Supplementary Materials 1 SPEAR: CRISPR-mediated ultrasensitive, specific and rapid one-pot 2 detection strategy for cancer-related SNPs 3 Linlin Bai^{1†}, Yanan Pang^{2†}, Ting Wang^{3†}, Shengzhou Wang¹, Kaiming Guo¹, Tian Xuan,¹ Ziqin Zhang⁴, Dianwei 4 Liu¹, Feng Oian¹, Yan Zheng¹, Gang Jin^{5,*}, Rui Wang^{1, 6*} 5 6 ¹Center for Medical Research and Innovation, Shanghai Pudong Hospital, Human Phenome Institute, State Key 7 Laboratory of Genetic Engineering, School of Life Sciences, School of Pharmacy, Fudan University, Shanghai, 8 200438, China 9 ²Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key 10 Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China 11 ³Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China 12 13 ⁴College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China 14 ⁵Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 15 200433, China 16 ⁶International Human Phenome Institutes, Shanghai, 200433, China 17 18 [†] These authors contributed equally. 19 *Corresponding authors 20 R. Wang E-mail address: wangr@fudan.edu.cn 21 J. Gang E-mail address: jingang@smmu.edu.cn 22

23 Materials and Methods

24 The sgRNA preparation

25 Single guide RNA (sgRNA) was synthesized and purified with T7 Transcription Kit. Firstly, the template was amplified via PCR assay. Then, 2 µL of T7 polymerase, 10 µL of NTP buffer and 4 µL 26 of the PCR product were mixed, and DEPC water was added to make up a 30 µL transcription 27 system. This mixture was then incubated at 37 °C for 24 h to transcribe the DNA template into 28 RNA. Next, 50 μ L reaction system including DNase I 5 μ L ,10 × DNase I buffer 5 μ L, RNase 29 inhibitor 20 units was heated at 37 °C for 30 min to ensure complete digestion of the DNA template. 30 Then, the obtained RNA products were purified using HiPure RNA Pure Micro Kit, following the 31 operational instructions. Finally, the RNA was eluted into RNase-free water and preserved at 32 -80 °C refrigerator. 33

34 Cell culture and nucleic acid extraction

Pancreatic cancer cell line PaTu8988 and human fetal hepatocyte line 293T were cultured in petri dishes. The culture medium was 5 mL DMEM containing 100 U/mL penicillin-streptomycin and 10% FBS. Cells were cultured at 37 °C humidified atmosphere containing 5% CO₂. Total DNA of cell samples was extracted using the TIANGEN Genomic DNA Kit (input volume 200 μ L, elution volume 50 μ L).

40 Preparation of mutant mock DNA samples

Plasmid Mutant Mock DNA Samples: Mutant and wild-type (WT) templates were mixed at various ratios, with the *FLT*3 D835Y mutation comprising 100%, 50%, 25%, 10%, 1%, 0.1%, and 0.01% (i.e., 100 copies of the D835Y template in a total of 1,000,000 templates) of the total template pool. A total of 1×10^6 copies of the mixed plasmid DNA was used as input for the SPEAR assay.

Cell Line Genomic DNA Mutation-Mocked Samples: Genomic DNA extracted from the
PaTu8988 cell line (containing the G12V mutation) was mixed with wild-type genomic DNA from

blood cells to generate mutant concentrations ranging from 1% to 0.01%. A total of 80 ng of the
genomic DNA was used as input for the SPEAR assay.

The cfDNA Mutation-Mocked Samples: ctDNA containing 19.4% G12V mutations from plasma samples of pancreatic cancer patients was mixed with wild-type ctDNA from healthy individuals to prepare ctDNA mutation-doped samples with mutation concentrations ranging from 19.4% to 0.01%. A total of 80 ng of genomic DNA was used as input for the SPEAR assay.

54 Polyacrylamide Gel Electrophoresis Analysis

After the SPEAR reaction, 10 μ L product was mixed with 10 × loading buffer. Electrophoresis was carried out on 20% polyacrylamide gel with 5 bp DNA Ladder (Thermo Fisher Scientific, MD, USA). Electrophoresis was conducted at 110 V constant voltage for 2 h. After electrophoresis, the gel was immersed in 0.1 M NaCl solution with 3 × GelRed nucleic acid dye (Biomed, Beijing, China) for 30 min and subsequently imaged using the ChemiDocTM XRS+ Imager (Bio-Rad, California, USA).

61 First-generation sequencing (FGS) and next-generation sequencing (NGS)

For FGS, the extracted DNA was amplified by PCR. The amplification system contained *TaKaRa Taq* HS (5 U/ μ L) 0.25 μ L, 10 × PCR Buffer (Mg²⁺ plus) 5 μ L, dNTP Mixture (each 2.5 mM) 5 μ L, Template 3 μ L, primer F/R 400 nM (Specific primer sequences were shown in Table S4), and DEPC H₂O to make up the final volume to 50 μ L. The PCR procedure was 95 °C 5 min, (95 °C 20s, 55 °C 30s, 72 °C 30s) × 40 cycles, and 72 °C 5 min. 20 μ l PCR products were sent for FGS by Sangon Biotech (Shanghai, China). The mutation rate was obtained through quantitative analysis of the FGS sequencing map using the website https://moriaritylab.shinyapps.io/editr_v10/.

