

Figure S1. Differentiation of human beige adipocyte from hiPSC.

(A) The experimental procedures for the differentiation of hiPSCs into beige adipocytes. (B) Oil red O (ORO) staining of adipocyte-differentiated hiPSCs on day 0 and day 20. Scale bar = 100 μ M. (C)-(H) Time-course mRNA expression of indicated pluripotent markers, mesodermal transcription factors, adipose progenitor markers, adipogenic transcriptional markers, beige/brown adipocyte markers, and the beige adipocyte-specific marker. n = 3 for each group. (I) Western blot analysis of protein expression of UCP1, PGC1 α , PPAR γ , OCT3/4, and HSP90 (loading control) on day 0 and day 20. All data are presented as mean with SD. Statistical significance was calculated by one way ANOVA (**P* < 0.05, ***P* < 0.01, ****P* < 0.001, and *****P* < 0.0001).

В

Α

LETMD1 Exon 3

IPSC TCTTAGATATCTATCATGCTTTCCGGA...TTCACCAACTG GACAAGGCTTTGG CAAAGCTGG GGATTGGCCAGCTGACTGCTCAGGAAGTAAAATCGGTAA gRNA1 gRNA2 gRN

IPSC3 TCTTAGATATCTATCATGCTTTCCGGA...TTCACCAACTGGACAAGGCTTTGGCAAAGCTGGGGGATTGGCCAGGCTGACTGCTCAGGAAGTAAAATCGGTAA 1 bp del Red: deletion Yellow: insertion Grey: mismatch

С	WT	1	2	3
LETMD1				
HSP90				

Figure S2. Generation of *LETMD1* overexpressing and knockout hiPSCs.

(A) Schematic illustration of the DNA construct harboring the Dox-inducible *LETMD1* cassette. pINDUCER is the vector backbone. (B)-(C) Generation of *LETMD1* KO hiPSC. *LETMD1* gene in hiPSC was deleted by CRISPR-Cas9 mediated strategy. (B) Genomic sequences of CRISPR-Cas9-edited hiPS single-cell clones 1, 2, and 3 demonstrate on-target deletion mutations in the *LETMD1* gene. Genetic alterations for every single clone were confirmed by Sanger DNA sequencing. (C) Western blot analysis of protein expression of LETMD1 and HSP90 (loading control) in WT and *LETMD1* KO hiPS single-cell clone-derived beige adipocytes.

Figure S3. LETMD1 does not alter mitochondria complex expression.

Doxycycline-inducible *LETMD1* hiPSCs were differentiated into beige adipocytes and treated with doxycycline (Dox) or vehicle (Veh) solution for 24 h before analysis. Western blot analysis of protein expression of OXPHOS in human beige adipocytes.

Figure S4. Generation of *LETMD1* inducible hiPSCs in *UCP1* knockout background.

(A) Genomic sequences of CRISPR-Cas9-edited hiPS single-cell clones 1, 2, 3, and 4 demonstrate on-target deletion mutations in the *UCP1* gene. Genetic alterations for every single clone were confirmed by Sanger DNA sequencing. (B) Representative PCR screening results in *UCP1* KO hiPS single-cell clones. (C) Western blot analysis of protein expression of UCP1 in WT and *UCP1* KO hiPS single-cell clone-derived beige adipocytes. (D) *LETMD1* mRNA expression in WT and *UCP1* KO beige adipocytes. n = 3 for WT, n = 6 for *UCP1* KO cells. (E) Relative mRNA expression of *LETMD1* gene in *UCP1* KO beige adipocytes. n = 3 for each group. (F) Western blot analysis of protein expression of LETMD1 in *UCP1* KO beige adipocytes. All data are presented as mean with SD. Statistical significance was calculated by unpaired two-tailed Student's *t* test (**P* < 0.05, ***P* < 0.01,).

Figure S5. Generation and characterization of the *LETMD1-tdTomato* reporter hiPSCs using the CRISPR-Cas9 genome engineering.

(A) Schematic illustration of the knock-in design for the LETMD1-tdTomato reporter hiPSCs. (B) The gene sequence of the LETMD1-tdTomato reporter hiPSC was confirmed by Sanger DNA sequencing. (C) Relative mRNA expression of NANOG, OCT3/4, UCP1, PPARy, FABP4, and CD137 genes before and after differentiation of LETMD1 reporter hiPSC. n = 4 for each group. (D) WT hiPSC was differentiated into beige adipocytes and treated with β 3 adrenergic receptor (β 3-AR) agonist Mirabegron for 24 h. The fold change of LETMD1 mRNA was examined. n = 3 for each group. (E) Representative images of tdTomato in LETMD1 reporter hiPSCs-derived beige adipocytes treated with or without Mirabegron for 24 h. Scale bar = $100 \ \mu$ M. (F) Representative images of tdTomato in LETMD1 reporter hiPSCs-derived beige adipocytes treated with vehicle or other compounds. Scale bar = 100 µM. All data are presented as mean with SD. Statistical significance was calculated by unpaired two-tailed Student's *t* test (***P < 0.001, and ****P < 0.0001).

