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Figure S1: Characterization and impact of cancer stem cell-derived small extracellular vesicles

(CSC-sEVs) on stemness and drug resistance.

(A) Schematic illustrating the sphere formation assay and colony formation assay. Single-cell
suspensions from adherent cells were cultured in ultra-low attachment plates with serum-free medium
to promote sphere formation or in normal medium for adherent culture. (B) Representative images
and quantification of sphere formation in A549 and A549CR cells. Data are presented as mean + SD
(**p < 0.01, n = 3). (C) Representative images and quantification of colony formation in A549 and
AS549CR cells. Data are presented as mean + SD (**p < 0.01, n = 3). (D, E) Western blot analysis
showing expression levels of stem cell markers (NANOG, OCT4, SOX2) in A549, A549CR, and
A549CSC populations (D), and in H1299 and H1299-CSC populations (E). (F) Flow cytometry
analysis of CD44 and CD133 expression in H1299 and H1299-CSC populations. Quantification of
CD44- and CD133-positive cells is shown as mean + SD (*p < 0.05, **p < 0.01, n = 3). (G) Flow
cytometry analysis of apoptosis in A549, A549CR, and A549CSC populations treated with cisplatin
or paclitaxel (H) Quantification of apoptotic cells from (G). Data are presented as mean + SD (ns: not
significant, **p < 0.01, ***p < 0.001, n = 3). (I, J) IC50 curves showing cell viability of H1299 and
H1299-CSC populations treated with cisplatin (I) and paclitaxel (J). Data are presented as mean £+ SD
(n = 3). (K) Differentially expressed proteins in A549CSC versus A549 cells identified based on a
fold change threshold of >2 and an adjusted p-value of <0.05. (L) Representative nanoflow cytometry
profiles of SEVs derived from A549, A549CR, and A549CSC cells, with standard microsphere size
included as reference. (M) Western blot analysis of sSEV markers (CD63, CD81) and negative markers
(GRP94, Calnexin) in sEVs derived from A549, A549CR, and A549CSC cells. (N) Flow cytometry
analysis of apoptosis in A549 cells treated with SEVs from A549, A549CR, and A549CSC cells (O)
Quantification of apoptotic cells from (N) following cisplatin or paclitaxel treatment. Data are
presented as mean + SD (ns: not significant, **p <0.01, ***p <0.001, n = 3) (P) Western blot analysis
of CD44 and CD133 expression in sSEVs derived from A549, A549CR, and A549CSC cells and A549

cells treated with sEVs derived from different source.
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Figure S2. PKM2 configuration and tyrosine kinase expression in H1299 and H1299-CSC cells

(A) Western blot analysis showing the different oligomeric forms of PKM2 (tetramer, dimer, and
monomer) in H1299 and H1299-CSC cells. (B) Western blot analysis of tyrosine kinases (YES1, Src,
JAK3, FAK, ITK, and AXL) in H1299 and H1299-CSC cells.
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Figure S3. Experimental validation of PKM2WT and PKM2Y!%¥ in non-small cell lung cancer

(NSCLC) cells, and the effects of SEVs on recipient cells.