For NGS, Firstly, the extracted DNA was amplified by PCR with primers containing barcodes. The amplification system contained 2 × PCR buffer for KOD Fx 25 μ L, 2 mM dNTPs 10 μ L, 10 μ M Primer F/R 1.5 μ L (Specific primer sequences were shown in Table S5), Template 5 μ L, KOD Fx (1.0 U/ μ L) 1 μ L, and DEPC H₂O to make up the final volume to 50 μ L. First round PCR procedure was 94 °C 2 min, (98 °C 10 s, 55 °C 30 s, 68 °C 30 s) × 25 cycles, and 68 °C 7 min. In

- the second round of PCR, different barcode primers were used to amplify the KTAS G12 and *FLT*3-
- 75 D835 region of samples. The amplification system and procedure were as follows, 2 × PCR buffer
- 76 for KOD Fx 25 μL, 2mM dNTPs 10 μL, 10 μM Primer F/R 1.5 μL (Specific primer sequences were
- shown in Table S5), 6 μ L Amplicons of the first round PCR, KOD Fx (1.0 U/ μ L) 1 μ L, and DEPC
- 78 H₂O to 50 μL. The second round PCR procedure was 94 °C 2 min, (98 °C 10 s, 57 °C 30 s, 68 °C
- 30 s × 15 cycles, $68 \degree C 7 \text{ min}$. The PCR products were purified by TIANgel Midi Purification Kit,
- 80 and sent to Mingma Technologies (Shanghai, China) for NGS.
- 81

83 Figure S1. Specificity evaluation of AapCas12b cleavage with different length of sgRNAs. (A) 15

84 nt sgRNA, (B) 19 nt sgRNA, (C) 20 nt sgRNA. Data were the mean \pm SD (n = 3).

Structure of SPEAR primers

Figure S2. Structure of primers in SPEAR assay. Each primer consists of three parts: a stabilizing region, a restriction site, and a target-binding sequence. The function of the stabilizing region is to stabilize the binding of the restriction enzyme with the primer and template during the amplification process. The restriction site is identified by nicking enzyme. The target-binding sequence is the part where the primer complementary pairing with the target. The restriction enzyme cleavage site is located between the 4th and 5th positions near the restriction site (GAGTC).

93

86

94

95

96

97

Figure S3. Schematic diagram illustrating primer binding and target amplification of the *KRAS* G12V gene. The yellow-filled region represents the PAM sequence, while the red font indicates the
 mutation site.

105

106 Figure S4. Sensitivity evaluation of SPEAR method. (A) Sensitivity of SPEAR method in detecting 1e6 copies of plasmid templates with gradient KRAS G12V mutation rates. The real-time 107 fluorescence was presented. (B) Detection sensitivity of genomic DNA of PaTu8988 cell line using 108 SPEAR method. The real-time fluorescence was presented. (C) Sensitivity of mutation rate 109 110 detection with genomic DNA as template, a mixture of PaTu8988 and 293T genomic DNA, totaling 80 ng and containing gradient KRAS G12V mutation rates, was used as templates for SPEAR 111 detection. The real-time fluorescence was presented. (D) Sensitivity of mutation rate detection with 112 cfDNA as template. A mixture of cfDNA extracted from pancreatic cancer patients and healthy 113 individuals, totaling 80 ng and containing gradient KRAS G12V mutation rates, was used as 114 templates for SPEAR detection. NTC: no template control. Data were the mean \pm SD (n = 3). 115

Figure S5. Detection results of a PC clinical sample using the NGS, FGS, and SPEAR method. The visualization result of the SPEAR method is displayed on the upper left. The FGS peak diagrams is shown on the lower left, with mutant base marked by red triangle. The genotype and mutation rate detected by NGS are shown on the right, WT and mutated bases were marked with blue and orange, respectively.

Figure S6. The fitted curve between patient sample G12V mutation rate (lg) and fluorescenceintensity.

Figure S7. SPEAR and qPCR were used to detect the D835Y mutation rates. (A) Sensitivity of 129 SPEAR method in detecting 1e6 copies of plasmid templates with gradient FLT 3 D835Y mutation 130 rates. The real-time fluorescence was presented. (B) The 30 min endpoint fluorescence values and 131 visualization results. (C) The fitted curve between 0.01%, 0.1%, 1%, 10%, 25%, 50%, 100% 132 D835Y mutation rates (lg) and the corresponding fluorescence intensity. (D) The qPCR 133 amplification plot of 1e6 copies of plasmid templates with gradient D835Y mutation rates. (E) The 134 fitted curve between 10%, 25%, 50%, 100% FLT3 D835Y mutation rates (lg) and the 135 corresponding ct values. Data are the mean \pm SD (n = 3). 136

128

Figure S8. SPEAR results of 64 PC patient samples observed by naked eyes under 485 nm blue
light.

