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rupture of experimental abdominal aortic aneurysm
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Figure S1. Uptake of HA-SOD2 mRNA NP in vitro. Bone-marrow-derived macrophages were
left media or transfected with fluorescein-labeled HA-SOD2 mRNA NP for 4 hours then

analyzed by confocal microscopy. NP = green; F-actin = red; DAPI (blue) stains nuclei. Scale
bar =20 um
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Figure S2. In vivo uptake of HA-SOD2 mRNA NP. (A) Elastase-perfused mice were injected
i.v. with HBSS or fluorescein-HA-SOD2 mRNA NP on day 9 and IVIS of aortas were obtained 7
and 24 hours after injection. (B) Intensity of NP fluorescence in major organs at 7 and 24 hours
after fluorescein-HA-SOD2 mRNA NP injection. (C) Mice were perfused with elastase on day 0,
administered fluorescein-HA-SOD2 mRNA NP i.v. on day 9 post-elastase perfusion (MRNA= 1
ug per treatment) and fluorescence assessed in aortic tissue at 24 hours after injection. Aortic
sections were examined for NP (green) and MOMA-2 (red). Colocalization appears yellow
(arrow). DAPI (blue) stains nuclei. Scale bars = 50 um, insert box = 25 um.
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Figure S3. Uptake of HA-SOD2 mRNA NP in the circulation. Mice were injected i.v. with
HBSS or fluorescein-labeled HA-SOD2 mRNA NP on day 9 post-elastase perfusion and
sacrificed 30 min or 1 h after injection. Blood was obtained, RBC lysed, and WBC analyzed by
flow cytometry. (A) Cell types were identified by size and granularity. (B) NP can be seen
internalized by a small percentage of monocytes at both time points. (C) Quantification of NP

internalization in different cell populations.



Table 1 Hematologic parameters in mice treated with nanoparticles

Treatment HBSS control HA coated HA coated SOD2
Scrambled NPs mRNA NPs

Parameters

WBC (103/;11) 8.718 £ 0.386 9.395+ 1.232 7.545 +1.569
RBC (lO"/ul) 8.743 +£0.453 9.115+0.193 8.375+0.712
HGB (g/dL) 12.18 £0.230 11.10 £ 0.286 10.48 = 0.966
Platelet (103/;11) 451.8 +143.7 456.6 + 173.4 469.8 + 164.4
HCT (%) 43.58 £2.070 41.03 +£0.927 41.93 +£0.904
MCV 4725+ 1.164 45.00 £ 0.385 44.80 £ 0.593
MCH 13.84 +£0.316 12.15 £ 0.096 12.63 +£0.384
MCHC 29.26 +1.396 27.05+0.132 27.60 = 0.584

Table 2 Chemical parameters in mice treated with nanoparticles

Treatment HBSS control HA coated HA coated SOD2

Scrambled NPs mRNA NPs

Parameters

BUN (mg/dL) 32.06 + 1.590 30.90 + 2.465 3293 +1.275

Creat (mg/dL) 0.347 +£0.037 0.338 £ 0.009 0.339 +£0.024

ALKP (U/L) 74.70 + 6.533 73.02 + 7.407 67.61 £3.585

AST (U/L) 48.31 +3.820 48 .80 +£7.017 49,17 £5.281

ALT (U/L) 38.73 +10.59 41.80 +£9.272 42.99 +10.96

Figure S4. Toxicity profiles of NP following repeated (x3) injections
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Figure S5. Proteomic profiling in TGF-f§ blockade model of AAA following HA-SOD2
mRNA NP administration. (A) Heatmaps of significantly enriched pathways. (B) Enhancement
of key protein components following HA-SOD2 mRNA NP treatment. *P < 0.001.
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Figure S6. Contribution of SOD2 in the maintenance of mitochondrial redox balance. (A)
Volcano plot of differential expressed proteins (p<0.05 and fold change >1.1) for each pathway
after HA-SOD2 mRNA treatment. (B) GSEA and heatmaps of significantly enriched pathways in
mitochondria following SOD2 augmentation in TGF- blockade model of AAA.



