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Supplementary information  

 
Figure S1. Procedure to perform catheter viral suspension delivery into the gerbil cochlea. 

 

 

 

 
Figure S2. Comparison of viral administration approaches in the adult gerbil cochlea. A. Schematic 
representation of the different administration approaches (see Materials and methods for details). B-C. 
Quantification of the SGN density (B) and GFP+ SGN density (C) from the injected cochleae with the different 
administration approaches presented in A. Filled markers were used when positive oABRs were measured and 
an open-marker for the negative oABRs. Box plots show minimum, 25th percentile, median, 75th percentile, and 
maximum. Averaged ± SEM. Kruskal-Wallis test followed by Tukey-Kramer post-hoc test (*, P ≤ 0.05; **, P ≤ 
0.01). 



 
Figure S3. Subtypes unspecific optogenetic modification of the SGNs using AAV-PHP.S-hSyn-CatCh-eYFP. 
A. Quantification of the fraction of Calretinin-positive SGNs (‘type Ia SGNs’), i.e., the ratio of the number of 
Calretinin- and Parvalbumin-positive cells, at the 3 cochlear turns following RWµ-cat + OW administration. 
Kruskal-Wallis test followed by a multi-comparison test. The markers filled in orange correspond to normal-
hearing and in red to deafened cochleae. B. Quantification of the ChR-expression rate from Parvalbumin-
positive SGNs (magenta), and from Calretinin-positive (+, blue filling) and -negative (-, blue, white filling). 
Wilcoxon rank sum test. Box plots show minimum, 25th percentile, median, 75th percentile, and maximum. 

 
 

 
Figure S4. Absence of transduction in the central nervous system following RWµ-cat + vent AAV-
administration. Coronal slices of 5 gerbil brains following RWµ-cat + vent AAV-administration. Slices were 
stained for parvalbumin (purple) and GFP (green), scale bar = 1 mm. The insert shows a magnification of the 
antero-ventral cochlear nucleus where GFP signal is found in axons of the SGNs but not in the neurons on 
which they project (scale bar = 0.2 mm).  



 


