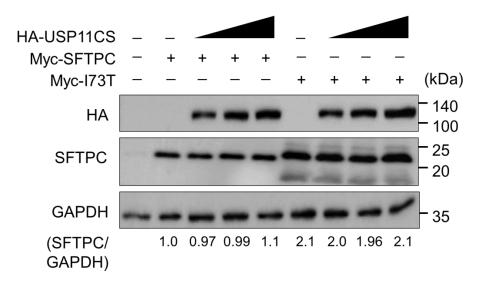


Figure S2. Establishment of BEAS-2B cell lines stably expressing SFTPC^{I73T} protein. HEK293 cells were transfected with a lentiviral vector encoding the *SFTPC*^{I73T} gene and packaging constructs. The viral particles were transduced into BEAS-2B cells, and the stable expression of the SFTPC^{I73T} protein was checked by western blot.

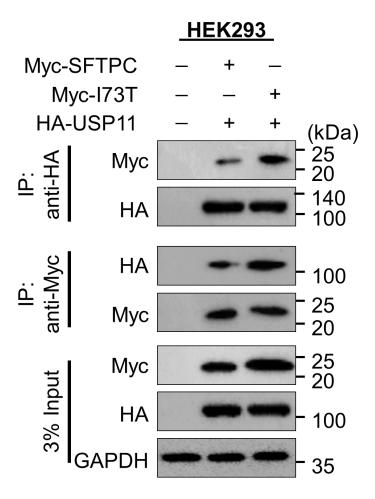


Figure S3. The stabilizing effect of USP11 on both SFTPC and SFTPC^{173T} protein levels was analyzed by increasing the concentrations of HA-USP11.

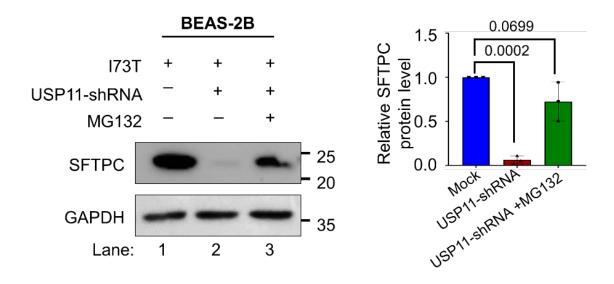
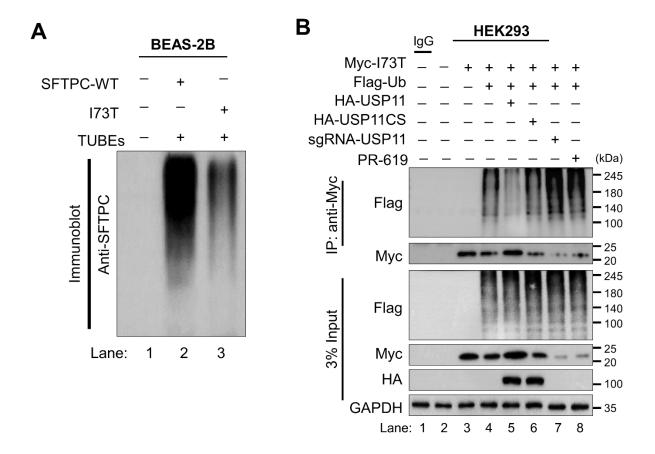
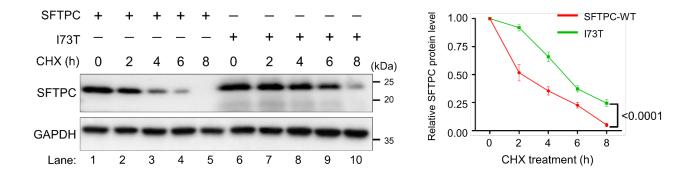
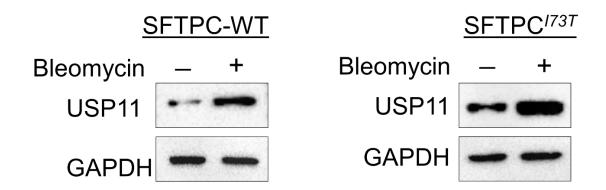
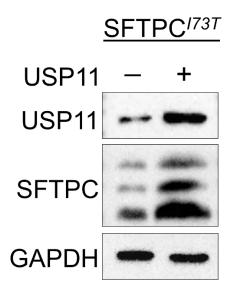