(A) Western blot analysis confirming PKM2 knockout in H1299 cells using CRISPR-Cas9. (B)
Western blot showing the expression of pY 105-PKM2 in PKM2WT and PKM2Y!%F H1299 cells. (C)
Cell viability assays of H1299-PKM2WT and H1299-PKM2Y!%F cells treated with different
concentrations of cisplatin. (D) Western blot analysis of OCT4, SOX2, and NANOG expression in
PKM2WT and PKM2Y!0F H1299 cells. (E) Representative images and quantified results of colony
formation assays of H1299-PKM2WT and H1299-PKM2Y!05F cells. (F) Representative images and
quantified results of sphere formation assays of H1299-PKM2WT and H1299-PKM2Y!%F cells. (G)
Tumor incidence rates from limiting dilution assays in nude mice subcutaneously inoculated with
different numbers of H1299-PKM2WT and H1299-PKM2Y!%F cells. (H) Schematic representation of
the experimental design for co-culture of chemosensitive A549 cells with sEVs derived from Vec-
sEV, PKM2VT_sEV, or PKM2Y!%F_sEV, followed by assessments of CD44 and CD133 expression,
cell viability, and apoptosis. (I) Flow cytometry analysis showing CD44 and CD133 expression in
A549 cells treated with Vec-sEV, PKM2WVT-sEV, or PKM2Y!%F_sEV. (J) Quantification of CD44-
and CD133-positive cells in A549 cells treated with Vec-sEV, PKM2WVT-sEV, or PKM2Y!%F_sEV.
(K) Cell viability assays of A549 cells treated with Vec-sEV, PKM2WT-sEV, or PKM2Y!%5F_sEV,
followed by cisplatin or paclitaxel treatment. (L) Flow cytometry analysis of apoptosis in A549 cells
treated with Vec-sEV, PKM2WTSEV, or PKM2Y!®FsEV, followed by cisplatin or paclitaxel
treatment. (M) Quantification of apoptotic cells (Annexin V-positive) in A549 cells treated with Vec-
sEV, PKM2VTsEV, or PKM2Y!%F_sEV, followed by cisplatin or paclitaxel treatment. Data in (D),
(E), (F), (J), (K), and (M) were analyzed by one-way ANOVA and are presented as mean + SD. ns:
not significant, **p <0.01, ***p <0.001, n = 3.
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Figure S4. Transcriptomic and pathway analysis of A549 cells treated with sEVs derived from
A549-PKM2WT and A549-PKM2Y105F

(A) Volcano plot displaying differentially expressed genes (DEGs) between A549 cells treated with
sEVs derived from PKM2WT or PKM2Y!%F cells. DEGs were identified based on a fold-change
threshold of > 2 and adjusted p < 0.01. (B) Bar graph summarizing the number of upregulated and
downregulated DEGs in A549 cells treated with PKM2YT-sEVs compared to PKM2Y!%F_sEVs, (C)
Heatmap representing DEGs selected based on transcriptomic analysis. (D) Gene Ontology (GO)
biological process analysis of DEGs. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of DEGs. (F) Gene Set Enrichment Analysis (GSEA) based on transcriptomic data.
(G) Reactome pathway analysis of DEGs.
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Figure S5. miRNA profiling of SEVs derived from A549-PKM2%T and A549-PKM2Y1%F cells

and pathway enrichment analysis

(A) Bar chart summarizing the number of upregulated and downregulated miRNAs identified in sEVs
derived from PKM2WT and PKM2Y!0F cells. (B) Heatmap displaying the expression profiles of
selected differentially expressed miRNAs in sEVs derived from A549-PKM2WT and A549-
PKM2Y!05F cells. (C) KEGG pathway enrichment analysis of the predicted target genes of the
differentially expressed miRNAs. (D) Reactome pathway enrichment analysis of the predicted target
genes of the differentially expressed miRNAs.
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Figure S6. IQGAP1 mediates the selective sorting of pY105-PKM2 into sEVs and influences

drug resistance in recipient cells.

(A) Co-immunoprecipitation analysis of IQGAP1, TSG101, and PKM2 in HI1299 cells stably
expressing PKM2VT, (B) Western blot analysis of IQGAP1, TSG101, and PKM2 in input lysates
from H1299 cells expressing PKM2WT or PKM2Y!%F (C) Validation of IQGAP1 knockdown
efficiency in A549 cells using four independent siRNAs (siRNA-IQGAPI1#1, siRNA-IQGAPI1#2,
siRNA-IQGAP1#3, and siRNA-IQGAP1#4) compared to the negative control (siRNA-NC) (D)
Western blot analysis of pY105-PKM2 levels in A549-PKM2WVT and A549-PKM2Y!F cells after
treatment with TEPP-46 or DMSO. (E, G) Western blot analysis of pY105-PKM2 levels in A549
cells treated with sSEVs derived from IQGAP1-silenced A549-PKM2WT cells(E) or TEPP-46-treated
A549-PKM2WT cells(G). (F-H) Flow cytometry analysis of apoptosis in recipient A549 cells treated
with sEVs derived from A549-PKM2WT or A549-PKM2Y!%F cells following IQGAP1 silencing (F)
or TEPP-46 treatment (H).
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Figure S7. Validation of stable overexpression and clinical correlation of IQGAP1 and PKM2
in NSCLC.