	$\begin{array}{c} S1 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$S2 = 10^{-1} +$	S3 1.0- 34 35 36 T 0.0 0.0 0.0 C A 0.0 4.5 100	$S4 = \begin{bmatrix} 2.0 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 6 \\ 0.0 \\ 0.0 \\ 0.0 \\ 100 $	$\begin{array}{c} S5 \\ 10 \\ - \\ 34 \\ 35 \\ 36 \\ - \\ 00 \\ 00 \\ 00 \\ 100 \\ - \\ 00 \\ 00 $
	$S6 = 10^{-10} + 10^{$	$S7 = 10^{-1} +$	$S8 = \begin{bmatrix} 2.0 \\ 1.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} S9 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$ \begin{array}{c} & 2.0 \\ & 1.0 \\ & 3.4 \\ & 35 \\ & 36 \\ & 36 \\ & 7.8 \\ & 0.0 \\ & 0.0 \\ & 7.8 \\ & 0.0 \\ & 0.0 \\ & 7.6 \\ & 100 \\ & 0.0 \\ & 7.6 \\ & 100 \\ & 0.0 \\ & 7.6 \\ & 100 $
	S11 1.0- 0.000.00 2.900.00 97.198.10.0 A 00 1.9 100	$S12 = \begin{bmatrix} 2.0 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 6 \\ 100 \\ 1$	$\begin{array}{c} S13 \\ 1.0 \\ - \\ 34 \\ 35 \\ 36 \\ - \\ 34 \\ 35 \\ 36 \\ - \\ 36 \\ - \\ 36 \\ - \\ 36 \\ - \\ 36 \\ - \\ 36 \\ - \\ 36 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$S14 = \begin{bmatrix} 20 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} S15 \\ 10 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$
	$ \begin{array}{c} S16 \\ & 1.0 \\ & 34 \\ & 35 \\ & 36 \\ & 34 \\ & 35 \\ & 36 $	$\begin{array}{c} S17 \\ 1.0 \\ - \\ 0.0 \\ 34 \\ 35 \\ 36 \\ - \\ 0.0 \\ 0.0 \\ 0.0 \\ - \\ 0.0 \\ $	$\begin{array}{c} S18 \\ 1.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} S19 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} S20 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$
	$\begin{array}{c} S21 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$S22 = \begin{bmatrix} 20 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 6 \\ 0.0 \\ 0.0 \\ 0.0 \\ 10$	$S23 = 10^{-1}$ 10^{-1} $34 = 35 = 36$ $T = 0.00 = 0.00$ $C = 0$	$S24 = \begin{bmatrix} 20 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 6 \\ 6 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} S25 \\ 1.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
142	$\begin{array}{c} S26 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.0 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.9 \\ 100 \\ 81 \\ 0 \\ 0 \\ 0 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 100 \\ 1.9 \\ 1.0 \\ 1.9 \\ 1.0 \\ 1.$	$\begin{array}{c} S27 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36$	$S28 = \begin{bmatrix} 2.0 \\ 1.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} S29 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$\begin{array}{c} S30 \\ 1.0 \\ - \\ 34 \\ 35 \\ 36 \\ -$

	S31 1.0 3.4 3.5 3.6 T G 0.0 0.0 0.0 100 100 100 100 100	$\begin{array}{c} S32 \\ 1.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	S33 1.0 3.4 3.5 3.6 T G 0.0 0.0 0.0 100 100 100 100 100	$\begin{array}{c} S34 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$\begin{array}{c} S35 \\ 1.0 \\ - \\ 0.0 \\ 0$
	$\begin{array}{c} S36 \\ 1.0 \\ 0.0 \\$	$\begin{array}{c} S37 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 36 \\ 34 \\ 35 \\ 36 \\ 100 \\ $	$\begin{array}{c} S38 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$S39 = \begin{bmatrix} 2.0 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 6 \\ 0.0 \\ 0.0 \\ 100 \\ 1$	$\begin{array}{c} \textbf{S40} \\ \textbf{20} \\ \textbf{10} $
	$\begin{array}{c} S41 \\ 1.0^{-} \\ $	$\begin{array}{c} S42 \\ S42 \\ S42 \\ S4 \\ S5 \\ S4 \\ S5 \\ S6 \\ S6$	S43 2.0 1.0 3.4 3.5 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	S44 1.0 34 35 36 T 6 0.0 0.0 0.0 1.0 1.0 34 35 36 T 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} S45 \\ I_{0} \\ I_{$
	$ \begin{array}{c} S46 \\ 50000000000000000000000000$	$\begin{array}{c} S47 \\ I_{0} \\ I_{$	S48 1.0 34 35 36 T 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} S49 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 34 \\ 35 \\ 36 \\ 7 \\ 6 \\ 0.0 \\ 0.0 \\ 100$	$ \begin{array}{c} S50 \\ 1.0 \\ 0 \\ 0 \\ 0 \\ $
	$S51 = \begin{bmatrix} 2.0 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 34 \\ 35 \\ 36 \\ 100 \\ 10$	$\begin{array}{c} \text{S52} \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$\begin{array}{c} S53 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} S54 \\ $	$\begin{array}{c} S55 \\ 1.0 \\ - \\ 0.0 \\ 0$
143	$\begin{array}{c} S56 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} S57 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$\begin{array}{c} S58 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 559 \\ 1.0 \\ 34 \\ 35 \\ 36 \\ 32 \\ 0.0 \\ 0.0 \\ 0.0 \\ 100 \\ 0.0 \\ 100$	$ \begin{array}{c} & S60 \\ & 1.0 \\ & 0$