BEAS-2B

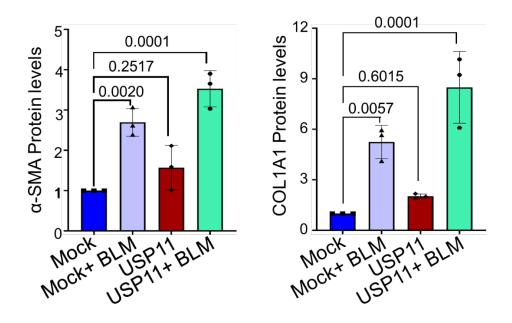
Figure S4. The stabilizing effect of USP11CS on both SFTPC and SFTPC^{173T} protein levels was analyzed by western blotting.

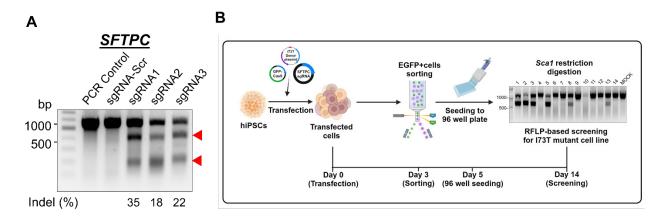
Figure S5. Interactions between exogenous USP11 and SFTPC proteins. Interaction was analyzed in HEK293. Cell lysates were immunoprecipitated and immunoblotted with the indicated antibodies.

Figure S6. The effect of silencing USP11 on the protein expression of SFTPC $^{/73T}$ in the presence or absence of MG132. Data are presented as the mean and standard deviation of three independent experiments (n = 3).


Figure S7. USP11 deubiquitinates Myc-SFTPC^{173T}. (A) A TUBEs assay was performed to assess the ubiquitination status between the SFTPC and SFTPC^{173T} proteins. Cell lysates were immunoprecipitated with TUBEs antibodies, followed by immunoblotting with the indicated antibodies. The cells were treated with MG132 for 6 h prior to harvest. (B) The ubiquitination and deubiquitination of ectopically expressed Myc-SFTPC^{173T} were analyzed by transfecting HEK293 cells with Flag-Ub along with HA-USP11, HA-USP11CS, or sgRNA targeting USP11. IP was performed using the Myc antibody and immunoblotting with an anti-Flag antibody.


Figure S8. The half-life of endogenous SFTPC and SFTPC^{173T} in BEAS-2B cells. CHX (250 μg/mL) was administered for the indicated time, and the cells were then harvested for western blotting with the indicated antibodies.


Figure S9. The expression of USP11 in the presence of bleomycin in BEAS-2B-SFTPC WT and BEAS-2B-SFTPC I73T cells.

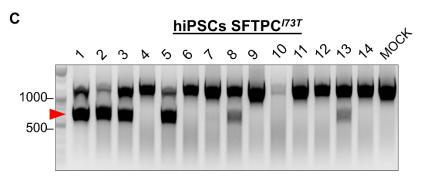


Figure S10. The stabilizing effect of USP11 on SFTPC^{173T} protein in BEAS-2B-SFTPC^{173T} cells.