Figure S6. Expression of *CD147* gene during differentiation of hiPSCs.

The relative mRNA expression of *CD147* gene was examined during the differentiation of hiPSCs. n = 3 for each group. Data are presented as mean with SD. Statistical significance was calculated by one-way ANOVA (**P* < 0.05, ***P* < 0.01).

Figure S7. Mice were treated with SP-8356 while being fed a high fat diet.

(A) The experimental scheme of testing the effect of SP-8356 in vivo. (B) Relative mRNA expression of Ucp1, Prdm16, and Cidea genes in the BAT of the mice treated with or without SP-8356. n = 6 for each group. Statistical significance was calculated by unpaired two-tailed Student's *t* test (*P < 0.05).

Figure S8. SP-8356 increases energy metabolism in standard chow diet (STC)-fed mice.

(A) The experimental scheme for treating STC-fed mice with SP-8356. (B) Body mass determination in STC-fed mice treated with or without SP-8356. n = 6 for each group. (C) Daily food intake calculation in STC-fed mice treated with or without SP-8356. n = 6 for each group. (D) Tissue weight of STC-fed mice treated with or without SP-8356. n=6 for each group. (E) STC-fed mice were assayed by indirect calorimetry. Average measurements of VO₂ for light and dark cycles are indicated. n = 6 for vehicle, n = 7 for SP-8356. Each dot represents one mouse. (F) VO₂ rhythms in STC-fed mice treated with or without SP-8356. n = 6 for vehicle, n = 7 for SP-8356. (G) Average measurements of energy expenditure for light and dark cycles from indirect calorimetry assays. n = 6 for vehicle, n = 7 for SP-8356. Each dot represents one mouse. (H) Energy expenditure rhythms in STC-fed mice treated with or without SP-8356. n = 6 for vehicle, n = 7 for SP-8356. (I) Total energy expenditure over 24 h versus body weight in STC-fed mice treated with or without SP-8356. n = 6 for each group. (K) The AUC in (J). All data are presented as mean with SD. Statistical significance was calculated by unpaired two-tailed Student's *t* test or ANCOVA (I) (**P* < 0.05, ***P* < 0.01).

Gene name		Primer sequence
Human β -actin	Forward	5'-AGATCAAGATCATTGCTCCTCCTG-3'
	Reverse	5'-CAAGAAAGGGTGTAACGCAACTAAG-3'
Human <i>LETMD1</i>	Forward	5'-GTGGTAACCAAGACAAAAGCGA-3'
	Reverse	5'-GCATCAGCCCATAACATCTGC-3'
Human NADH	Forward	5'-TGGCTCCTTTAACCTCTCCA-3'
dehydrogenase 1	Reverse	5'-GGTTCGGTTGGTCTCTGCTA-3'
	Forward	5'-CGATTGAAGCCCCCATTCGTA-3'
Human <i>Mt</i> -CO2	Reverse	5'-CGATGGGCATGAAACTGTGGTT-3'
Human NANOG	Forward	5'-CTCACCGCAGGGAAAGAA-3'
	Reverse	5'-CAGGGCTGTCCTGAATAAGC-3'
Human OCT3/4	Forward	5'-CTCACCGCAGGGAAAGAA-3'
	Reverse	5'-AGGGTTTCTGCTTTGCAT-3'
Human TBXT	Forward	5'- GCTGTGACAGGTACCCAACC -3'
	Reverse	5'- CATGCAGGTGAGTTGTCAGAA -3'
Human MESP-1	Forward	5'- TCGAAGTGGTTCCTTGG -3'
	Reverse	5'- TGCTTGCCTCAAAGTGTC -3'
Human <i>PDGFRα</i>	Forward	5'- CTCACCGCAGGGAAAGAA -3'
	Reverse	5'- TCTTCAGGAAGTCCAGGTGAA -3'
Human LY6E	Forward	5'-GCCATCCTCTCCAGAATGAA-3'
	Reverse	5'-GCAGGAGAAGCACATCAGC-3'
Human C/EBPβ	Forward	5'-CTCACCGCAGGGAAAGAA-3'
	Reverse	5'-CCCTGCTCTGAGCTGTCG-3'
Human C/EBPa	Forward	5'-TGGACAAGAACAGCAACGAGTA-3'
	Reverse	5'-ATTGTCACTGGTCAGCTCCAG-3'
Human PPARG	Forward	5'-GGGATCAGCTCCGTGGATCT-3'
	Reverse	5'-TGCACTTTGGTACTCTTGAAGTT-3'
Human FABP4	Forward	5'-ACTGGGCCAGGAATTTGACG-3'
	Reverse	5'-CTCGTGGAAGTGACGCCTT-3'
Human UCP1	Forward	5'-CTCACCGCAGGGAAAGAA-3'
	Reverse	5'-GGTTGCCCAATGAATACTGC-3'