Figure S9. SPEAR, FGS and NGS results of 64 PC patient blood samples. The visualization results of the SPEAR method are displayed on the upper left. The FGS peak diagrams are shown on the lower left, with mutant bases marked by red triangles. The genotypes and mutation rates detected by NGS are shown on the right, WT and mutated bases are marked with blue and orange, respectively. NGS displays the 3'-5' sequence of the *KRAS* G12 gene, while FGS shows the 3'-5' sequence of the *KRAS* G12 gene, while FGS shows the 3'-5' sequence of the *KRAS* G12 gene.

Figure S10. (A) Results of NGS, SPEAR, and FGS for detecting mutations in blood samples from 153 64 patients with pancreatic cancer. From top to bottom: heat map analysis of mutation rates detected 154 by NGS, heat map analysis of fluorescence intensity detected by SPEAR, and heat map analysis of 155 mutation rates detected by FGS (FGS sequencing map quantitatively analyzed using the website 156 https://moriaritylab.shinyapps.io/editr v10/). (B) Venn diagram showing the results of SPEAR and 157 NGS for detecting KRAS G12V/D/R mutations in clinical pancreatic cancer samples. (C) The 158 negative predictive value (NPV), positive predictive value (PPV), sensitivity, and specificity of 159 SPEAR for detecting KRAS G12V/D/R mutations in clinical pancreatic cancer samples. 160

Figure S11. The application of SPEAR in identifying AML FLT3 D835Y/H/V/F mutations. (A) 162 Sequence information of FLT3 D835Y/H/V/F. (B) Exploring the optimal sgRNAs targeting FLT3 163 mutations D835Y/H/V/F individually. The 17 nt sgRNAs were designed to target the D835Y/H/V/F 164 165 mutations. The 30 min endpoint fluorescence values and visualization results are presented. (C) Specificity of 17, 18, 19, 20 nt FLT3-D835Y sgRNA with artificially introduced mutation. The 30 166 min endpoint fluorescence values and visualization results are provided. d-g the optimal sgRNAs 167 were used to detect FLT3 mutations D835Y (D), D835H (E), D835F (F), and D835V (G) in the 168 SPEAR reaction. The real-time fluorescence and visualization results are presented. The sequence 169 information of the optimal sgRNAs is shown in Table S3. Data were the mean \pm SD (n = 3). 170

171

161

Figure S12. SPEAR results of 43 AML patient samples observed by naked eyes under 485 nm blue

175 light.

178

Figure S13. SPEAR, FGS and NGS results of 43 AML patient blood samples. The visualization results of the SPEAR method are displayed on the upper left. The FGS peak diagrams are shown on the lower left, with mutant bases marked by red triangles. The genotypes and mutation rates detected by NGS are shown on the right, WT and mutated bases were marked with blue and orange, respectively. NGS displays the sequence of *FLT*3 D835 gene, while FGS shows the sequence of *FLT*3 R834, D835, and I836 genes.

186 Figure S14. (A) Venn diagram showing the results of SPEAR and NGS for *FLT*3 D835Y/V/F/H

- 187 mutations detection in clinical AML samples. (B) NPV, PPV, sensitivity, and specificity of SPEAR
- 188 for detecting the *FLT*3 D835Y/V/F/H mutation in clinical AML samples.

Figure S15. The application of SPEAR in identifying DLBCL *MYD*88 L265P mutations. (A) The specific sgRNA was used to detect the *MYD*88 L265P gene in the SPEAR reaction. The real-time fluorescence and visualization results are presented. (B) Sensitivity of SPEAR method in detecting le6 copies of plasmid templates with gradient *MYD*88 L265P mutation rates. The 30 min endpoint fluorescence values and visualization results are demonstrated. Data were the mean \pm SD (n = 3).

Figure S16. Equipment needed in SPEAR assay.

Table S1.

