

Figure S1. Coronal brain sections showing increased c-Fos expression in brain regions following TNS stimulation (Related to Figure.1). The broken white lines in the section images represent boundaries of brain regions. PrL, prelimbic cortex; ILA, infralimbic area; DP, dorsal peduncular cortex; TTd, taenia tecta, dorsal part; BST, bed nucleus of the stria terminalis; NDB, diagonal band nucleus; PIR2, piriform area, pyramidal layer; PVT, paraventricular thalamic nucleus; PVN, paraventricular hypothalamic nucleus; BLAa, basolateral amygdaloid nucleus, anterior part; DG-sg, dentate gyrus, granule cell layer; SUBv-sg, subiculum, ventral part, pyramidal layer; ENT, entorhinal area; IPN, interpeduncular nucleus; vPAG, periaqueductal gray, ventral part; PB, parabrachial nucleus; LC, locus coeruleus; NTS, nucleus of the solitary tract; MDRN, medullary reticular nucleus; RO, raphe obscurus nucleus.

Figure S2. Coronal brain sections illustrating regions of increased c-Fos expression following chemogenetic activation of bilateral TG in *Piezo2-Cre, Tac1-Cre, Trpv1-Cre,* and *Mrgprb4-Cre* mice (Related to Figure 2). The broken white lines in the section images represent boundaries of brain regions. PVN, paraventricular hypothalamic nucleus; BST, bed nucleus of the stria terminalis; aco, anterior commissure, olfactory limb; PA, posterior amygdalar nucleus; PVT, paraventricular thalamic nucleus; STN, subthalamic nucleus; PSTN, parasubthalamic nucleus; SUM, supramammillary nucleus; RR, retrorubral nucleus; PSV, principal sensory nucleus of the trigeminal; PB, parabrachial nucleus; LC, locus coeruleus; SPVC, spinal trigeminal nucleus, caudal part; BLAa, basolateral amygdalar nucleus, anterior part; amc, amygdalar capsule; ec, external capsule; CEA, central amygdaloid nucleus; vPAG, periaqueductal gray, ventral part.

Figure S3. Chemogenetic activation of subgroups of TG neurons (Related to Figure 2). (A) Schematic diagram showing experimental design for defensive arousal response in chemogenetically evoked *Piezo2*-Cre, *Tac1*-Cre, *Trpv1*-Cre, and *Mrgprb4*-Cre mice after TBI. (**B** and **C**) Latency (**B**) and peak escape velocity (**C**) of the visual looming defensive response in TBI mice with and without chemogenetic activation of Trpv1+ TG neurons (n = 8 mice). (**D** and **E**) Latency (**D**) and peak escape velocity (**E**) of the auditory stimulus defensive response in TBI mice with and without chemogenetic activation of Trpv1+ TG neurons (n = 8 mice). (**D** and **E**) Latency (**D**) and peak escape velocity (**E**) and peak escape velocity (**G**) of the visual looming defensive response in TBI mice with and without chemogenetic activation of Trpv1+ TG neurons (n = 8 mice). (**F** and **G**) Latency (**F**) and peak escape velocity (**G**) of the visual looming defensive response in TBI mice with and without chemogenetic activation of Mrgprb4+ TG neurons (n = 8 mice). (**H** and **I**) Latency (**H**) and peak escape velocity (**I**) of the auditory stimulus defensive response in TBI mice with and without chemogenetic activation of Mrgprb4+ TG neurons (n = 8 mice). (**J**) Schematic diagram showing experimental design for motor ability in chemogenetically evoked *Piezo2*-Cre and *Tac1*-Cre mice after TBI. Data in (**B**-I) are expressed as means ± SEM. Statistical analyses were performed using Student *t*-tests (**B**-I) (ns, not significant, P > 0.05). For *P*-values, see Table S4.

Figure S4. Variations in NE levels in the SC during electrical stimulation of the forelimbs and various intensities of LC-SC pathway activation (Related to Figure 5). (A and B) NE signals (Δ F/F) (A) and heat map (B) of 10 trials in the SC during electrical stimulation of mouse forelimbs (stimulation parameters identical to TNS: 200 µs, 0.2 mA, 40 Hz, 5 seconds) (n = 5 mice). (C and D) NE signals (Δ F/F) (C) and heat map (D) of 20 trials evoked by photostimulation of TH+ LC neurons with 2 mW laser power (589 nm, 20 ms, 20 Hz, 1 pulse of 1 second) (n = 5 mice). (E and F) NE signals (Δ F/F) (E) and heat map (F) of 20 trials evoked by photostimulation of TH+ LC neurons with 3 mW laser power (589 nm, 20 ms, 20 Hz, 1 pulse of 1 second) (n = 5 mice). (G and H) NE signals (Δ F/F) (G) and heat map (H) of 20 trials evoked by photostimulation of TH+ LC neurons in NE_mut control mice (n = 5 mice).

