1	Supplemental Materials for
2	A natural small molecule isoginkgetin alleviates
3	hypercholesterolemia and atherosclerosis by targeting
4	ACLY
5	
6	
7	
8	Figure S1 to S7
9	Tables S1
10	Tables S2
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Fig. S1 Pharmacokinetic parameters and safety profile of Isoginkgetin *in vivo*

29 (A) Pharmacokinetics parameters of ISOGK after oral (p.o.) (20 mg/kg) or intravenous 30 injections (i.v.) (5 mg/kg) administration in male ICR mice. (B) The protocol for safety 31 assessment in male C57BL/6J mice administered 20 mg/kg/day ISOGK by 32 intraperitoneal injections (i.p.). (C) The levels of blood glucose, body weight and liver-33 body weight ratio in C57BL/6J mice after treatment with or without ISOGK 4 weeks 34 (n = 4 or 5). Two-tailed Student's t test. (D) Serum ALT, AST, ALP, BUN, CK-MB, CK,

35	LDH, and CREA levels of C57BL/6J mice treated with or without ISOGK ($n = 4$ or 5).					
36	Two-tailed Student's t test. (E) Represent H&E staining images of lung, liver, spleen,					
37	kidney, and heart tissues in C57BL/6J mice treated with vehicle or ISOGK. (F) Periodic					
38	acid-Schiff (PAS) staining images in the indicated mouse kidney tissue. (G) The					
39	inhibitory effect of ISOGK on hERG potassium channels. The data are means \pm SEM,					
40	n.s., not significant.					
41						
42						
43 44						
45						
46						
47						
48 49						
50						
51						
52						
53 54						
55						
56						
57						
58 59						
60						
61						
62 62						
63 64						
65						
66						
67 68						
69						
70						
71						
12 73						
74						
75						

77

Fig. S2 Histopathological analysis and serum indicators in *Apoe^{-/-}* mice treated with or without ISOGK

80 (A) Represent H&E staining images of liver tissues in male $Apoe^{-/-}$ mice treated with 81 vehicle or ISOGK for 8 weeks. (B) Represent Sirius red staining images of liver tissues 82 in male $Apoe^{-/-}$ mice treated with vehicle or ISOGK for 8 weeks. (C) CD68, and CD31 83 immunofluorescence staining in aortic sinus from vehicle- and ISOGK-treated male 84 $Apoe^{-/-}$ mice. (D) Quantification of CD68, α -SMA and CD31 positive area (n = 6). Two-

85	tailed Student's t test. (E) Serum inflammatory cytokine CRP, IL-1 β and IL-6 levels in					
86	male $Apoe^{-/-}$ mice treated with vehicle or ISOGK (n = 6). Two-tailed Student's t test. (F)					
87	Serum inflammatory cytokine CRP, IL-1β and IL-6 levels in female Apoe ^{-/-} mice treated					
88	with vehicle or ISOGK (n = 8). Two-tailed Student's t test. The data are means \pm SEM,					
89	n.s., not significant. * $P < 0.05$.					
90						
91						
92						
93						
94						
95						
96						
97						
98						
99						
100						
101						
102						
103						
104						
105						
106						
107						
108						
109						
110						
111						
112						
113						

115

116 Fig. S3 Isoginkgetin does not affect oxidative stress.

117 (A) Agarose gel electrophoresis image of the LDL samples treated with or without 118 ISOGK in the presence or absence of copper (5 µM) for 6 h. (B) Calculated relative 119 electrophoretic mobility (REM) of native or oxidized LDL in the presence of indicated 120 compounds (n = 3). Vitamin E treatment as the positive control which retards LDL 121 oxidation. One-way ANOVA followed by Bonferroni's post hoc test. (C) Plasma GSH, 122 MDA, SOD, ox-LDL levels from male Apoe^{-/-} mice treated with vehicle or ISOGK for 123 8 weeks (n = 8 - 9). Two-tailed Student's t test. (D) Plasma GSH, MDA, SOD, ox-LDL 124 levels from male Apoe^{-/-} mice treated with vehicle or ISOGK for 8 weeks (n = 6 - 10). 125 Two-tailed Student's t test. The data are means \pm SEM, n.s., not significant. **P < 0.01, 126 *****P* < 0.0001.

