Improved optogenetic modification of the spiral ganglion neurons for future optical cochlear implants

Anupriya Thirumalai^{1,2,3,4}, Jana Henseler^{1,2,3}, Marzieh Enayati^{1,2,3}, Kathrin Kusch^{1,2,5,6,7}, Roland Hessler⁸, Tobias Moser^{1,2,5,7,9,10§}, Antoine Tarquin Huet^{1,2,3,5,8,9,11§}

¹Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany;

²InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany

³Auditory Circuit Lab, University Medical Center Göttingen, 37075 Göttingen, Germany

⁴Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany

⁵Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany

⁶Functional Auditory Genomics group, University Medical Center Göttingen, 37075 Göttingen, Germany

⁷Else Kroener Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075 Göttingen, Germany

⁸MED-EL GmbH, Innsbruck, Austria

⁹Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany

¹⁰Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany

¹¹Current address: Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France

[§]Those authors contributed equally.

Corresponding authors: tmoser@gwdg.de, antoine.huet@inserm.fr

Supplementary information

Figure S1. Procedure to perform catheter viral suspension delivery into the gerbil cochlea.

Figure S2. Comparison of viral administration approaches in the adult gerbil cochlea. **A.** Schematic representation of the different administration approaches (see Materials and methods for details). **B-C.** Quantification of the SGN density (B) and GFP⁺ SGN density (C) from the injected cochleae with the different administration approaches presented in A. Filled markers were used when positive oABRs were measured and an open-marker for the negative oABRs. Box plots show minimum, 25^{th} percentile, median, 75^{th} percentile, and maximum. Averaged ± SEM. Kruskal-Wallis test followed by Tukey-Kramer post-hoc test (*, $P \le 0.05$; **, $P \le 0.01$).

Figure S3. Subtypes unspecific optogenetic modification of the SGNs using AAV-PHP.S-hSyn-CatCh-eYFP. **A.** Quantification of the fraction of Calretinin-positive SGNs ('type Ia SGNs'), i.e., the ratio of the number of Calretinin- and Parvalbumin-positive cells, at the 3 cochlear turns following $RW_{\mu-cat}$ + OW administration. Kruskal-Wallis test followed by a multi-comparison test. The markers filled in orange correspond to normalhearing and in red to deafened cochleae. **B.** Quantification of the ChR-expression rate from Parvalbuminpositive SGNs (magenta), and from Calretinin-positive (+, blue filling) and -negative (-, blue, white filling). Wilcoxon rank sum test. Box plots show minimum, 25th percentile, median, 75th percentile, and maximum.

Figure S4. Absence of transduction in the central nervous system following $RW_{\mu-cat}$ + vent AAVadministration. Coronal slices of 5 gerbil brains following $RW_{\mu-cat}$ + vent AAV-administration. Slices were stained for parvalbumin (purple) and GFP (green), scale bar = 1 mm. The insert shows a magnification of the antero-ventral cochlear nucleus where GFP signal is found in axons of the SGNs but not in the neurons on which they project (scale bar = 0.2 mm).