Name	*Sequence (5′ -3′)
sgRNA-T7-universal	TAATACGACTCACTATAGGG
	TAATACGACTCACTATAGGGGTCTAGAGGACAGAATTTTTCAA
A C. 12h DNA	CGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCCCGTTGA
AapCas12b-sgKNA	GCTTCTCAAATCTGAGAAGTGGCACGTAGCAGCAAGATTAGCA
	GAAGCT
KRAS-12b-WT-20gR	GCCACCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-WT-19gR	CCACCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-WT-18gR	CACCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-WT-17gR	ACCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-WT-16gR	CCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-WT-15gR	CAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12V-18gR	CAACAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
<u>KRAS-12b-G12V-17gR</u>	AACAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12V-16gR	ACAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12D-18gR	CATCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12D-17gR	ATCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12D-16gR	TCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
<i>KRAS</i> -12b-G12R-18gR	CACGAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12R-17gR	ACGAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12R-16gR	CGAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
KRAS-12b-G12R-15gR	GAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
FLT3-12b-D835Y-17gR	GATATATCGAGCCAATC-GTGCCACTTCTCAGATTTGA
FLT3-12b-D835H-17gR	GATATGTCGAGCCAATC-GTGCCACTTCTCAGATTTGA
FLT3-12b-D835V-17gR	GATAACTCGAGCCAATC-GTGCCACTTCTCAGATTTGA
<i>FLT</i> 3-12b-D835F-17gR	GATAAATCGAGCCAATC-GTGCCACTTCTCAGATTTGA
<i>FLT</i> 3-12b-D835Y-17MR	GAT <mark>G</mark> TATCGAGCCAATC-GTGCCACTTCTCAGATTTGA
<i>FLT</i> 3-12b-D835Y-18MR	<u>TGAT<mark>G</mark>TATCGAGCCAATC-GTGCCACTTCTCAGATTTGA</u>
<i>FLT</i> 3-12b-D835Y-19MR	ATGAT <mark>G</mark> TATCGAGCCAATC-GTGCCACTTCTCAGATTTGA
<i>FLT</i> 3-12b-D835Y-20MR	CATGAT <mark>G</mark> TATCGAGCCAATC-GTGCCACTTCTCAGATTTG
MYD88-12b-L265P-17gR	CCGATCCCCATCAAGTA-GTGCCACTTCTCAGATTTGA
<u>MYD88-12b-L265P-16gR</u>	CGATCCCCATCAAGTA-GTGCCACTTCTCAGATTTGA

* The T7 promoter sequence is in green. The sequence before the dash is a template for the Cas12b sgRNA spacer sequence. The mutation sites are marked by red color different from spacer sequences, and the artificially introduced mutation sites are marked by yellow fill. The DNA template of the optimal sgRNA corresponding to each target is marked with an underline.

Table S2.

Oligonucleotide Sequence of dsDNA templates with SNP

Name	*Sequence (5' -3')
KRAS Target-wtF	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-wtR	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm1F	ATGTATGACCAGTTGAGA <mark>TTG<mark>A</mark>GGTAGTTGGAGCTGGTGGCTGATGAAGACGACTCTGA</mark>
KRAS Target-mm1R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACTACCTCAATCTCAACTGGTCATACAT
KRAS Target-mm2F	ATGTATGACCAGTTGAGA <mark>TTG</mark> T <u>CGTAGTTGGAGCTGGTGGC</u> TGATGAAGACGACTCTGA
KRAS Target-mm2R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACTACGACAATCTCAACTGGTCATACAT
KRAS Target-mm3F	ATGTATGACCAGTTGAGA <mark>TTG<mark>TGC</mark>TAGTTGGAGCTGGTGGC</mark> TGATGAAGACGACTCTGA
KRAS Target-mm3R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACTAGCACAATCTCAACTGGTCATACAT
KRAS Target-mm4F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGG <u>A</u> AGTTGGAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm4R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACTTCCACAATCTCAACTGGTCATACAT
KRAS Target-mm5F	ATGTATGACCAGTTGAGA <mark>TTG</mark> T <u>GGTTGTTGGAGCTGGTGGC</u> TGATGAAGACGACTCTGA
KRAS Target-mm5R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAACAACCACAATCTCAACTGGTCATACAT
KRAS Target-mm6F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTACTTGGAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm6R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCAAGTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm7F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAG <mark>A</mark> TGGAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm7R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCATCTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm8F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGT <mark>A</mark> GGAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm8R	TCAGAGTCGTCTTCATCAGCCACCAGCTCCTACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm9F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTT <mark>C</mark> GAGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm9R	TCAGAGTCGTCTTCATCAGCCACCAGCTCGAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm10F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTG <mark>C</mark> AGCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm10R	TCAGAGTCGTCTTCATCAGCCACCAGCTGCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm11F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGG <mark>T</mark> GCTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm11R	TCAGAGTCGTCTTCATCAGCCACCAGCACCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm12F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGA <mark>C</mark> CTGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm12R	TCAGAGTCGTCTTCATCAGCCACCAGGTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm13F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAG <mark>G</mark> TGGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm13R	TCAGAGTCGTCTTCATCAGCCACCACCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm14F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGC <mark>A</mark> GGTGGCTGATGAAGACGACTCTGA
KRAS Target-mm14R	TCAGAGTCGTCTTCATCAGCCACCTGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm15F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCT <mark>C</mark> GTGGCTGATGAAGACGACTCTGA
KRAS Target-mm15R	TCAGAGTCGTCTTCATCAGCCACGAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm16FA	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTG <mark>A</mark> TGGCTGATGAAGACGACTCTGA
KRAS Target-mm16RA	TCAGAGTCGTCTTCATCAGCCATCAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm16FT	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTG <mark>T</mark> TGGCTGATGAAGACGACTCTGA
KRAS Target-mm16RT	TCAGAGTCGTCTTCATCAGCCAACAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm17F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTGG <mark>A</mark> GGCTGATGAAGACGACTCTGA