Figure S5. Variations in GRAB-DA2h signal with varying intensities of PVN-SNc pathway activation, compared to DA2h_mut control and following antagonist application (Related to Figure 7). (A-C) Heat maps (60 trials) of GRAB-DA2h signals in the DS during activation of the PVN-SNc pathway with different photostimulation intensities (1 mW (A), 2 mW (B), and 3 mW (C)) (n = 6 mice). (D and E) GRAB-DA2h signals (Δ F/F) (D) and heat maps (E) of 30 trials in the DS of DA2h_mut control mice when the PVN-SNc pathway is stimulated with 2mW laser power (n = 6 mice). (F and G) Heat maps (60 trials) of GRAB-DA2h signals evoked by photostimulation of the PVN-SNc pathway using 2 mW laser power, 15 minutes after intraperitoneal injection of the DA receptor antagonist haloperidol (Haldol) with 0.4 mg/kg (F) and 1.2 mg/kg (G) (n = 6 mice).

	Mouse Lines		
Piezo2-ires-Cre	JAX Mice	Stock No: 027719	
<i>Tac1-</i> ires-Cre	JAX Mice	Stock No: 021877	
<i>Trpv1</i> -Cre	JAX Mice	Stock No: 017769	
Mrgprb4-2A-Cre	JAX Mice	Stock No: 021077	
TH-Cre	JAX Mice	Stock No: 008601	
DAT-ires-Cre	JAX Mice	Stock No: 006660	
C57BL/6J	Sun Yat-sen University Laboratory Animal Center	N/A	
	Antibodies		
Rabbit polyclonal anti-EGFP	Abcam	ab290	
Chicken polyclonal anti-EGFP	Abcam	ab13970	
Chicken polyclonal anti-mCherry	Abcam	ab205402	
Rabbit monoclonal Anti-Fos	Cell Signaling Technology	2250	
Rabbit polyclonal anti-NeuN	Abcam	ab177487	
Rabbit recombinant Anti-Tyrosine Hydroxylase	Abcam	ab137869	
Goat anti-Rabbit IgG (H+L) Alexa 488	Thermo Fisher Scientific	A11034	
Goat anti-Chicken IgY (H+L) Alexa 488	Thermo Fisher Scientific	A11039	
Goat anti-Rabbit IgG (H+L) Alexa 546	Thermo Fisher Scientific	A11010	
Goat anti-Chicken IgY (H+L) Alexa 546	Thermo Fisher Scientific	A11040	
Goat anti-Mouse IgG (H+L) Alexa 546	Thermo Fisher Scientific	A11030	
Goat anti-Mouse IgG (H+L) Alexa 647	Thermo Fisher Scientific	A21235	

Table S1. Information of mouse lines and reagents

Chemicals, peptides, and recombinant proteins				
Clozapine N-oxide	ENZO	BML-NS105		
DAPI	Solarbio	C0065		
Dispase® II	Roche	04942078001		
Collagenase type 2	Worthington-biochem	LS004176		
Yohimbine	Macklin	Y820631		
Haloperidol hydrochloride	Aladdin	H275922		
Bacterial and virus strains				
AAV2/9-hSyn-DIO-hM3Dq- mCherry	TaiToll	N/A		
AAV2/9-hSyn-DIO-mCherry	TaiToll	N/A		
AAV2/9-hSyn-DIO-EGFP	TaiToll	N/A		
AAV2-retro-hSyn-DIO-Flp	BrainVTA	N/A		
AAV2/9-hSyn-fDIO-hM3Dq-EGFP	BrainVTA	N/A		
AAV2/9-hSyn-taCasp3-TEVp- EGFP	BrainVTA	N/A		
AAV2/9-hSyn-EGFP	BrainVTA	N/A		
AAV2/9-CaMKIIα-GCamp6s	BrainVTA	N/A		
AAV2/9-hSyn-NE2h	BrainVTA	N/A		
AAV2/9-hSyn-NE_mut	BrainVTA	N/A		
AAV2/9-hSyn-DIO-C1V1-mCherry	BrainVTA	N/A		
AAV2/9-EF1α-DIO-H2B-EGFP- T2A-TVA	BrainVTA	N/A		
AAV2/9-EF1α-DIO-RVG	BrainVTA	N/A		
RV-EnvA-∆G-DsRed	BrainVTA	N/A		
PRV-CAG-EGFP	BrainVTA	N/A		