(A) Immunofluorescence analysis of stable A549 cell lines overexpressing PKM2WT (green
fluorescence), PKM2Y!%F (green fluorescence), and/or IQGAP1 (red fluorescence). Nuclei were
counterstained with DAPI (blue). Scale bar: 20 um. (B) Representative immunohistochemical images
of IQGAP1 expression in para-tumor and tumor tissues. Tumors were further categorized into low
and high IQGAP1 expression groups. Scale bar: 50 pm. (C) Quantification of immunohistochemical
staining showing IQGAP1 expression levels in tumor versus para-tumor tissues. Data are presented
as mean + SD, ***p <(.001 (n = 80). (D) Kaplan-Meier survival analysis comparing overall survival

(OS) between patients with low and high IQGAP1 expression levels. Log-rank test, p < 0.001.



Table S1. Correlation between PKM2 and clinicopathologic characteristics of NSCLC

ALL PKM2 PKM2 p-
CASES HIGH LOW VALUE
Participants 80 57 23
Male 47 36 11
Sex Female 33 21 12 0.207
<60 years 29 20 9
Age >60 years 51 37 14 0.734
Tumor Yes 20 16 4 0318
metastasis No 60 41 19 '
Lymph node  Yes 22 20 2 0.017*
metastasis No 58 37 21 '
Relapse after Yes 40 24 16 0.026%
chemotherapy No 40 33 7 '
I 28 15 13
TNM 11 12 8 4
classification  III 24 22 2 0.025%
v 16 12 4
T}ll’l’lOI‘ <3cm 36 25 11 0.747
diameter >3cm 44 32 12
Serum <5Sng/mL 8 4 4
CYFRA 21-1 5-30 ng/mL 39 25 14 0.057
>30ng/mL 33 28 5
<5Sng/mL 15 10 5
Serum CEA 5-30 ng/mL. 44 29 15 0.233
>30ng/mL 21 18 3

*Significantly different (p < 0.05).



Table S2. Correlation between pY 105-PKM2 and clinicopathologic characteristics of NSCLC

ALL pY105- pY105-
CASES PKM2 PKM2 p-VALUE
HIGH LOW
Participants 80 56 24
Male 47 34 13
Sex Female 33 22 11 0.586
<60 years 29 21 8
Age >60 years 51 35 16 0.722
Tumor Yes 20 15 5
metastasis No 60 41 19 0.573
Lymph node Yes 22 20 2 0.012%
metastasis No 58 36 22 )
Relapse after Yes 40 33 7 0.015%
chemotherapy No 40 23 17 '
I 28 15 13
TNM I 12 7 5 x
classification 111 24 23 1 0.007
v 16 11 5
) <3cm 36 24 12
Tumor diameter ~3em 44 1 12 0.556
<S5ng/mL 8 5 3
Serum CYFRA >V 39 27 12 0.843
21-1 ng/mL
>30
ng/mL 33 24 9
<S5ng/mL 15 10 5
5-30
Serum CEA ng/mL 44 29 15 0.443
>30
ng/mL 21 17 4

*Significantly different (p < 0.05).



Table S3. Correlation between IQGAP1 and clinicopathologic characteristics of NSCLC

ALL  IQGAP1 IQGAPl1 p-
CASES HIGH LOW  VALUE

Participants Total 80 42 38
Male 47 29 18 %
Sex Female 33 13 20 0.049
<60 years 29 14 15
Age >60 years 51 28 23 0.568
Tumor Yes 20 15 5 %
metastasis No 60 27 33 0.020
Lymph node  Yes 22 15 7 0.084
metastasis No 58 27 31 '
Relapse after Yes 40 30 10 %
chemotherapy No 40 12 28 <0.001
I 28 7 21
TNM 11 12 4 8 x
classification III 24 20 4 <0.001
v 16 11 5
Tumor <3cm 36 16 20 0.192
diameter >3cm 44 26 18 '
<5ng/mL 8 3 5
Serum 5-30 ng/mL. 39 18 21 0.224

CYFRA21-1 >30
ng/mL

*Significantly different (p < 0.05).

33 21 12