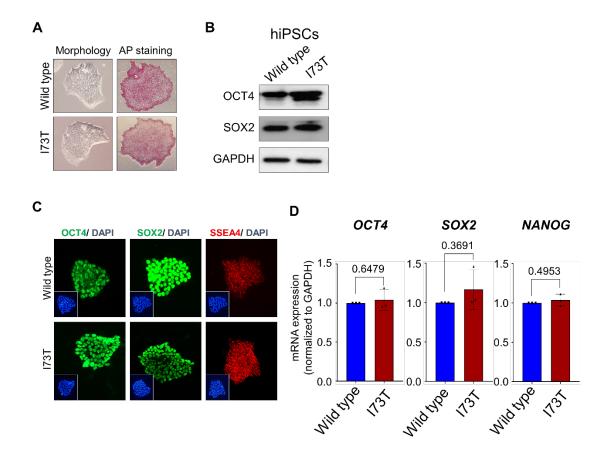
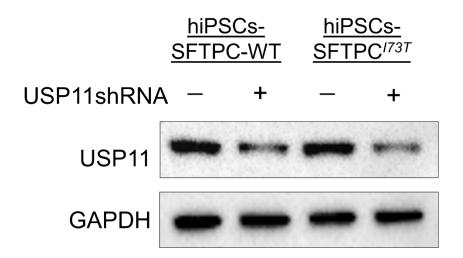
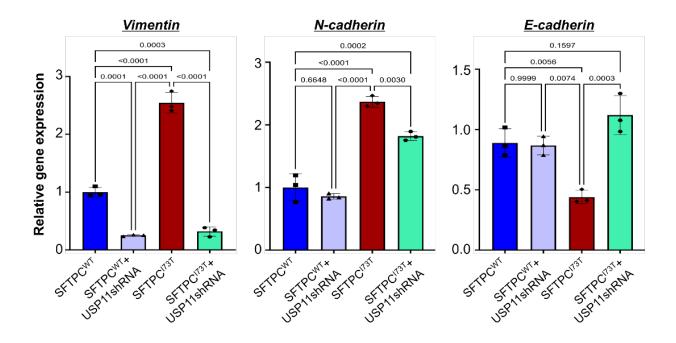


Figure S11. The graphical representation of the protein level of α -SMA and COL1A1. SFTPC^{173T} cells treated with either BLM alone or a combination of BLM and USP11 transduction were subjected to western blot. Data are presented as the mean and standard deviation of three independent experiments (n = 3).




Figure S12. Screening of hiPSCs carrying SFTPC^{173T} mutation. **(A)** The cleavage efficiency of sgRNAs targeting *SFTPC* gene by T7E1 assay. **(B)** Schematic representation showing how hiPSCs carrying the SFTPC^{173T} mutation were generated. hiPSCs were transfected with Cas9-GFP, sgRNA1, and donor DNA with a homologous region of SFTPC with the I73T mutation. GFP-Cas9 expressing hiPSCs were sorted by flow cytometry and seeded onto 96-well plates. Screening was performed by RFLP method. **(C)** hiPSCs carrying SFTPC^{173T} were screened by *Scal* digestion.

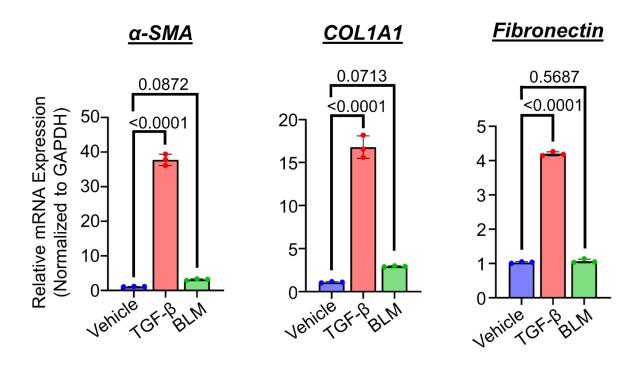

Figure S13. (**A–D**) Validation of the pluripotency behavior of hiPSCs carrying **SFTPC**^{173T}. The cells were analyzed by (**A**) AP staining (**B**) western blot using OCT4 and SOX2 antibodies (**C**) immunostaining using the pluripotency markers OCT3/4, SOX2, and SSEA4, and (**D**) qRT-PCR using OCT4, SOX2 and NANOG primers. Data are presented as the mean and standard deviation of three independent experiments (n = 3).

