Supplementary Materials

YBX1-driven TUBB6 upregulation facilitates ocular angiogenesis via

WNT3A-FZD8 pathway

Supplementary materials include 6 Supplementary Figures and 3

Supplementary Tables.

Supplemental Figure S1. Knockdown efficiency of TUBB6 and YBX1 *in vitro* and *in vivo*. (A-B) qPCR (A) and immunoblotting (B) confirmed TUBB6 downregulation in TUBB6-siRNA-treated HUVECs. n = 3 per group. (C-D) qPCR (C) and immunoblotting (D) confirmed YBX1 downregulation in YBX1-siRNA-treated HUVECs. n = 3 per group. (E-F) qPCR (E) and immunoblotting (F) confirmed Tubb6 downregulation in retinas of mice injected with Tubb6-siRNA. n = 3 per group. Data represent different numbers (*n*) of biological replicates. Data are shown as mean ± SD. Two-tailed Student's T test is used in A-F. **p < 0.01 and ***p < 0.001.

Supplemental Figure S2. Tubb6 expression pattern in postnatal day 7 (P7) ECs from mice brain. (A) UMAP plot of EC subtypes identified in murine brain (GEO accession: GSE111839). (B-C) Feature plot (B) and violin plot (C) showed that *Tubb6* was highly expressed in proliferative ECs and tip cells compared to other EC subtypes. (D-H) *Tubb6* was co-expressed with various tip cell markers in the ECs of murine brain. (I-K) *Tubb6* was co-expressed with multple proliferative markers in the ECs of murine brain. Non-parametric Wilcoxon rank sum test is used in C. ***p < 0.001.

Supplemental Figure S3. TUBB6-knockout HUVECs constructed with the CRISPR/Cas9 system. Immunoblotting confirmed TUBB6 knockout in HUVECs with Cas9-expressing construct plus the CRISPR/Cas9-TUBB6-KO construct. n = 3 per group. Data represent different numbers (n) of biological replicates. Data are shown as mean ± SD. Two-tailed Student's T test is used. ****p < 0.001.

Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	1 10 MREIVHIQAGQCG MREIVHIQAGQCG MREIVHIQAGQCG MREIVHIQAGQCG	20 NQIGTKFWEVI NQIGTKFWEVI NQIGTKFWEVI NQIGTKFWEVI	30 SDEHGIDOA SDEHGIDOA SDEHGIDPA SDEHGID.A	4 Q GGYVGDSALQ GGYVGDSALQ GGYVGDSALQ GGYVGDSALQ	50 LERISVYYNES LERISVYYNES LERISVYYNES	60 SSKKYVPRAA SSKKYVPRAA SSKKYVPRAA SSKKYVPRAA	70 LVDLEP LVDLEP LVDLEP LVDLEP
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	80 GTMDSVRSGPFGQ GTMDSVRSGPFGQ GTMDSVRSGPFGQ GTMDSVRSGPFGQ	90 LFRPDNFIFGC LFRPDNFIFGC LFRPDNFIFGC	100 TGAGNNWAK TGAGNNWAK TGAGNNWAK TGAGNNWAK	110 GHYTEGAELV GHYTEGAELV GHYTEGAELV GHYTEGAELV	120 DSVLDVVRKEO DSVLDVVRKEO DSVLDVVRKEO DSVLDVVRKEO	130 EHCDCLQGFQ EHCDCLQGFQ EHCDCLQGFQ EHCDCLQGFQ	140 LTHSLG LTHSLG LTHSLG LTHSLG
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	150 GGTGSGMGTLLIS GGTGSGMGTLLIS GGTGSGMGTLLIS GGTGSGMGTLLIS	160 KIREEYPDRIM KIREEYPDRIM KIREEYPDRIM KIREEYPDRIM	170 INTFSVMPSP INTFSVMPSP INTFSVMPSP INTFSVMPSP	180 KVSDTVVEPY KVSDTVVEPY KVSDTVVEPY KVSDTVVEPY	190 NATLSVHQLVE NATLSVHQLVE NATLSVHQLVE NATLSVHQLVE	200 NTDETYCIDN NTDETYCIDN NTDETYCIDN	210 EALYDI EALYDI EALYDI IEALYDI
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	220 CFRTLKLTTPTYG CFRTLKLTTPTYG CFRTLKLTTPTYG CFRTLKLTTPTYG	230 DLNHLVSATMS DLNHLVSATMS DLNHLVSATMS DLNHLVSATMS	240 GVTTSLRFP GVTTSLRFP GVTTSLRFP GVTTSLRFP	250 GQLNADLRKL GQLNADLRKL GQLNADLRKL GQLNADLRKL	260 AVNMVPFPRLA AVNMVPFPRLA AVNMVPFPRLA AVNMVPFPRLA	270 IFFMPGFAPLT IFFMPGFAPLT IFFMPGFAPLT	280 ARGSQQ ARGSQQ ARGSQQ ARGSQQ
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	290 YRALTVPELTQQM YRALTVPELTQQM YRALTVPELTQQM YRALTVPELTQQM	300 FDAKNMMAACC FDAKNMMAACC FDAKNMMAACC FDAKNMMAACC	310 PRHGRYLTV PRHGRYLTV PRHGRYLTV PRHGRYLTV	320 ATVFRGPMSM ATVFRGPMSM ATVFRGPMSM ATVFRGPMSM	330 KEVDEQMLAIQ KEVDEQMLAIQ KEVDEQMLAIQ KEVDEQMLAIQ	340 NKNSSYFVEW NKNSSYFVEW NKNSSYFVEW NKNSSYFVEW	350 IPNNVK IPNNVK IPNNVK IPNNVK
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	360 VAVCDIPPRGLKM VAVCDIPPRGLKM VAVCDIPPRGLKM VAVCDIPPRGLKM	370 ASTFIGNSTAI ASTFIGNSTAI ASTFIGNSTAI	380 QELFKRISE QELFKRISE QELFKRISE QELFKRISE	390 QFSAMFRRKA QFSAMFRRKA QFSAMFRRKA QFSAMFRRKA	400 FLHWFTGEGMI FLHWFTGEGMI FLHWFTGEGMI FLHWFTGEGMI	410 Demefteaesn Demefteaesn Demefteaesn Demefteaesn	420 MNDLVS MNDLVS MNDLVS IMNDLVS
Homo_sapiens Mus_musculus Rattus_norvegicus consensus>70	430 EYQQYQDATVNDG EYQQYQDATVNDG EYQQYQDATVNDG EYQQYQDATVNDG	440 EEAFEDEDEEE EEAFEDEDEEE EEAFEDEDEEE EEAFEDEDEEE	INE INE INE				

Supplemental Figure S4. Conservation analysis of TUBB6 among distinct

species. TUBB6 protein sequence is highly conserved among human, mouse and rats.

Supplemental Figure S5. GSEA analyses of ECs from PDR patients. GSEA analyses showing activated WNT-related pathways in the CD31-enriched ECs of PDR patients.

Supplemental Figure S6. GSEA analyses of si-TUBB6-treated ECs. GSEA analyses showing disturbed tubulin-related pathways in HUVECs after TUBB6 knockdown.

Supplementary Table S1. Sequences of siRNAs and sgRNA				
Targeted genes	Sequence $(5' \rightarrow 3')$			
In vitro				
scramble siRNA	sense:UUCUCCGAACGUGUCACGUTT			
	antisense: ACGUGACACGUUCGGAGAATT			
TUBB6-siRNA-1	sense:GUGAGGGCAUGGAUGAAAU			
	antisense: CACUCCCGUACCUACUUUA			
TUBB6-siRNA-2	sense:UGGAGAGAAUCAACGUCUA			
	antisense: ACCUCUUUAGUUGCAGAU			
TUBB6-siRNA-3	sense:UGCUGGCCAUCCAGAGUAA			
	antisense: ACGACCGGUAGGUCUCAUU			
YBX1-siRNA-1	sense:GGACGGCAAUGAAGAAGAUTT			
	antisense: AUCUUCUUCAUUGCCGUCCTT			
YBX1-siRNA-2	sense:CCACGCAAUUACCAGCAAATT			
	antisense: UUUGCUGGUAAUUGCGUGGTT			
YBX1-siRNA-3	sense:CUGUGGAGUUUGAUGUUGUTT			
	antisense: ACAACAUCAAACUCCACAGTT			
YBX1-siRNA-4	sense:GUCGACCACAGUAUUCCAATT			
	antisense: UUGGAAUACUGUGGUCGACTT			
TUBB6-sgRNA	CUGAUCACUUCCCAAAACUU			
In vivo				
scramble siRNA	sense:UUCUCCGAACGUGUCACGUTT			
	antisense: ACGUGACACGUUCGGAGAATT			
Tubb6-siRNA-1	sense:CAUUGUCAGUGCACCAGCUTT			
	antisense: AGCUGGUGCACUGACAAUGTT			
Tubb6-siRNA-2	sense:GGGAACCAGAUCGGUACCATT			
	antisense: UGGUACCGAUCUGGUUCCCTT			
Tubb6-siRNA-3	sense:UUCGGACAGACGGGUGCCGTT			
	antisense: CGGCACCCGUCUGUCCGAATT			
Tubb6-siRNA-4	sense:CCGGGGCCCCAUGUCCAUGTT			
	antisense: CAUGGACAUGGGGCCCCGGTT			