AAV2-retro-hSyn-Cre	BrainVTA	N/A
AAV1-hSyn-Flp	BrainVTA	N/A
AAV2/9-hSyn Con&Fon-hM3Dq- mCherry	BrainVTA	N/A
AAV2/9-hSyn Con&Fon-mCherry	BrainVTA	N/A
AAV2/9-hSyn-GRABeen DA2h	TaiToll	N/A
AAV2/9-hSyn-GRABeen DA2h_mut	TaiToll	N/A
AAV2/9-hSyn-C1V1-mCherry	BrainVTA	N/A

Figures	Aims	Mouse lines	AAV injection &	Type of data
			implantation	uutu
Fig.1A- 1I	Clarifying the role of TNS in defensive arousal in mice with TBI	WT	No AAV injection. No optical fiber implantation.	Behavior
Fig.1J- 1N	Assessing the impact of TNS on motor abilities in mice with TBI	WT	No AAV injection. No optical fiber implantation.	Behavior
Fig. S1	Identify nuclei associated with TNS	WT	No AAV injection. No optical fiber implantation.	Histology
Fig.2A- 2Q	Activation various TG neurons subtypes	Piezo2-Cre Tac1-Cre Trpv1-Cre Mrgprb4-Cre	AAV2/9-hSyn-DIO- hM3Dq-mCherry injected into the TG.	Behavior Slice physiology Histology
Fig.S2	Identify nuclei associated with the activation of distinct TG neuron subpopulations	<i>Piezo2-</i> Cre <i>Tac1-</i> Cre <i>Trpv1-</i> Cre <i>Mrgprb4-</i> Cre	AAV2/9-hSyn-DIO- hM3Dq-mCherry or AAV2/9-hSyn-DIO- mCherry injected into the TG.	Histology
Fig.S3	Activation various TG neurons subtypes	<i>Trpv1</i> -Cre <i>Mrgprb4</i> -Cre	AAV2/9-hSyn-DIO- hM3Dq-mCherry or AAV2/9-hSyn-DIO- mCherry injected into the TG.	Behavior
Fig.3A- 3B	Anterograde tracing of TH+ LC neurons	<i>TH</i> -Cre	AAV2/9-hSyn-DIO- EGFP injected into the LC.	Histology
Fig.3C- 3G	Activation of SC- projecting TH+ LC neurons	<i>TH</i> -Cre	AAV2-retro-DIO-Flp injected into the SC. AAV2/9-fDIO-hM3Dq- EGFP or AAV-fDIO- EGFP injected into the LC.	Behavior Histology Slice physiology
Fig.3G- 3N	Partial ablation of LC while activating Tac1+ TG	<i>Tac1</i> -Cre	AAV2/9-hSyn-taCasp3- TEVp-EGFP or AAV2/9-hSyn-EGFP	Behavior Histology

Table S2. Summary of all experimental designs

			injected into the LC.	
			AAV2/9-hSyn-DIO-	
			hM3Dq-mCherry	
			injected into the TG.	
Fig.4A-	Recording GCaMP	WT	AAV2/9-CaMKIIα-	Behavior
4G	signals in response		GCaMP6s injected into	Histoloav
	to visual stimuli at		the SC.	Fiber
	various rates		Optical fiber implanted	photometry
			above the SC.	, ,
Fig.4H-	Recording GCaMP	WT	AAV2/9-CaMKIIα-	Behavior
4L	signals in response		GCaMP6s injected into	Histology
	to visual stimuli at		the SC.	Fiber
	various rates after		Optical fiber implanted	photometry
	TNS treatment		above the SC.	, ,
Fig.4M-	Recording GCaMP	TH-Cre	AAV2/9-CaMKIIα-	Behavior
4R	signals in response		GCaMP6s injected into	Histology
	to visual stimuli at		the SC.	Fiber
	various rates after		AAV2/9-hSyn-DIO-	photometry
	LC activation		hM3Da-mCherry or	, ,
			AAV2/9-hSvn-DIO-	
			mCherry injected into	
			the LC.	
			Optical fiber implanted	
			above the SC.	
Fig.5A-	Recording NE	WT	AAV2/9-hSyn-NE2h	Histology
5C	signals during TNS		injected into the SC.	Fiber
Fig.S4A-			Optical fiber implanted	photometry
S4B			above the SC.	-
Fig.5D-	Recording NE	<i>TH</i> -Cre	AAV2/9-hSyn-NE2h or	Histology
5M	signals during the		AAV2/9-hSyn-NE_mut	Fiber
Fig.S4C-	activation of TH+		injected into the SC.	photometry
S4H	LC		AAV2/9-DIO-C1V1-	
			mCherry injected into	
			the LC.	
			Optical fiber implanted	
			above the SC and LC.	
Fig.6A-	Retrograde tracing	DAT-Cre	AAV-DIO-EGFP-T2A-	Histology
6E	of DS-SNc pathway		TVA & AAV-DIO-RVG	
			injected into the SNc.	
			RV-EnvA-∆G-DsRed	
			injected into the DS.	
Fig.6F-	Retrograde tracing	WT	PRV-CAG-EGFP	Histology
	of DS		injected into the DS.	2.
Fig.6G-	Activation of SNc	WT	AAV2-retro-Cre	Behavior

