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Figure S1. CircRNA microarray is applied to detect the expression of circRNA, followed by

circBase identification, conservative analysis, and length screening. (A) qRT-PCR assays for the

relative expression of Cx3crl in CD11b* and CD11b- cells isolated from the cortex of 6-month-old

male WT and APP/PS1 mice to validate microglia isolation (n = 3 mice per group). (B) Distribution of

the identified circRNAs of cortical microglia on mouse chromosomes. X-axis: name of chromosomes;

Y-axis: the number of circRNAs. (C) Composition of the identified circRNAs in terms of genomic

origin. (D) Distribution of the identified differentially expressed circRNAs (fold change > 1.5, P <

0.05) on mouse chromosomes (n = 3 mice per group). X-axis: the length of DNA; Y-axis: name of

chromosomes; downregulation: green lines; upregulation: red lines. (E) The differentially expressed

circRNAs, which were recorded in circBase and within 200-2000 bp in length, were conservatively

analyzed. Data were presented as mean + SEM.
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Figure S2. Expression of circDIgl and DIgl. (A) qRT-PCR assays for the relative expression of

circDIgl in BV-2 cells treated with ABs2 (10 pM) for 24 h (n = 3 biologically independent

experiments). (B) qRT-PCR assays for the relative expression of circDLG1 in HMC3 cells treated with

AB42 (10 uM) for 24 h or LPS (100 ng/ml) for 18 h (n = 6 biologically independent experiments). (C)

gqRT-PCR assays for the relative expression of circDlgl in the cortex of 6-month-old male WT and

APP/PS1 mice (n = 3 mice per group). CircDIgl expression in microglia accounted for circDlgl

expression in cortex was shown (n = 3 mice per group). (D) qRT-PCR assays for the relative expression

of Dlgl in cortical microglia isolated from 6-month-old male WT and APP/PS1 mice (n = 3 mice per

group). Data were presented as mean = SEM. Two-tailed t-tests were used. *P << 0.05, **P << 0.01.
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Figure S3. Identification of circDIgl. (A) The schematic illustration showed the circularization of
circDIgl from exons 12, 13 and 14 of Dlgl gene by back splicing. The back-splicing junction of
circDIgl was verified by Sanger sequencing. (B) Convergent or divergent primers were used to detect
circDIgl in BV-2 cells by agarose gel electrophoresis. CircDlgl could be amplified by divergent
primers in cDNA but not genomic DNA (gDNA). GAPDH was used as linear control. M: marker. (C)
qRT-PCR assays for the relative expression of circDIgl and linear Dlgl using the template cDNA
reverse-transcribed from RNA of BV-2 cells by random primers and oligo dT primers (n = 3

biologically independent experiments). (D) qRT-PCR assays for the relative expression of circDIgl and



linear DIgl in BV-2 cells treated with RNase R (n = 3 biologically independent experiments). (E)
qRT-PCR assays for the relative expression of circDIgl and linear DIgl in BV-2 cells treated with AcD
(2 pg/mL) at the indicated time points (n = 3 biologically independent experiments). AcD: Actinomycin
D. Statistical analysis was performed by two-way ANOVA followed by Tukey’s post hoc test. **P <<
0.01, ***pP < 0.001 versus Dlgl group. (F) Pairwise alignment of the human and mouse circDIgl
sequences. (G) qRT-PCR assays for the relative expression of circDIgl in cytoplasm and nucleus of
BV-2 cells (n = 3 biologically independent experiments). B-actin was used as a positive control of RNA
distributed in the cytoplasm. U6 was used as a positive control of RNA distributed in the nucleus. (H)
Localization of circDIlgl in BV-2 cells was detected by FISH (n = 3 biologically independent
experiments). Scale bar = 20 um. Data were presented as mean £ SEM. Two-tailed t-tests were used

unless otherwise specified. **P << 0.01, ****P < 0.0001.
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Figure S4. Overexpression of circDIgl facilitates microglial M1 polarization in vitro. (A) qRT-PCR