Supplementary Table S2. Primers used in this study.					
Gene/RNA	Forward primer (5'→3')	Reverse primer (5' \rightarrow 3')			
In vitro					
β-ΑCΤΙΝ	ACCTTCTACAATGAGCTGCG	CCTGGATAGCAACGTACATGG			
TUBB6	AAGAGGCCCTAAGAACAGCC	AAACTTGGTGCCGATCTGGT			
ESM1	ACAGCAGTGAGTGCAAAAGCA	GCGGTAGCAAGTTTCTCCCC			
PLUAR	TGTAAGACCAACGGGGATTGC	AGCCAGTCCGATAGCTCAGG			
CXCR4	ACTACACCGAGGAAATGGGCT	CCACAATGCCAGTTAAGAAGA			
APLN	GTCTCCTCCATAGATTGGTCTGC	GGAATCATCCAAACTACAGCCAG			
FSCN1	CTGCTACTTTGACATCGAGTGG	GGGCGGTTGATGAGCTTCA			
TOP2A	ACCATTGCAGCCTGTAAATGA	GGGCGGAGCAAAATATGTTCC			
MKI67	GACTTTGGGTGCGACTTGAC	ACAACTCTTCCACTGGGACG			
CDK1	CCTATGGAGTTGTGTATAAGGGT	AGCACATCCTGAAGACTGACT			
YBX1	GCGGGGACAAGAAGGTCATC	CGAAGGTACTTCCTGGGGTTA			
FZD8	ACCCAGCCCCTTTTCCTCCATT	GTCCACCCTCCTCAGCCAAC			
WNT3A	CGTGCTGGACAAAGCTACCA	CCAAACTCGATGTCCTCGCT			
in vivo					
Gapdh	TGCACCACCAACTGCTTAG	GGATGCAGGGATGATGTTC			
Tubb6	CGGCCTGACAACTTCATCTTCG	CCTGAAGACAGTCGCAATGCTC			

Supplementary Table S3. Antibodies used in this study.						
Anti-protein	Host	Dilution and Application	Supplier	Catalog		
In vitro						
GAPDH	Mouse	1:10000, Immunoblotting	Proteintech	60004-1-lg		
		1:100,				
		Immunofluorescence;				
TUBB6	Mouse	1:2000, Immunoblotting	Proteintech	66362-1-lg		
		1:100,				
YBX1	Rabbit	Immunofluorescence	Proteintech	20339-1-AP		
WNT3A	Rabbit	1:5000, Immunoblotting	Proteintech	26744-1-AP		
FRIZZLED 8	Mouse	1:5000, Immunoblotting	Proteintech	55093-1-AP		
in vivo						
Gapdh	Mouse	1:10000, Immunoblotting	Proteintech	60004-1-lg		
		1:200,				
		Immunofluorescence;				
Tubb6	Rabbit	1:2000, Immunoblotting	Merck	ZRB2285		
Ve-Cadherin	Rat	1:75, Immunofluorescence	Abcam	ab282277		
		1:100,				
Ng2	Rabbit	Immunofluorescence	Merck	AB5320		
		1:200,	Vector Laborato			
IB4	1	Immunofluorescence	ries	FL-12015		