Supplementary material

Supplementary Figure S1. LRG1 deficiency does not affect mRNA levels of pancreatic vascular, exocrine, endocrine, and inflammatory markers. qRT-PCR analysis of pancreatic (A) *Vegfa* (B) *Vegfr2* (C) *Amy2* (D) *Krt19* (E) *Gcg* (F) *Ins* (G)*Tnfa* (H) *II6* (I) *Cxcl1* (J) *II1* transcript levels in wild-type and $Lrg1^{-/-}$ mice. Data are represented as mean ± s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 4 mice; n.s.: not significant, p > 0.05.

Supplementary Figure S2. Characterization of caerulein-induced AP mouse model. (A) Correlation analysis with regression line (95% confidence intervals) of serum LRG1 and neutrophil count as a percentage of total white blood cell (WBC) in AP patients. (B) Correlation analysis with regression line (95% confidence intervals) of serum LRG1 and serum lipase in AP patients. (C) H&E staining demonstrating changes in pancreatic tissue architecture in C57BL/6 mice at various time points during AP progression. Inter- and intralobular damage (asterisk), inflammatory cell infiltration (arrowhead), and edema (arrow) were highlighted in the pancreas. Scale bar: 100µm. (D) Serum amylase activity in C57BL/6 mice at various time points during AP progression. (E) Immunofluorescent staining against MPO (red) and DAPI (blue) (top) and quantification (bottom) of infiltrated MPO⁺ inflammatory cells (arrow). Scale bar: 25µm. (F) qRT-PCR analysis of pancreatic *Amy2* transcript levels at various time points during AP progression. (G) Immunofluorescence staining of insulin, INS (magenta) glucagon, GCG (green), and DAPI (blue) of C57BL/6 mouse pancreas from saline controls or 24 hours following the first caerulein injection, scale bar: 20µm. (H) Immunohistochemical detection against LRG1 (brown) or control IgG in the pancreas of saline or caerulein-treated C57BL/6 mice. Acinar cells (arrow), inflammatory cell infiltration (arrowhead), and vasculature (asterisk) were highlighted in the pancreas, scale bar: 50µm. All images are representative. Data are represented as mean \pm s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 4 mice; *: p < 0.05, **: p < 0.01, ***: p < 0.001, n.d.: no data available.

Supplementary Figure S3. Characterization of LRG1 in a pancreatic duct ligation AP mouse model. (A) H&E staining demonstrating changes in pancreatic tissue architecture in C57BL/6 mice subjected to pancreatic duct ligation (PDL) as compared to sham-operated controls. Inter- and intralobular space (asterisk) and inflammatory cell infiltration (arrowhead) were highlighted in the pancreas. Scale bar: 100µm, scale bar of boxed regions: 50µm. (B) ELISA analysis of serum LRG1 levels in mice subjected to PDL-induced AP. (C) qRT-PCR analysis of pancreatic *Lrg1* transcript levels and (D) Western blot (left) and densitometry analysis (right) showing pancreatic LRG1 protein levels in C57BL/6 mice subjected to PDL-induced AP or sham operation. (E) Immunofluorescent staining of LRG1 (red), CD31 or AMY or MPO (green), and DAPI (blue) in the pancreas of C57BL/6 mice subjected to PDL-induced AP. Scale bar: 10µm. All images are representative. Data are represented as mean \pm s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 4 mice; *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Supplementary Figure S4. Loss of LRG1 aggravates caerulein-induced AP. qRT-PCR analysis of the pancreatic (A) *II*1 and (B) *Ccl2* levels in wild-type and *Lrg1*-deficient mice 24 hours following AP induction. (C) Western blot (left) and densitometry analysis (right) illustrating phosphorylated and total levels of AP-associated signaling mediators PKC, STAT3, and JNK in wild-type and $Lrg1^{-/-}$ pancreas following AP induction. All images are representative. Data are presented as the mean ± s.e.m. Significance was determined by one-way ANOVA followed by Holm-Sidak's multiple comparison test or unpaired, two-tailed Student's t-test of n ≥ 6 mice; *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Supplementary Figure S5. LRG1 deficiency in non-myeloid cells exacerbates AP development. (A) qRT-PCR analysis of *II1* mRNA levels in the pancreas of wild-type mice reconstituted with wild-type BMCs (Wild-type \rightarrow Wild-type), *Lrg1*^{-/-} mice reconstituted with wild-type BMCs (Wild-type \rightarrow *Lrg1*^{-/-}), wild-type mice reconstituted with *Lrg1*^{-/-} BMCs (*Lrg1*^{-/-} \rightarrow Wild-type) and *Lrg1*^{-/-} mice reconstituted with *Lrg1*^{-/-} BMCs (*Lrg1*^{-/-} \rightarrow *Lrg1*^{-/-}) at 24 hours post-AP induction. (B) qRT-PCR analysis of *LRG1* mRNA levels in HL-60 promyeloblast cells following siRNA-mediated silencing. (C) CellTracker Red CMTPX dye labelled images (left) and quantification (right) of TNF α -induced adhesion of *Lrg1*-knockdown HL-60 cells to human pancreatic microvascular endothelial cells. Scale bar: 75µm. (D) Western blot (left) and densitometry analysis (right) illustrating phosphorylated and total levels of AP-associated signaling mediators PKCnu, STAT3 and JNK in primary wild-type or *Lrg1*^{-/-} acinar cells subjected to saline or caerulein treatment. All images are representative. Data are presented as the mean ± s.e.m. Significance was determined by one-way ANOVA followed by Holm-Sidak's multiple comparisons test of n ≥ 3 independent experiments or mice; *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Supplementary Figure S6. **CCKR expression in** *Lrg1*-deficient pancreas. (A) Range of Ct and Δ Ct values of CCK1R and CCK2R in mouse pancreas tissue following qRT-PCR. (B) qRT-PCR analysis of *Cck2r* mRNA levels in the pancreas of wild-type and *Lrg1*^{-/-} mice. Data are presented as the mean ± s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 8 mice; n.s. not significant, p > 0.05.