6J	neurons receivina		injected into the DS.	Histoloav
	anterograde		AAV1-Flp injected into	Slice
	projections from the		the PVN.	physiology
	PVN and retrograde		AAV2/9-hSvn	P
	projections from the		Con&Fon-hM3Da-	
	DS		EGFP or AAV2/9-hSvn	
			Con&Fon-EGFP	
			injected into the SNc.	
Fia.6K-	Partial ablation of	Piezo2-Cre	AAV2/9-hSvn-taCasp3-	Behavior
6Q	PVN while		TEVp-EGFP or	Histology
	activating Piezo2+		AAV2/9-hSyn-EGFP	0,
	TG		injected into the PVN.	
			AAV2/9-hSyn-DIO-	
			hM3Dq-mCherry	
			injected into the TG.	
Fig.7A-	Recording GRAB-	WT	AAV2/9-hSyn-	Histology
7C	DA signals during		GRABeen DA2h	Fiber
	TNS		injected into the DS.	photometry
			Optical fiber implanted	
			above the DS.	
Fig.7D-	Recording GRAB-	WT	AAV2/9-hSyn-	Histology
7K	DA signals during		GRABeen DA2h or	Fiber
Fig.S5A-	the activation of		AAV2/9-hSyn-EGFP	photometry
S5G	PVN-SNc pathway		injected into the DS.	
			AAV2/9-C1V1-mCherry	
			injected into the PVN.	
			Optical fiber implanted	
			above the SNc and DS.	

Brain	Section	Section	Total collection	Sampling
region	type	Range		
LC	Coronal	Bregma (-5.28	Approximately 5	Sampling 1 section every 2
	section	to -5.68)	sections	sections to obtain 5 sections
	(40 µm)			evenly spaced by 80 μm.
PVN	Coronal	Bregma (-0.58	Approximately 5	To sample 1 section every 3
	section	to -1.20)	sections	sections to get 5 sections
	(40 µm)			evenly spaced by 120 µm
The	Coronal	The whole	Approximately	To sample 1 section every 5
whole	section	brain	300 sections	sections to get 50 sections
brain	(40 µm)			evenly spaced by the whole
				brain

Figure	Sample size (N)	Statistical	P values
		test	
1C	Sham:	Student t-	Sham vs. TBI: P < 0.0001 ****
	n = 16 mice	test	
	TBI:		
	n = 16 mice		
1E	Sham:	One-way	Sham vs. TBI: P = 0.0004 ***
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.7548 ns
	TBI:		TBI vs. TBI+TNS: P = 0.0021 **
	n = 8 mice		TNS vs. TBI+TNS: P = 0.3804 ns
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
1F	Sham:	One-way	Sham vs. TBI: P = 0.0050 **
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.1607 ns
	TBI:		TBI vs. TBI+TNS: P = 0.0187 *
	n = 8 mice		TNS vs. TBI+TNS: P = 0.0551 ns
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
1H	Sham:	One-way	Sham vs. TBI: P < 0.0001 ****
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.9387 ns
	TBI:		TBI vs. TBI+TNS: P = 0.0022 **
	n = 8 mice		TNS vs. TBI+TNS: P = 0.2184 ns
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
11	Sham:	One-way	Sham vs. TBI: P < 0.0001 ****
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.8863 ns
	TBI:		TBI vs. TBI+TNS: P = 0.0148 *
	n = 8 mice		TNS vs. TBI+TNS: P = 0.0069 **
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
1K	Sham:	Student t-	Sham vs. TBI: P < 0.0001 ****