KRAS Target-mm17R	TCAGAGTCGTCTTCATCAGCCTCCAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm18F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTGGTCGCTGATGAAGACGACTCTGA
KRAS Target-mm18R	TCAGAGTCGTCTTCATCAGCGACCAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm19F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTGGTG <mark>CC</mark> TGATGAAGA CGACTCTGA
KRAS Target-mm19R	TCAGAGTCGTCTTCATCAGGCACCAGCTCCAACTACCACAATCTCAACTGGTCATACAT
KRAS Target-mm20F	ATGTATGACCAGTTGAGA <mark>TTG</mark> TGGTAGTTGGAGCTGGTGG <mark>G</mark> TGATGAAGACGACTCTGA
KRAS Target-mm20R	TCAGAGTCGTCTTCATCACCCACCAGCTCCAACTACCACAATCTCAACTGGTCATACAT

206 * PAM sites are highlighted with yellow background, sgRNA recognition sequences are underlined,

and mismatch sites are highlighted in red font. Template F and template R are complementary pairsand annealed to form a double-stranded template.

Table S3.

Primer sequences used in SPEAR

Purpose	Name	*Sequence (5'-3')
	KRAS50-SR11-TB11F	TGGTTAATGTGGAGTCAAAATGACTGA
	KRAS50-SR11-TB11R	GCGTATAAGTAGAGTCAGGCACTCTTG
Ontimization of	KRAS50-SR11-TB13F	TGGTTAATGTGGAGTCAAAATGACTGAAT
the length of	KRAS50-SR11-TB13R	GCGTATAAGTAGAGTCAGGCACTCTTGCC
target_binding	KRAS50-SR11-TB15F	TGGTTAATGTGGAGTCAAAATGACTGAATAT
sequence	KRAS50-SR11-TB15R	GCGTATAAGTAGAGTCAGGCACTCTTGCCTA
sequence	KRAS50-SR11-TB17F	TGGTTAATGTGGAGTCAAAATGACTGAATATAA
	<i>KRAS</i> 50-SR11-TB17R	GCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS50-SR11-TB19F	TGGTTAATGTGGAGTCAAAATGACTGAATATAAAC
	KRAS50-SR11-TB19R	GCGTATAAGTAGAGTCAGGCACTCTTGCCTACGCC
	KRAS50-SR7-TB17F	TAATGTGGAGTCAAAATGACTGAATATAA
	KRAS50-SR7-TB17R	ATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS50-SR9-TB17F	GTTAATGTGGAGTCAAAATGACTGAATATAA
	KRAS50-SR9-TB17R	GTATAAGTAGAGTCAGGCACTCTTGCCTACG
Optimization of	KRAS50-SR11-TB17F	TGGTTAATGTGGAGTCAAAATGACTGAATATAA
the length of	KRAS50-SR11-TB17R	GCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
stabilizing region	KRAS50-SR13-TB17F	TGTGGTTAATGTGGAGTCAAAATGACTGAATATAA
	KRAS50-SR13-TB17R	TCGCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS50-SR15-TB17F	AGTGTGGTTAATGTGGAGTCAAAATGACTGAATATAA
	KRAS50-SR15-TB17R	ACTCGCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS50-SR17-TB17F	ACAGTGTGGTTAATGTGGAGTCAAAATGACTGAATATAA
	KRAS50-SR17-TB17R	GTACTCGCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS38-SR11a-TB17F	TGGTTAATGTGGAGTCTATAAACTTGTGGTAGT
	KRAS38-SR11a-TB17R	GCGTATAAGTAGAGTCAGGCACTCTTGCCTACG
	KRAS42-SR11a-TB17F	TGGTTAATGTGGAGTCACTGAATATAAACTTGT
optimization of	KRAS42-SR11a-TB17R	GCGTATAAGTAGAGTCGCACTCTTGCCTACGCC
the length of	KRAS45-SR11a-TB17F	TGGTTAATGTGGAGTCCTGAATATAAACTTGTG
target DNA	KRAS45-SR11a-TB17R	GCGTATAAGTAGAGTCCAAGGCACTCTTGCCTA
	KRAS53-SR11a-TB17F	TGGTTAATGTGGAGTCAATGACTGAATATAAAC
	KRAS53-SR11a-TB17R	GCGTATAAGTAGAGTCCGTCAAGGCACTCTTGC
Optimization of	KRAS42-SR11a-TB17F	TGGTTAATGTGGAGTCACTGAATATAAACTTGT
the stabilizing	KRAS42-SR11a-TB17R	GCGTATAAGTAGAGTCGCACTCTTGCCTACGCC
region	KRAS42-SR11b-TB17F	GTGTGCTTCTAGAGTCACTGAATATAAACTTG
sequence features	KRAS42-SR11b-TB17R	GTGTGCTTCTAGAGTCGCACTCTTGCCTACGCC