Supplementary Figure S7. CCK1R inhibition attenuates AP severity in $Lrg1^{-/}$ mice. qRT-PCR analysis of inflammatory cytokine (A) *Tnfa* (B) *ll1* levels in vehicle or L364,718 treated *Lrg1*-deficient mice following the induction of AP. (B) Western blot (left) and densitometry analysis (right) illustrating phosphorylated and total levels of AP-associated signaling mediators PKC, STAT3, and JNK in the pancreas of vehicle or L364,718 treated *Lrg1*-deficient mice following the induction of AP. All images are representative. Data are presented as the mean ± s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 5 mice; **: p < 0.01, ***: p < 0.001.

Supplementary Figure S8. LRG1 inhibition promotes pancreatic recovery in PDL-induced AP. (A) Western blot (left) and densitometry analysis (right) of phosphorylated and total levels of ALK5 and AKT protein in primary acinar cells isolated from wild-type mice subjected to IgG or LRG1 antibody treatment. (B) Western blot (left) and densitometry analysis (right) of CCK1R protein levels in primary acinar cells isolated from wild-type mice subjected to IgG or LRG1 antibody treatment. (C) qRT-PCR analysis of pancreatic *Cck1r* mRNA levels in AP mice treated with IgG or LRG1 antibody. (D) H&E staining and (E) histopathological grading of the pancreas of AP mice subjected to IgG or LRG1 antibody treatment. Scale bar: 100µm, Scale bar of boxed regions: 50µm. (F) qRT-PCR analysis of pancreatic *Amy2* levels in IgG or LRG1 antibody-treated mice. All images are representative. Data are presented as the mean \pm s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of $n \ge 3$ mice; *: p < 0.05, **: p < 0.01.

Supplementary Figure S9. No obvious toxicity following LRG1 antibody administration. (A) Total white blood cell (WBC) count in wild-type mice treated with IgG or LRG1 antibody. (B) H&E staining of key organs, liver, kidney and heart in wild-type mice following IgG and LRG1 antibody administration. Scale bar: 100μ m. All images are representative. Data are presented as the mean ± s.e.m. Significance was determined by unpaired, two-tailed Student's t-test of n ≥ 3 mice; n.s. not significant.