Table S4. Summary of statistical analyses

	n = 16 mice	test	
	TBI:		
	n = 16 mice		
1L	Sham:	One-way	Sham vs. TBI: P < 0.0001 ****
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.9997 ns
	TBI:		TBI vs. TBI+TNS: P = 0.0107 *
	n = 8 mice		TNS vs. TBI+TNS: P < 0.0001 ****
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
1M	Sham:	One-way	Sham vs. TBI: P < 0.0001 ****
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.0421 *
	TBI:		TBI vs. TBI+TNS: P = 0.0005 ***
	n = 8 mice		TNS vs. TBI+TNS: P < 0.0001 ****
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
1N	Sham:	One-way	Sham vs. TBI: P = 0.0106 *
	n = 8 mice	ANOVA	Sham vs. TNS: P = 0.5493 ns
	TBI:		TBI vs. TBI+TNS: P > 0.9999 ns
	n = 8 mice		TNS vs. TBI+TNS: P = 0.2093 ns
	TNS:		
	n = 8 mice		
	TBI+TNS:		
	n = 8 mice		
2B	Before:	Two-way	Before vs. After:
	n = 17 cells	ANOVA	0 > 0.9999 ns
	After:		20 = 0.2255 ns
	n = 17 cells		40 = 0.0899 ns
			60 = 0.0307 *
			80 = 0.0046 **
			100 = 0.0052 **
2F	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9792 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0014 **
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2G	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9999 ns

	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0126 *
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2H	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8298 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0105 *
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
21	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9887 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0002 ***
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2J	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8169 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0007 ***
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2K	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8211 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0013 **
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2L	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9667 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0091 **
	CNO / Ctrl:		
	n = 8 mice		

	CNO / hM3Dq:		
	n = 8 mice		
2M	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8405 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0071 **
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2N	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.5700 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0145 *
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
20	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.1865 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0021 **
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2P	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.6412 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.8806 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
2Q	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9766 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.3278 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3B	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8919 ns

	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.9855 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3C	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9471 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.7152 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3D	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9311 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.9077 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3E	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8439 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.8421 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3F	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8903 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.8839 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3G	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.5904 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.9023 ns
	CNO / Ctrl:		
	n = 8 mice		

	CNO / hM3Dq:		
	n = 8 mice		
S3H	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.8714 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.9891 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
S3I	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9762 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.9995 ns
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
3D	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.7526 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0112 *
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
3E	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9998 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0097 **
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
3J	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0012 **
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
3K	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0045 **
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
3L	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0031 **
	n = 8 mice	test	

	taCasp3:		
	n = 8 mice		
3M	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.7573 ns
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
3N	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.4370 ns
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
41	TBI	Two-way	TBI vs. TBI+TNS:
	n = 4 mice	ANOVA	10°/s > 0.9999 ns
	TBI+TNS:		20°/s = 0.9997 ns
	n = 4 mice		40°/s > 0.9999 ns
			60°/s > 0.9999 ns
			80°/s > 0.9999 ns
			120°/s = 0.9897 ns
			160°/s = 0.9987 ns
			320°/s = 0.9991 ns
4J	TBI	Two-way	TBI vs. TBI+TNS:
	n = 4 mice	ANOVA	10°/s = 0.8490 ns
	TBI+TNS:		20°/s = 0.0192 *
	n = 4 mice		40°/s < 0.0001 ****
			60°/s < 0.0001 ****
			80°/s < 0.0001 ****
			120°/s < 0.0001 ****
			160°/s < 0.0001 ****
			320°/s = 0.0384 *
4K	TBI	Two-way	TBI vs. TBI+TNS:
	n = 4 mice	ANOVA	10°/s = 0.1995 ns
	TBI+TNS:		20°/s = 0.0021 **
	n = 4 mice		40°/s < 0.0001 ****
			60°/s < 0.0001 ****
			80°/s < 0.0001 ****
			120°/s < 0.0001 ****
			160°/s < 0.0001 ****
			320°/s < 0.0001 ****
4L	TBI	Two-way	TBI vs. TBI+TNS:
	n = 4 mice	ANOVA	10°/s = 0.9200 ns
	TBI+TNS:		20°/s = 0.8806 ns
	n = 4 mice		40°/s = 0.6140 ns
			60°/s = 0.8250 ns