	KRAS42-SR11c-TB17F	ATGGGTAGGTTGAGTCACTGAATATAAACTTGT
	KRAS42-SR11c-TB17R	TGTATTGTATTGAGTCGCACTCTTGCCTACGCC
	KRAS42-SR11d-TB17F	GGCCCTGTCTTGAGTCACTGAATATAAACTTGT
	KRAS42-SR11d-TB17R	GGTCCTGTTCTGAGTCGCACTCTTGCCTACGCC
ELT2 primer	<i>FLT</i> 3/42-SR11a-TB17F	TGGTTAATGTGGAGTCAAGATATGTGACTTTGG
TETS primer	<i>FLT</i> 3/42-SR11a-TB17F	GCGTATAAGTAGAGTCTAGTTGGAATCACTCAT
MVD88 primer	MYD88/40-SR11a-TB17F	TGGTTAATGTGGAGTCGTGCCCATCAGAAGCGA
MID86 priner	MYD88/40-SR11a-TB17R	GCGTATAAGTAGAGTCTCTTCATTGCCTTGTAC

* Taking *KRAS*50-SR11-TB11F as an example to introduce the naming of primers: *KRAS* refers to the target gene, 50 indicates the length of the amplification product in the SPEAR system, SR denotes Stabilizing Region, followed by 11 indicating the length of the Stabilizing Region, TB stands for Target-Binding Sequence, followed by 11 indicating the length of the Target-Binding Sequence, and F denotes the forward primer. The naming of other primers follows the same meaning as this example. Different color markings indicate the optimal primer pairs for this gene.

218 **Table S4.**

Primer sequences for First generation sequencing

Target	Name	*Sequence (5'-3')
KP / S gapa	KRAS-FGS-F	ATGACTGAATATAAACTTGT
KNAS gene	KRAS-NGS-R	CTCTATTGTTGGATCATATT
ELT anno	FLT3-FGS-F	TCGTGTGTTCACAGAGACCT
FLIS gene	FLT3-FGS-R	GGCATTGCCCCTGACAACATAGT
FLT3 D835Y TaqMan probe	D835Y-TaqMan	FAM-CTCGATATATCATGAGTG-MGB

220 * D835Y mutated bases were colored in red.

Table S5.

Primer sequences for Next-generation sequencing

Name	*Sequence (5'-3')		
KRAS-NGS-F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNATGACTGAATATAAACTTGT		
KRAS-NGS-R	ACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCTCTATTGTTGGATCATATT		
FLT3-NGS-F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTCGTGTGTTCACAGAGACCT		
FLT3-NGS-R	ACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGGCATTGCCCCTGACAACATAGT		
P5-index1-F	AATGATACGGCGACCACCGAGATCTACACTGAACCTTACACTCTTTCCCTACACGAC		
P5-index2-F	AATGATACGGCGACCACCGAGATCTACACTGCTAAGTACACTCTTTCCCTACACGAC		
P5-index3-F	AATGATACGGCGACCACCGAGATCTACACTAAGACACACAC		
P5-index4-F	AATGATACGGCGACCACCGAGATCTACACTGTTCTCTACACTCTTTCCCTACACGAC		
P5-index5-F	AATGATACGGCGACCACCGAGATCTACACCTAATCGAACACTCTTTCCCTACACGAC		
P5-index6-F	AATGATACGGCGACCACCGAGATCTACACCTAGAACAACACTCTTTCCCTACACGAC		
P5-index7-F	AATGATACGGCGACCACCGAGATCTACACTAAGTTCCACACTCTTTCCCTACACGAC		
P5-index8-F	AATGATACGGCGACCACCGAGATCTACACTAGACCTAACACTCTTTCCCTACACGAC		
P5-index37-F	AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGAC		
P5-index38-F	AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGAC		
P5-index39-F	AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGAC		
P5-index40-F	AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGAC		
P5-index41-F	AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGAC		
P5-index42-F	AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGAC		
P5-index43-F	AATGATACGGCGACCACCGAGATCTACACCAGGACGTACACTCTTTCCCTACACGAC		
P5-index44-F	AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTCTTTCCCTACACGAC		
P7-adapter25-R	CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTG		
P7-adapter26-R	CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTG		
P7-adapter27-R	CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGTG		
P7-adapter28-R	CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTG		
P7-adapter29-R	CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTG		
P7-adapter30-R	CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTG		
P7-adapter31-R	CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGTG		
P7-adapter32-R	CAAGCAGAAGACGGCATACGAGATGCGCATTAGTGACTGGAGTTCAGACGTGTG		
P7-adapter33-R	CAAGCAGAAGACGGCATACGAGATCATAGCCGGTGACTGGAGTTCAGACGTGTG		
P7-adapter34-R	CAAGCAGAAGACGGCATACGAGATTTCGCGGAGTGACTGGAGTTCAGACGTGTG		
P7-adapter35-R	CAAGCAGAAGACGGCATACGAGATGCGCGAGAGTGACTGGAGTTCAGACGTGTG		
P7-adapter36-R	CAAGCAGAAGACGGCATACGAGATCTATCGCTGTGACTGGAGTTCAGACGTGTG		
P7-adapter37-R	CAAGCAGAAGACGGCATACGAGATGTCGTGATGTGACTGGAGTTCAGACGTGTG		
P7-adapter38-R	CAAGCAGAAGACGGCATACGAGATACCACTGTGTGACTGGAGTTCAGACGTGTG		
P7-adapter39-R	CAAGCAGAAGACGGCATACGAGATTGGATCTGGTGACTGGAGTTCAGACGTGTG		
P7-adapter40-R	CAAGCAGAAGACGGCATACGAGATCCGTTTGTGTGACTGGAGTTCAGACGTGTG		
P7-adapter41-R	CAAGCAGAAGACGGCATACGAGATTGCTGGGTGTGACTGGAGTTCAGACGTGTG		