Grading Criteria	Score	Description	
1) Inflammatory cell	G0	No abnormalities detected	
infiltration	G1	Rare or around the periductal regions	
	G2	Within the parenchyma ($\leq 25\%$ of the lobules)	
	G3	Within the parenchyma (>25-50% of the lobules)	
	G4	Within the parenchyma (>50-75% of the lobules)	
	G5	Within the parenchyma (>75% of the lobules)	
2) Acinar lobular	G0	No abnormalities detected	
integrity damage	G1	Minimal interlobular and intralobular space	
		No peri-parenchyma space	
	G2	Mild interlobular and intralobular space	
		≤ 25% peri-parenchyma space	
	G3	Moderate interlobular and intralobular space	
		>25-50% peri-parenchyma space	
	G4	Severe interlobular and intralobular space	
		>50-75% peri-parenchyma space	
	G5	Severe interlobular and intralobular space	
		>75% peri-parenchyma space	
3) Edema	G0	No abnormalities detected	
	G1	Minimal edema, focally increased/expanded in interlobular septa	
	G2	Mild edema, diffusely increased/expanded in interlobular septa	
	G3	Moderate edema, diffusely increased/expanded in intralobular septa	
	G4	Marked edema, diffusely increased/expanded in interacinar septa	
	G5	Severe edema, diffusely increased/expanded in intercellular septa	

Supplementary Table S1. Histopathological grading criteria

Supplementary Table S2. qRT-PCR primer sequences

Gene	Forward Primer Sequence	Reverse Primer Sequence		
Mouse				
Lrg1	5'-TGCACCTCTCGAGCAATCG-3'	5'-AGAGCATTGCGGGTCAGATC-3'		
Vegfa	5'-GCGGATCAAACCTCACCAAA-3'	5'-TTCACATCTGCTGTGCTGTAGGA-3'		
Vegfr2	5'-GGAGAAGAATGTGGTTAAGATCTG	5'-ACACATCGCTCTGAATTGTGTATACT-3'		
	TGA-3'			
Ins	5'-GGCTTCTTCTACACACCCA-3'	5'-CAGTAGTTCTCCAGCTGGTA-3'		
Gcg	5'-ATCATTCCCAGCTTCCCAG-3'	5'-CGGTTCCTCTTGGTGTTCAT-3'		
Amy2	5'-CAAAATGGTTCTCCCAAGGA-3'	5'-ACATCTTCTCGCCATTCCAC-3'		
Krt19	5'-ACCCTCCCGAGATTACAACC-3'	5'-CAAGGCGTGTTCTGTCTCAA-3'		
Cck1r	5'-TCTGGAACTCTACCAAGGAATC-3'	5'-GACCACAATGACAATGAGCATG-3'		
Tnfa	5'-ATGAGCACAGAAAGCATGA-3'	5'-AGTAGACAGAAGAGCGTGG-3'		
Nfkbia	5'-GTCTCCCTTCACCTGACCAA-3'	5'-CAGCAGCTCACGGAGGAC-3'		
ll1	5'-CCAGCTTCAAATCTCACAGCAG-3'	5'-CTTCTTTGGGTATTGCTTGGGATC-3'		
116	5'-GAAGTAGGGAAGGCCGTGG-3'	5'-CTCTGCAAGAGACTTCCATCCAGT-3'		
Cxcl1	5'-TGAGCTGCGCTGTCAGTGCCT-3'	5'-AGAAGCCAGCGTTCACCAGA-3'		
Ccl2	5'-GCTCAGCCAGATGCAGTTAA-3'	5'-TCTTGAGCTTGGTGACAAAACT-3'		
ll10	5'-ATAACTGCACCCACTTCCCA-3'	5'-GGGCATCACTTCTACCAGGT-3'		
Ccnb	5'-CAGAGTTCTGAACTTCAGCCTG-3'	5'-TTGTGAGGCCACAGTTCACCAT-3'		
Ccnd	5'-GCGTGCAGAAGGACATCCA-3'	5'-CACTTTTGTTCCTCACAGACCTCTAG-3'		
Ccne	5'-TTGCACCAGTTTGCTTATGTTACA-	5'-AATGGTCAGAGGGCTTAGACG-3'		
	3'			
Rplp0	5'-AGATTCGGGATATGCTGTTGGC-3'	5'-TCGGGTCCTAGACCAGTGTTC-3'		