assays for the relative expression of circDIgl in BV-2 cells transfected with oe-NC or oe-circDIgl (n =
3 biologically independent experiments). (B) The expression of circDIgl in BV-2 cells was detected by
FISH. Relative fluorescence intensity of circDIgl was quantified on the right (n = 3 biologically
independent experiments). Scale bar = 20 um. (C) qRT-PCR assays for the relative expression of Argl,
CD206, iNOS, and CD86 in BV-2 cells transfected with 0oe-NC or oe-circDIgl followed by treatment
of LPS (100 ng/ml) for 18 h (n = 3 biologically independent experiments). Data were presented as

mean + SEM. Two-tailed t-tests were used. *P << 0.05, **P << 0.01, ***P << 0.001, ****p <
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Figure S5. Expression of circDIgl. (A) The expression of circDIgl in BV-2 cells transfected with
si-NC or si-circDIgl was detected by FISH. Relative fluorescence intensity of circDIgl was quantified
on the right (n = 3 biologically independent experiments). Scale bar = 20 um. (B) The expression of
circDIgl in primary microglia transfected with si-NC or si-circDIgl was detected by FISH. Relative
fluorescence intensity of circDIgl was quantified on the right (n = 3 biologically independent
experiments). Each dot of primary microglia represented cells pooled from 6-8 neonatal brains. Scale

bar = 20 um. Data were presented as mean + SEM. Two-tailed t-tests were used. *P << 0.05.
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Figure S6. Visualization of the diffusion of AAV9 preparations in the brain of APP/PS1 mice. (A)
Immunostaining for EGFP was performed to visualize AAV9 viral diffusion in APP/PS1 mice injected
with AAV9-Ibal-sh-circCon or AAV9-Ibal-sh-circDIgl (n = 3 mice per group). Scale bar = 200 pum.
(B) Immunostaining was performed to detect the colocalization between EGFP and microglia in the
cortex and hippocampus of APP/PS1 mice injected with AAV9-Ibal-sh-circCon (n = 3 mice per group).

Scale bar = 20 um.
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Figure S7. Microglia-specific knockdown of circDIgl prevents microglial dysfunction and
neuroinflammation in the early pathological stage of APP/PS1 mice. (A) Experimental schematic of
3-month-old male APP/PS1 mice. (B) qRT-PCR assays for the relative expression of circDlgl and Dlgl
in CDI1b" and CDI1b- cells isolated from the brains of APP/PS1 mice injected with
AAV9-Ibal-sh-circCon or AAV9-Ibal-sh-circDIgl (n = 3 mice per group). (C) Representative images
of microglia in the cortex of APP/PS1 mice injected with AAV9-Ibal-sh-circCon or
AAV9-Ibal-sh-circDIgl. Scale bar = 20 um. (D-F) Total Ibal area in the cortex (D) and skeletal
analysis of microglia including ramifications per cell (E) and each ramification length (F) in (C) were
quantified (n = 4 mice per group). (G-I) qRT-PCR assays for the relative expression of
neuroinflammation-related genes in microglia (G), cortex (H), and hippocampus (I) of APP/PS1 mice
injected with AAV9-Ibal-sh-circCon or AAV9-Ibal-sh-circDIgl (n = 3 mice per group). Data were

presented as mean = SEM. Two-tailed t-tests were used. *P << 0.05, **P << 0.01.
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Figure S8. Analysis of proteins interacting with circDIgl detected by RNA pulldown assays
combined with MS and WB. (A) WB after RNA pulldown assays using NC or circDlgl probe was
performed to verify the interaction between circDIgl and Ago2 in the cortex of 6-month-old male WT
mice (n = 3 mice). (B) Coding Potential Assessment Tool
(http:/lilab.research.bcm.edu/calculator_sub.php) was used to analyze the coding potential of circDlgl.
(C) The 24 proteins in Figure 5C that interacted with circDIgl in microglia were listed. (D) GO
functional categories of the 24 proteins interacting with circDIgl. (E) Metascape database