P7-adapter42-R	CAAGCAGAAGACGGCATACGAGATGAGGGGGTTGTGACTGGAGTTCAGACGTGTG
P7-adapter43-R	${\sf CAAGCAGAAGACGGCATACGAGATAGGTTGGGGTGACTGGAGTTCAGACGTGTG$
P7-adapter44-R	${\sf CAAGCAGAAGACGGCATACGAGATGTGTGGTGGTGACTGGAGTTCAGACGTGTG}$
P7-adapter45-R	${\sf CAAGCAGAAGACGGCATACGAGATTGGGTTTCGTGACTGGAGTTCAGACGTGTG}$
P7-adapter46-R	${\sf CAAGCAGAAGACGGCATACGAGATTGGTCACAGTGACTGGAGTTCAGACGTGTG}$
P7-adapter47-R	CAAGCAGAAGACGGCATACGAGATTTGACCCTGTGACTGGAGTTCAGACGTGTG
P7-adapter48-R	CAAGCAGAAGACGGCATACGAGATCCACTCCTGTGACTGGAGTTCAGACGTGTG

- 223 * KRAS-NGS-F/R and FLT3-NGS-F/R are the primers for the first PCR of NGS. P5 and P7 are
- 224 different barcoded primers.

Table S6.

Template and primer sequence of KRAS G12D/V/R multiple SPEAR assay

purpose	Name	*Sequence (5' -3')
	KRAS-WT gene	ACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGC
The location of		AAGAGTGCC <u>TTGACGATACAGCTAATTCA</u> GAATCATTTTGTG
KRAS G12	KRAS-G12D gene	ACTGAATATAAAC <mark>TTGTGGTAGTTGGAGCTGAT</mark> GGCGTAGGC
mutations and		AAGAGTGCC <u>TTGACGATACAGCTAATTCA</u> GAATCATTTTGTG
inner control	KRAS-G12V gene	ACTGAATATAAAC <mark>TTG</mark> TGGTAGTTGGAGCTGTTGGCGTAGGC
sequence on the		AAGAGTGCC <u>TTGACGATACAGCTAATTCA</u> GAATCATTTTGTG
KRAS gene.	KR4S-G12R gene	ACTGAATATAAACTTGTGGTAGTTGGAGCTCGTGGCGTAGGCA
	KRAD-012K gene	AGAGTGCC <u>TTGACGATACAGCTAATTCA</u> GAATCATTTTGTG
	sgRNA-T7-universal	TAATACGACTCACTATAGGG
		TAATACGACTCACTATAGGGGTCTAGAGGACAGAATTTTT
Saguaraa	AapCas12b-sgRNA	CAACGGGTGTGCCAATGGCCACTTTCCAGGTGGCAAAGCC
Sequence		CGTTGAGCTTCTCAAATCTGAGAAGTGGCACGTAGCAGCA
information for		AGATTAGCAGAAGCT
transcription	KRAS-12b-WT-17gR	ACCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
transcription	KRAS-12b-G12V-17gR	AACAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
	KRAS-12b-G12D-17gR	ATCAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
	KRAS-12b-G12R-17gR	ACGAGCTCCAACTACCA-GTGCCACTTCTCAGATTTGA
	KRAS-12b-IR-17gR	TGAATTAGCTGTATCGT-GTGCCACTTCTCAGATTTGA
SPFAR Primer	KRAS-mixF	TGGTTAATGTGGAGTCACTGAATATAAACTTGT
	KRAS-mixR	GCGTATAAGTAGAGTCCACAAAATGATTCTGAA

* The recognition sequence of the *KRAS* G12 sgRNAs are highlighted in yellow, the PAM site in
cyan, and the mutation sites are highlighted in red. The recognition sequence of inner control
sgRNA is underlined, the PAM site is indicated by wavy line.

Supplementary Note

Note S1. Sequence information of plasmids

The sgRNA recognition sequence is highlighted in yellow, the PAM site in cyan, the target binding sequences of the F and R primers for SPEAR are underlined below, and the mutation site is marked in red.

> KRAS-WT gene (499-nt)

> *KRAS*-G12D gene (499-nt)

> KRAS-G12V gene (499-nt)

> KRAS-G12R gene (499-nt)

> *FLT*3-WT gene (499-nt)

> FLT3-D835Y gene (499-nt)

GTGAATCCTTACCCTGGCATTCCGGTTGATGCTAACTTCTACAAACTGATTCAAAATGGATTTA AAATGGATCAGCCATTTTATGCTACAGAAGAAATATACATTATAATGCAATCCTGCT

> FLT3-D835H gene (499-nt)

> FLT3-D835V gene (499-nt)

> FLT3-D835F gene (499-nt)

> MYD88-WT gene (499-nt)

> *MYD*88-L265P gene (499-nt)