			80°/s = 0.1125 ns
			120°/s = 0.3883 ns
			160°/s = 0.4057 ns
			320°/s = 0.1194 ns
40	Ctrl:	Two-way	Ctrl vs. hM3Da:
	n = 4 mice	ANOVA	10°/s = 0.9959 ns
	hM3Dq:		20° /s = 0.9993 ns
	n = 4 mice		40° /s = 0.9953 ns
			$60^{\circ}/\text{s} = 0.0823 \text{ ns}$
			$80^{\circ}/\text{s} = 0.9947 \text{ ns}$
			$120^{\circ}/\text{s} = 0.9651 \text{ ns}$
			$160^{\circ}/\text{s} = 0.9967 \text{ ns}$
			$320^{\circ}/\text{s} = 0.9994 \text{ ns}$
4P	Ctrl	Two-way	Ctrl vs_hM3Da:
	n = 4 mice	ANOVA	$10^{\circ}/\text{s} = 0.9859 \text{ ns}$
	hM3Da:		$20^{\circ}/s = 0.1321 \text{ ns}$
	n = 4 mice		$40^{\circ}/s = 0.0044 **$
			$60^{\circ}/c < 0.0001$ ****
			$80^{\circ}/s < 0.0001$
			$120^{\circ}/c < 0.0001$
			$160^{\circ}/_{\odot} = 0.0040 **$
			$220^{\circ}/2 = 0.0407 *$
10	Ctrl	Тжо-жау	520 / s = 0.0407
	n = 4 mice	ANOVA	$10^{\circ}/c = 0.0073 \text{ pc}$
	hM3Da.		$20^{\circ}/c = 0.5626 \text{ ps}$
	n = 4 mice		$40^{\circ}/c = 0.0076$ pc
			$40^{\circ}/s = 0.0976$ TIS
			$80^{\circ}/s = 0.0008$
			80 /S < 0.0001
			120 / S < 0.0001
			160 / S = 0.0092
40	Otal	.	320 ⁻ /s = 0.2669 hs
4K	C(n)	Two-way	
	h = 4 mice	ANOVA	$10^{\circ}/s = 0.9964 \text{ ns}$
	n = 4 mico		20°/s > 0.9999 ns
	11 – 4 mice		40°/s > 0.9999 ns
			60° /s = 0.9793 ns
			80°/s = 0.7364 ns
			120°/s = 0.3403 ns
			160°/s = 0.3165 ns
			320°/s = 0.7128 ns
5M	1 mW n=20,	One-way	1 mW vs. 2 mW: P = 0.0236 *
	2 mW n=20,	ANOVA	2 mW vs. 3 mW: P < 0.0001 ****

	2 m M m = 20		$2 m M/y_{0} = 4 m M/y_{0} = 0.0100 *$
	3 mvv n=20,		3 mW vs. 4 mW P = 0.0109
	4 mvv n=20,		2 mvv vs. 2 mvv+vO: P < 0.0001 ****
	2 mVV+YO n=20		
61	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9854 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0463 *
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
6J	Saline / Ctrl:	Student t-	Saline / Ctrl vs. Saline / hM3Dq:
	n = 8 mice	test	P = 0.9946 ns
	Saline / hM3Dq:		CNO / Ctrl vs. CNO / hM3Dq:
	n = 8 mice		P = 0.0002 ***
	CNO / Ctrl:		
	n = 8 mice		
	CNO / hM3Dq:		
	n = 8 mice		
6M	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0002 ***
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
6N	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0021 **
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
60	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0166 *
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
6P	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0001 ***
	n = 8 mice	test	
	taCasp3:		
	n = 8 mice		
6Q	Ctrl:	Student t-	Ctrl vs. taCasp3: P = 0.0002 ***
	n = 8 mice	test	·
	taCasp3:		
	n = 8 mice		
7K	1 mW n=20.	One-wav	1 mW vs. 2 mW: P < 0.0001 ****
	2 mW n=20.	ANOVA	2 mW vs. 3 mW: P < 0.0001 ****
	3 mW n=20		2 mW vs. 2 mW+Haldol 0.4 mg/kg
	2 mW+Haldol 0 4		P < 0.0001 ****
	ma/ka n=20		
	111g/kg 11=20,		

2 mW+Haldol 1.2	2 mW vs. 2 mW+Haldol 1.2 mg/kg: P
mg/kg n=20	< 0.0001 ****