Fig. S4 Effect of ISOGK on body weights, serum ALT, AST and antioxidant
parameters in hypercholesterolemic hamsters

132 (A-B) The body weight and serum ALT, AST levels in the indicated hamster groups.

133 Male hamsters were fed high cholesterol diet for 2 weeks and then received vehicle or

134 ISOGK treatment for an additional 4 weeks (n = 10). One-way ANOVA followed by

135 Bonferroni's post hoc test. (C) Plasma levels of MDA, SOD, ox-LDL in the indicated

- 136 hamster's group (n = 6 10). One-way ANOVA followed by Bonferroni's post hoc test.
- 137 The data are means \pm SEM, n.s., not significant, *P < 0.05, ***P < 0.001.

138

142 AMPKα pathway

143 (A) DiI-LDL uptake ratio in HepG2 cells treated with different doses of ISOGK (n = 144 3). (B) DiI-LDL uptake ratio in HepG2 cells treated with ISOGK for different times (n 145 = 3). (C) Representative images of the bile from male $Apoe^{-/-}$ mice fed high cholesterol 146 diet 7 weeks and administrated with or without ISOGK 8 weeks. (D) qRT-PCR detected

147	the indicated mRNA levels in liver tissue from indicated male $Apoe^{-/-}$ mice (n = 6). Two-
148	tailed Student's t test. (E) Immunoblotting analysis of liver samples in high cholesterol
149	diet-fed male <i>Apoe</i> ^{-/-} mice after ISOGK treatment (20 mg/kg/day) for 8 weeks (n = 7).
150	(F) Immunoblotting analysis of LDLR and ACLY in Huh7 cells treated with or without
151	ISOGK at different concentrations. (G) Quantitative analysis of F ($n = 3$). One-way
152	ANOVA followed by Bonferroni's post hoc test. (H) Immunoblotting analysis of liver
153	samples in hamsters after treatment ISOGK (5 mg/kg/day) for 4 weeks. (I) Quantitative
154	analysis of H ($n = 4$). One-way ANOVA followed by Bonferroni's post hoc test. (J-K)
155	AML12 and HepG2 cell were treated with 50 μM palmitic acid (PA) for 12 h. Then
156	cells treated with or without 5 μM ISOGK for another 12 h. The protein expression of
157	p-AMPK/AMPK were analyzed by immunoblotting (n = 3). The data are means \pm SEM,
158	n.s., not significant.
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	

179 Fig. S6 Knockdown of ACLY reversed the therapeutic effects of ISOGK in vitro

180 (A) Primary mouse hepatocytes (PMH) isolated from one male and one female 181 Acly^{flox/flox} mice were cultured with control or Cre adenovirus for 24 h. Then PMH 182 treated with 50 µM palmitic acid (PA) for another 12 h. The protein expression of ACLY 183 were analyzed by immunoblotting (n=1 per each gender, technical replicates). (B) 184 Representative images of Nile Red staining from PMH treated with or without 5 µM 185 ISOGK for 12 h (n=1 per each gender). (C) qRT-PCR detected the indicated mRNA 186 levels in AML12 cell treated with 50 µM PA and 5 µM ISOGK for 12 h (n=6). One-187 way ANOVA followed by Bonferroni's post hoc test. (D) qRT-PCR detected the 188 indicated mRNA levels in Huh7 cell treated with 50 µM PA and 5 µM ISOGK for 12 h 189 (n=6). One-way ANOVA followed by Bonferroni's post hoc test.