(metascape.org) performed disease network analysis for the 24 proteins.
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Figure S9. The expression of PDE4B in 6-month-old male WT and APP/PS1 mice. (A) gqRT-PCR
assays for the relative abundance of PDE4B variants (PDE4B1, PDE4B2, PDE4B3, and PDE4BS5) in
BV-2 cells (n = 3 biologically independent experiments). (B) Protein expression of PDE4B in the
cortex and hippocampus of 6-month-old male WT and APP/PS1 mice was detected by WB (n = 3 mice
per group). (C) Relative PDE4B protein levels of (B) were quantified (n = 3 mice per group). (D)
qRT-PCR assays for the relative expression of PDE4B in the cortex and hippocampus of 6-month-old
male WT and APP/PS1 mice (n = 3 mice per group). (E) Representative cortical images of PDE4B and
microglia (Ibal) in brain sections of 6-month-old male WT and APP/PS1 mice. Scale bar = 20 pm. (F)
Relative fluorescence intensity of PDE4B in cortex and the relative fold change of PDE4B and
microglia coloc. in (E) were quantified (n = 3 mice per group). Data were presented as mean = SEM.

Two-tailed t-tests were used. *P << 0.05, **P << 0.01.
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Figure S10. Knockdown of PDE4B activates the cAMP/PKA/CREB signaling pathway in BV-2
cells. (A) Protein expression of PDE4B in BV-2 cells transfected with si-NC or si-PDE4B was detected
by WB (n = 3 biologically independent experiments). (B) Relative PDE4B protein levels in (A) were
quantified (n = 3 biologically independent experiments). (C) qRT-PCR assays for the relative
expression of PDE4B in BV-2 cells transfected with si-NC or si-PDE4B (n = 3 biologically
independent experiments). (D) ELISA detected cAMP concentration in BV-2 cells transfected with
si-NC or si-PDE4B (n = 4 biologically independent experiments). (E) Protein expression of p-CREB,
CREB, p-PKA, and PKA in BV-2 cells transfected with si-NC or si-circDIgl followed by treatment of
LPS (100 ng/ml) for 18 h was detected by WB (n = 3 biologically independent experiments). (F)
Relative p-CREB/CREB, and p-PKA/PKA protein levels in (E) were quantified (n = 3 biologically
independent experiments). Data were presented as mean + SEM. Two-tailed t-tests were used. *P <

0.05, **P << 0.01, ***P < 0.001.
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Figure S11. CircDLGI1 regulates the PDE4B expression at the protein level but not the RNA level
in HMC3 cells. (A) Representative images of PDE4B in HMC3 cells transfected with si-NC,
si-circDLG1, 0e-NC, and oe-circDLGI1. Scale bar = 20 um. (B) Relative fluorescence intensity of
circDLG1 and PDE4B in (A) was quantified (n = 3 biologically independent experiments). (C) Protein
expression of PDE4B in HMC3 cells transfected with si-NC, si-circDLG1, oe-NC, and oe-circDLGI
was detected by WB (n = 3 biologically independent experiments). (D) Relative PDE4B protein levels
in (C) were quantified (n = 3 biologically independent experiments). (E) qRT-PCR assays for the
relative expression of PDE4B in HMC3 cells transfected with si-NC, si-circDLG1, o0e-NC, and
oe-circDLG1 (n = 3 biologically independent experiments). (F) qRT-PCR assays for the relative

expression of IL-1pB, IL-6, and TNF-a in HMC3 cells transfected with si-NC or si-circDLG1 followed



by treatment of LPS (100 ng/ml) for 18 h (n = 3 biologically independent experiments). Data were

presented as mean = SEM. Two-tailed t-tests were used. *P << 0.05, **P << 0.01.
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Figure S12. A schematic diagram showing the proposed working model of microglial circDlgl in
APP/PS1 mice. AD pathology triggers upregulation of circDIgl in microglia, resulting in weakened
interaction between PDE4B and Smurf2, an E3 ubiquitin ligase that mediates ubiquitination-dependent
degradation of PDE4B. Accumulation of PDE4B leads to degradation of cAMP, deactivation of PKA,
microglia dysfunction, neuroinflammation, and cognitive decline and thus promotes AD-associated

pathology.