Figure S14. The expression of USP11 in USP11-depleted hiPSCs SFTPC-WT and hiPSCs carrying SFTPC^{1/73T} mutation.

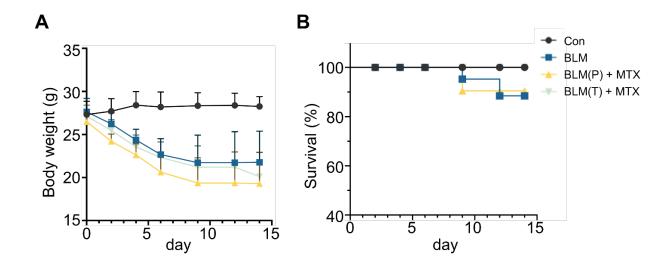


Figure S15. qRT-PCR analysis of AOs using EMT markers. The effect of USP11 depletion on SFTPC 173T -mediated fibrosis in AOs was analyzed by qRT-PCR using EMT markers Vimentin, N-cadherin and E-cadherin. Data are presented as the mean and standard deviation of three independent experiments (n = 3).

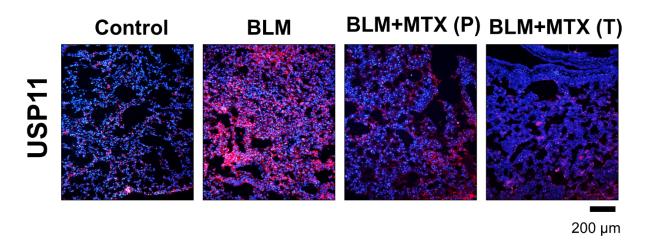


Figure S16. TGF-β and BLM-induced fibrosis in AOs were analyzed by qRT PCR.

TGF- β at the concentration of 25 ng/mL and BLM at the concentration of 3 μ g/mL was used to induce fibrosis in AOs. Fibrotic markers COL1A1, α -SMA and Fibronectin were analyzed by qRT PCR.

Figure S17. Body weight and survival rate of mice. **(A)** The recorded body weight of mice used in experimental groups. **(B)** The survival rate of the mice from different experimental groups. Data are presented as the mean and standard deviation.

Figure S18. Immunohistochemical staining of mouse lung tissues. Lung tissues from the BLM-induced mice in both the preventive group (P) and therapeutic group (T) were sectioned and paraffin embedded. Immunohistochemical staining using USP11 antibody.

Table S1. Target sequences used for sgRNA plasmid construction.

Gene	Species	sgRNA	Sequence (5' to 3')
		sgRNA1	GCGTTGGCTGTAGAAGAGAA
USP11	Homo sapiens	sgRNA2	GCACTGGTATAAGCAGTGGG
		sgRNA1	CAGGTTCTGGAGATGAGCAT
SFTPC	Homo sapiens	sgRNA2	GGTTCTGGAGATGAGCATTG
		sgRNA3	GGAGATGAGCATTGGGGCGC

Table S2. Target sequences used for shRNA plasmid construction.

Gene	Species	shRNA	Sequence (5' to 3')
USP11	Ното	shRNA1	CCGTGATGATATCTTCGTCTA
	sapiens	shRNA2	CGGCACAATGATTTGGGCAAA

Table S3. Oligonucleotide sequences used to get PCR amplicon for T7E1 assay.