- 190
- 191
- 192
- 193

195

Fig. S7 Effect of ISOGK on body weight and blood glucose in control and Aclysilenced *Apoe^{-/-}* mice.

(A) The Acyl mRNA level was detected by qRT-PCR in the liver or kidney tissue from indicated groups of mice (n=6). One-way ANOVA followed by Bonferroni's post hoc test. (B) The body weight and blood glucose levels from male *Apoe^{-/-}* mice were induced by high cholesterol diet for 7 weeks and administrated control siRNA or GalNAc-siAcly (3 mg/kg/month) then received ISOGK (20 mg/kg/day) treatment for another 8 weeks (n=6 or 8). One-way ANOVA followed by Bonferroni's post hoc test.

204 The data are means \pm SEM, n.s., not significant, ****P < 0.0001.

205

206

207

208

209

210

211

212

Primers Sequences (5' - 3')AACAGCAACTCCCACTCTTC mGapdh-S mGapdh-AS CCTGTTGCTGTAGCCGTATT mAcly-S CGGGAGGAAGCTGATGAATATG mAcly -AS GTCAAGGTAGTGCCCAATGAA mCyp7a1-S ATCACAAACTCCCTGTCATACC mCyp7a1-AS CATCACTTGGGTCTATGCTTCT mCyp7b1-S CTCGTGAACCACCCTTGATAA mCyp7b1-AS GTGTCACCATGTTGCCTTTG mCyp8b1-S TTTCTGAGGGAGCAAGGAATAG mCyp8b1-AS GGAATAAGAGGACCCAGAAACA mBsep-S AACTGAACTTGGAAAGGGGTGT mBsep-AS AGCAGAGAAGGCCCTACAGA mSrebf1c-S CATCGACTACATCCGCTTCTT mSrebflc -AS CACCAGGTCCTTCAGTGATTT mFasn-S AGACCCGAACTCCAAGTTATTC mFasn-AS GCAGCTCCTTGTATACTTCTCC hACLY-S TGCACTGGAAGTAGAGAAGATTAC hACLY-AS AAACTGTGGGGTCCTTTACTCG hSREBF1C-S CGCTCCTCCATCAATGACAA hSREBF1C-AS GTGTTGCAGAAAGCGAATGTAG hFASN-S CTAGGTTTGATGCCTCCTTCTT hFASN-AS GATGGCTTCATAGGTGACTTCC

215 Table S1. Primer sequences for real-time PCR

216 S, sense; AS, anti-sense

- 217
- 218
- 219
- 220
- 221
- 222

Rank	Affinity (kcal/mol)	Name	Plant
1	-9.8	Silibinin	Silybum Adans
2	-9.7	Fargesin	Convallaria majalis L.
3	-9.7	Diosmin	Amentotaxus argotaenia
4	-9.6	ISOGINKGETIN	Ginkgo biloba
5	-9.6	Rubusoside	Rubus alceaefolius Poir.
6	-9.5	Methyl-Hesperidin	Citrus sinensis
7	-9.5	Bilobetin	Ginkgo biloba
8	-9.5	Sciadopitysin	Ginkgo biloba
9	-9.5	Genistin	Sophora japonica
10	-9.4	Veratrosine	Veratrum nigrum L.
11	-9.4	Linarin	Uncaria rhynchophylla
12	-9.4	Ononin	Ononis arvensis
13	-9.3	Dihydrosanguinarine	Chelidonium majus
14	-9.3	Ginkgetin	Ginkgo biloba
15	-9.3	Coreopsin	Coreopsis basalis
16	-9.3	Cynaroside	Cynara scolymus
17	-9.3	Aurantiamide acetate	The herbs of Walsura yunnanensis
18	-9.3	Apigenin 7-glucoside	Cosmos bipinnatus
19	-9.3	Glabrone	The herbs of Cudrania tricuspidata
20	-9.3	Bilirubin	Miscellaneous

223 Table S2. Top 20 candidates in molecular docking study