Supplementary Table 1. Primer sequences used in the study.

Gene name		Primer sequence
Human	Forward	5'-CCAAAGGATGCGCTCTCGTTCA-3'
PPARGC1A		
	Reverse	5'-CGGTGTCTGTAGTGGCTTGACT-3'
Human <i>TFAM</i>	Forward	5'-GTGGTTTTCATCTGTCTTGGCAAG-3'
	Reverse	5'-TTCCCTCCAACGCTGGGCAATT-3'
Human NRF1	Forward	5'-GGCAACAGTAGCCACATTGGCT-3'
	Reverse	5'-GTCGTCTGGATGGTCATCTCAC-3'
Human NFE2L2	Forward	5'-CACATCCAGTCAGAAACCAGTGG-3'
	Reverse	5'-GGAATGTCTGCGCCAAAAGCTG-3'
Mouse Ppargc1a	Forward	5'-AAGTGGTGTAGCGACCAATCG-3'
	Reverse	5'- AATGAGGGCAATCCGTCTTCA-3'
Mouse Tmem26	Forward	5'- ACCCTGTCATCCCACAGAG-3'
	Reverse	5'- TGTTTGGTGGAGTCCTAAGGTC-3'
Mouse <i>Di</i> o2	Forward	5'- GGTGGTCAACTTTGGTTCAGCC-3'
	Reverse	5'- AAGTCAGCCACCGAGGAGAACT-3'
Mouse Cidea	Forward	5'- GCAACCAAAGAAATCGGGAATA-3'
	Reverse	5'- GGTTACATGAACCAGCCTTTG-3'
Mouse Kcnk3	Forward	5'- GGCTCCTTCTACTTCGCCATCA-3'
	Reverse	5'- TGTTGATGCGTTCACCCAGGCT-3'
Mouse Alpl/Tnap	Forward	5'- CCAGAAAGACACCTTGACTGTGG-3'
	Reverse	5'- TCTTGTCCGTGTCGCTCACCAT-3'
Mouse Atp1a2	Forward	5'- ACAGGAACCCTAAGGTGGCAGA-3'
	Reverse	5'- CGCCTTTCATCACCAGCACATG-3'
Mouse Ckb	Forward	5'- GCTCATTGACGACCACTTCCTC-3'
	Reverse	5'- CCTCCTCGTTAATCCACACCAG-3'
Mouse	Forward	5'- GTGAAGTGCCATCAGTATGACGG-3'
Atp2a2/Serca2	Reverse	5'- GTGAGAGCAGTCTCGGTAGCTT-3'

Supplementary Table 1. Primer sequences used in the study (continued).

Compound	¹ Fold change	² Targets
Daunorubicin hydrochloride	33.07	ADC Cytotoxin; Antibacterial; Antibiotic; Apoptosis; Autophagy; DNA/RNA Synthesis; Topoisomerase
SP-8356	11.71	Autophagy
Ro 31-8220 Mesylate	6.19	РКС
MKT077	6.05	HSP
IT603	5.95	NF-ĸB
Emodin	3.48	Autophagy; Casein Kinase; SARS-CoV
NQ301	3.160616	Platelet aggregation; Thrombin
Ruboxistaurin hydrochloride	1.910787	РКС
SU5402	1.761219	FGFR; PDGFR; VEGFR
C188-9	1.746605	Apoptosis; STAT
MRX-2843	1.738897	FLT
Z-VAD(Ome)-FMK	1.687288	Caspase

Supplementary Table 2. High-throughput screening with the pre-clinical compound.

List of the 12 compounds showing over 1.5 fold of induction of TdTomato fluorescence intensity in *LETMD1* reporter beige adipocytes by screening the pre-clinical compound library.

^{1.} Post/pre-dose signal values were first calculated for each well; The mean fold change of post/pre-dose signal values upon treatment relative to the in-plate DMSO control was then calculated for each compound and is presented in the list.

^{2.} Reported main targets for these compounds.