Table S2. Characteristics of cases used for study.

No. Source Age (years) Sex Diagnosis Post-mortem delay (h)
1 NHBB 76 Male Non-demented control 6
2 NHBB 79 Male Non-demented control 35
3 NHBB 67 Male Non-demented control 5
4 NHBB 80 Male AD 4.5
5 NHBB 80 Female AD 18
6 NHBB 85 Female AD 4.5

NHBB: National Human Brain Bank for Development and Function



Table S3. Antibodies used for study.

Antibodies for WB Source Identifier Dilution

Anti-Argonaute-2 Abcam ab156870 1:1000

Anti-beta Actin Abcam ab227387 1:1000

Anti-beta Tubulin Abcam ab6046 1:1000

CREB Abcam ab32515 1:1000

Anti-CREB (phospho S133) Abcam ab32096 1:1000

PKA Proteintech 55382-1-AP 1:1000

Anti-PKA alpha/beta/gamma (catalytic subunit) (phospho T197) Abcam ab75991 1:1000
Anti-PURA Abcam ab79936 1:1000

Anti-SFPQ Abcam ab11825 1:1000

Anti-hnRNPA1 Cell Signaling Technology 84438 1:1000

Anti-hnRNPG Cell Signaling Technology 147948 1:1000

Anti-Smurf2 Cell Signaling Technology 12024 1:1000

Anti-Ubiquitin Cell Signaling Technology 3936T 1:1000

Anti-DYKDDDDK Tag Thermo Fisher Scientific =~ MA1-91878 1:1000

Anti-PDE4B Thermo Fisher Scientific 40-1400 1:1000

HRP-labeled Goat Anti-Mouse IgG H&L Beyotime A0216 1:1000
HRP-labeled Goat Anti-Rabbit [gG H&L Beyotime A0208 1:1000
Antibodies for Inmunostaining Source Identifier Dilution

Anti-APP/B-Amyloid (NAB228) Cell Signaling Technology 24508 1:200

Anti-GFAP Cell Signaling Technology 36708 1:200

Anti-Ibal Abcam ab178847 1:200

Anti-Lamp1 Abcam ab24170 1:200

Anti-NeuN Abcam ab104224 1:200

Anti-PDE4B for cells Thermo Fisher Scientific 40-1400 1:200

Anti-PDE4B for brain sections Thermo Fisher Scientific =~ MAS5-25677 1:150

Goat Anti-Mouse IgG H&L (Alexa Fluor® 488) preadsorbed Abcam abl150117 1:1000
Goat Anti-Mouse IgG H&L Alexa Fluor® 555) preadsorbed Abcam abl150118 1:1000
Goat Anti-Mouse IgG H&L (Alexa Fluor® 647) preadsorbed Abcam abl150119 1:1000
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 488) preadsorbed Abcam ab150081 1:1000
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 555) preadsorbed Abcam ab150082 1:1000
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 647) preadsorbed Abcam ab150083 1:1000
Antibodies for TSA Source Identifier Dilution

Anti-CREB (phospho S133) Abcam ab32096 1:3000

Anti-PKA alpha/beta/gamma (catalytic subunit) (phospho T197) Abcam ab75991 1:3000

Anti-Ibal Abcam ab178847 1:10000




Antibodies for CO-IP and RIP Source Identifier

Anti-PDE4B Thermo Fisher Scientific 40-1400
Rabbit IgG Abmart B30011M




Table S4. Sequences of FISH probes, RNA pull down probes, siRNAs, and qPCR primers used
for study.