Gene		sgRNA		Direction	Sequence (5' to 3')
			I PCR	FP	TCAGCGTCCCCATTGTTACC
		sgRNA1		RP	CCTTTTCCAGACGTTGCGAT
			II PCR	FP1	GGGTCTCTGGAGGTGGAAAC
USP11	Homo			RP1	CCAGCCTCACCAGCTTTCGC
	sapiens		IPCR	FP	AAATTAGCTGCAGATGGCACA
		sgRNA2		RP	CCCCATCCATTATACCTTGCGT
			II PCR	FP1	TGTTGGTTTGTTTGCCATTG
		sgRNA1,	IPCR	FP	AGCCAGAAACACACGGAGAT
	Homo	sgRNA2		RP	GATGGATGTGGATGAAGTGGC
SFTPC	sapiens	and	II PCR	FP1	AGCCAGAAACACACGGAGAT
		sgRNA3		RP1	AGCAGAGCCTTGTCATTGGTC

Table S4. PCR amplicon and cleavage sizes after T7E1 assay

Gene	sgRNA	PCR size (bp)	Cleavage size (bp)
_	sgRNA1	579	378+201
USP11	sgRNA2	681	286+395
	sgRNA1		379+162
SFTPC	sgRNA2	541	384+157
	sgRNA3		387+154

Table S5. Oligonucleotide sequences used to get PCR amplicon for *Scal* digestion.

Gene	Primer	Primer sequence	Amplicon size (bp)
	SFTPC ^{/73T} -FP	GTTAGAATCCAGGCCACCTCC	
05700	SFTPC ^{I73T} -RP	TCAGAAGCCACCAGGTAGTGAG	1372 bp
SFTPC	SFTPC ^{I73T} -FP1	CCTTCCCTGTCCATCCATCG	
	SFTPC ^{/73T} -RP1	TCGTGCAGGGGAATAGGAGA	1250 bp

Table S6. Primer sequences used for qRT-PCR

Gene		Sequence (5' to 3')
0074	FP TAGCATTGAGAACCGTGTGAG	TAGCATTGAGAACCGTGTGAG
OCT4	RP	ACTTGATCTTTTGCCCTTCTGG
00/0	FP	GAGCTTTGCAGGAAGTTTGC
SOX2	RP	GCAAGAAGCCTCTCCTTGAA
NANOG	FP	ACCTTGGCTGCCGTCTCTGG
NANOG RP AGC/	AGCAAAGCCTCCCAATCCCAAACA	
001.444	FP	AAGGGTGAGACAGGCGAACA
COLTAT	COL1A1 RP GACCCTGGAGGCCAGAGAAG	GACCCTGGAGGCCAGAGAAG
Filonomontin	FP	ACAACACCGAGGTGACTGAGAC
ribronectin	Fibronectin RP GGACACACGAGGTGACTGAGAC	GGACACAACGATGCTTCCTGAG
α-SMA	FP	GACGAAGCACAGAGCAAAAG
u-own	RP	AGTTGGTGATGCCATGT
Vimentin	FP	CCAGGCAAAGCAGGAGTC
VIIIIOTTAIT	RP	CGAAGGTGACGAGCCATT
N-cadherin	FP	GGTGGAGGAGAAGACCAG
IN-Caurieriii	RP	GGCATCAGGCTCCACAGT
	FP	CTGAGAACGAGGCTAACG
E-cadherin	RP	TTCACATCCAGCACATCC

SFTPB	FP	GCCATACCACAGGCAATGCT
	RP	TGCTGCTCCACAAATTGCTT
SFTPC	FP	CCTTCTTATCGTGGTGGT
	RP	TCTCCGTGTGTTTCTGGCTCAT
GAPDH -	FP	TGCACCACCAACTGCTTAGC
	RP	GGCATGGACTGTGGTCATGAG
SFTPA	FP	AAGCAGCTGGAGGCTCTGT
SFIPA	RP	CCATCAAGATGAGGGTGAGG
	FP	AGCACACGACTCCGTTCTC
NKX2.1	RP	GCCCACTTTCTTGTAGCTTTCC
	•	