FISH probes

Sequence

hsa_circ_ 0123248 (circDLG1)-1
hsa_circ_ 0123248 (circDLG1)-2
hsa_circ_ 0123248 (circDLG1)-3
mmu_circ_0000679 (circDlgl)-1
mmu_circ_0000679 (circDlgl)-2
mmu_circ_0000679 (circDlg1)-3

5-AACATACGTTATTCACCGATATAAT-3'
5'-CGTTATTCACCGATATAATACGATC-3'
5'-TACGTTATTCACCGATATAATACGA-3'
5'-AAACACACACTGTTCACCGATATGA-3'
5'-CTAAACACACACTGTTCACCGATAT-3'
5'-AACACACACTGTTCACCGATATG-3'

RNA pull down probes

Sequence

NC probe
mmu_circ_0000679 (circDlgl)-1
mmu_circ_0000679 (circDlgl)-2
mmu_circ_0000679 (circDlgl)-3

5'-BiotinAAAAAAAAAAAAAAAAAAAAAAAAA-3

5'-BiotinGGTCCGCCAGCAAGGATGAAGGAGATAAAA-3'

5'-BiotinGCAGGAGGACGGGCTGACATGGTTG-3'
5'-BiotinTTCCCTAGTGATCTCGTCATCTCCG-3'

siRNAs

Sequence

si-mmu_circ_0000679 (si-circDIg1)

si-hsa_circ 0123248 (si-circDLG1)

si-PDE4B

5'-AUCGGUGAACAGUGUGUGUTT-3' (sense);
5'-ACACACACUGUUCACCGAUTT-3' (anti-sense)

5'-AUCGGUGAAUAACGUAUGUTT-3' (sense);
5'-ACAUACGUUAUUCACCGAUTT-3' (anti-sense)

5'-CAAUGUGGCUGGGUACUCATT-3' (sense);
5'-UGAGUACCCAGCCACAUUGTT-3' (anti-sense)

qPCR primers

Sequence

Actb

Aifl

ApoE

Argl

Axl

CD206

CD86

Clec7a

5'-GTCATCACTATTGGCAACGAGC-3' (forward);
5'"TTGGCATAGAGGTCTTTACGGAT-3' (reverse)
5'-CGAATGCTGGAGAAACTTGG-3' (forward);
5'-GCCTCTTGTGTTCTTTGTTTTTC-3' (reverse)
5'-TCGGGCAGTACCGCAACG-3' (forward);
5'-GCTCACGGATGGCACTCACA-3' (reverse)
5'-GGATTGGCAAGGTGATGG-3' (forward);
5'-AAGGAGCCCTGTCTTGTAAAT-3' (reverse)
5'-GAGCCAACCGTGGAAAGAG-3' (forward);
5'-CCACCTTATGCCGATCTACC-3' (reverse)
5'-GGCAGTGGGCTGGAGGAA-3' (forward);
5-TAGGCACATCGCTTGCTGAG-3' (reverse)
5'-GCTTTGACAGGAACAACTGGACTC-3' (forward);
5'-TCGGGTGACCTTGCTTAGACG-3' (reverse)
5'-CTCAGCCTTGCCTTCCTAAT-3' (forward);
5'-ATACGGTGAGACGATGTTTGG-3' (reverse)



Cst7

Cx3crl

Digl

GAPDH

GFAP

hsa_circ_ 0123248 (circDLG1)

IL-1B

IL-6

iNOS

Lpl

mmu_circ_0000108

mmu_circ_0000203

mmu_circ_0000204 (circAnks1b)

mmu_circ_0000378

mmu_circ_0000387

mmu_circ_0000609

mmu_circ_0000679 (circDlgl)

mmu_circ_0001115

mmu_circ_0001751 (circCarml)

P2ryl2

h-PDE4B

PDE4B1

5'-TATGCTGGAGGTGAAAATCGG-3' (forward);
5'-TGTGGAGCCAGGGGATGAC-3' (reverse)
5-TTGCCTCAACCCCTTTATCTA-3' (forward);
5'-GCTGTCCTGCCTGCTCCT-3' (reverse)
5-ATCTATTGTGCGATTGTATGTGA-3' (forward);
5-ATGCTGTTATCACCAGGAATG-3' (reverse)
5'-CATCACTGCCACCCAGAAGA-3' (forward);
5'-GGACACATTGGGGGTAGGA-3' (reverse)
5'-GGAGGGCGAAGAAAACCG-3' (forward);
5-TCTCCACAGTCTTTACCACGATG-3' (reverse)
5'-GGAGGAGAAGATGGAGAAGGA-3' (forward);
5'-CCACTTTCAAATAAACAAAATCAG-3' (reverse)
5'-AAATCTCGCAGCAGCACAT-3' (forward);
5'-ATGAGTCACAGAGGATGGGC-3' (reverse)
5'-CTTGGGACTGATGCTGGTGA-3' (forward);
5S-ACTCTTTTCTCATTTCCACGATTT-3' (reverse)
5'-GTTTACCATGAGGCTGAAATCC-3' (forward);
5-CCTCTTGTCTTTGACCCAGTAG-3' (reverse)
5'-ACTGAGGATGGCAAGCAACAC-3' (forward);
5'-ATGAGCAGTTCTCCGATGTCC-3' (reverse)
5'-ACTTCTTCAATGATTTTCACCTC-3' (forward);
5'-TGGACATTTCTCTTGTTAGCAG-3' (reverse)
5'-GCTGAGGGGGACAGAATC-3' (forward);
5'-TTAGGAGGTCGCAAGGTGA-3' (reverse)
5'-AAGTCCAACCACCACTACTGTCA-3' (forward);
5'-GCTTCATTAGGAGGTCGCAA-3' (reverse)
5'-AGGCAAATCAAACGGCAAC-3' (forward);
5'-GGCTTCCTTGAGGGCACA-3' (reverse)
5'-CTCTTAGGACGGCTTGGACG-3' (forward);
5'-AGGAGCAGAGCAACAGGGAG-3' (reverse)
5'-GAGAGTATGACTATGACGATGGGTA-3' (forward);
5'-TGCCAAGGATGGACATTTTT-3' (reverse)
S-TCTCCTTCATCCTTGCTGG-3' (forward);
5'-CACTTTCAAATAAACAAAATCAGA-3' (reverse)
5'-TTGCCTGTGATGAGAACCCG-3' (forward);
5-ACTCCTCTTTCAATGTGTTGCCTT-3' (reverse)
5'-CTACCTATCCCAGCAGCAGA-3' (forward);
5'-CAGCCCAGGGTGATGAT-3' (reverse)
5'-AACCATTGACCGCTACCTGA-3' (forward);
S-CATTTTGTTACGTCCTTATCTTTTG-3' (reverse)
5'-TAGTCAGCCTCCTGTCTCCAGA' (forward);
5'-GAAGCCATCTCACTGACAGACC-3' (reverse)
5'-CAGAGTGAAAGGGCAAGGACC-3' (forward);
5'-AGTCCCGACGAAGAGCCG-3' (reverse)



PDE4B2 (PDE4B)

PDE4B3

PDE4B5

Tmem119

TNF-a

Trem2

Tyrobp

5'-ATGGAGACGCTGGAGGAACTA-3' (forward);
5'-GTGTGTCAGCTCCCGGTTC-3' (reverse)
5'-CGTCGCTTCACGGTGGC-3' (forward);
5'-TCCTGGACATCGCTTTTGGT-3' (reverse)
5'-GCCTGAGGCAAACTATTTATTATC-3' (forward);
5'-CCACATCGTTCTGCTTGTCTAA-3' (reverse)
5'-CGTGCCACCCACCAACCT-3' (forward);
5'-CATACTTCTTTTCAGGGAACGAGG-3' (reverse)
5'-GAGTGACAAGCCTGTAGCCC-3' (forward);
5'-TTGTCCCTTGAAGAGAACCTG-3' (reverse)
5'-TAGCCTACCACCTTCCTCCTCTT-3' (forward);
5'-GCTTCTGCCTGCCCCTG-3' (reverse)
5-TCTTCCGTGAGCCCTGGTGTA-3' (forward);
5'-TCCCTTCCGCTGTCCCTTG-3' (reverse)




