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TABLE S1. SUMMARY OF HEATING ULTRASOUND TRANSDUCER IN CURRENT US-TSI DEVICES.

. . T - Heati Heati Refer-
Author Year Test Target Transducer Frequency Intensity® empgra eatllng eat'”i eter
ture rise duration volume ences
H“a:lg ®t 2007 Invitro Phantom 32-element array 67MHz 320 W/icm2lsppa 1.0 °C 11s N/A [30]
128-element, linear
Liangetal 2008 Invitro Phantom array (Ultrasonix L14- 5.6 MHz 195 W/cm? Isppa 1.7 °C 2000 s N/A [56]
5W/60)
Kimetal 2008 Invitro Porcineartery o coment 2D 1.0MHz 2000 Wem?lp  3.2°C 20s  °OXSX10 3y
phased array mm
Stephens . 6 single-element, flat 3.5 MHz 56 W/cm? Ip o 2x8x5
et al 2013 In vitro Phantom or spherical aperture 4.0 MHz 40 W/em? Ip 3.0°C 2.0s mm3 3]
Mahmoud . New Zealand 11+
ot al 2013  Invivo white rabbits Custom array 3.55 MHz N/A 01°C 5.0s N/A [31]
Mahmoud . . . ) o
ot al 2014 Exvivo Mouse livers 6 single-element 3.55 MHz 117 W/cm? Isppa 1.5°C 30s N/A [57]
1 single-element 09x0.9
Foiretetal 2015 Invitro Phantom (Valpey-Fischer 5.0 MHz N/A 3.8°C 30s .mmzl [58]
ILO508HP)
Nguyen et . Linear array 2 R 8.5x10
al 2017  Invitro Phantom (Philips ATL L7-4) 5.0 MHz 1040 W/cm? Ip 0.3°C 20s mm? [36]
Khalid et . Curved linear array 5 R 14 x 64
al 2021  Invitro Phantom (Philips ATL C4-2) 3.0 MHz 354 W/cm? Isppa 1.0°C 20s mm? [37]
Kha;'ld ® 2021 nvitro  Phantom Custom array 355MHz 66 Wicm?lseea  1.5°C 30s  8x5mm?  [59]
. _ 2 °
Ourworkt 2024 In v:ltro Phar.1tom 32-element, dual 1D 3.5 MHz 1300 W/cm 3.9 oC 25ms 2x10 ;(10 N/A
In vivo Pig concave arrays IspPa 20°C 50 ms mm

" Ispra refers to spatial peak pulse average intensity, and Ip refers to spatial peak intensity.
T Heating volume was represented in elevationx lateral x depth directions or lateral x depth directions.
* For in vitro tests, a 3.9 °C temperature rise was obtained within 25 ms of heating in phantom; for in vivo tests, a 2.0 °C temperature rise was obtained within 50
ms of heating in pig.



TABLE S2 MATERIAL PROPERTIES OF FINITE ELEMENT SIMULATION

Properties PZT-5A Properties Al203/Epoxy Graphite
Density 7750 kg/m?3 Density 2700 kg/m? 2260 kg/m?3
CE, 111 GPa Young’s modulus 11.5 GPa 36.5 GPa
es3 15.8 C/m? Poisson's ratio 0.32 0.19

TABLE S3 PERFORMANCE COMPARISONS OF HEATING TRANSDUCER ELEMENTS

Material: PZT 5A

Material: PZT 5H

Material: PMN-PT

Transmitting sensitivity
(@ 5 cycles): 22.67 kPa/V

Transmitting sensitivity
(@ 5 cycles): 16.34 kPa/V
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Transmitting sensitivity
(@ 5 cycles): 21.23 kPa/V




TABLE S4 SPECIFICATION OF UTILIZED THERMOCOUPLES

ltem Thermocouple No. 1 Thermocouple No. 2
Model Ultra-fast response bare foil thermocouple CO2-T
Manufacturer RdF Corporation, NH, USA Omega Engineering, Inc., CT, USA
Response time 1-5ms 2-5ms
Foil Thickness 12.7 ym (0.0005”) 12.7 ym (0.0005”)
Temperature range -195.56 - 371.11°C < 150.00°C

Total length

150 mm (6”)

150 mm (6”)

TABLE S5 ELECTRICAL IMPEDANCE SPECTRUM OF EACH HEATING ELEMENT
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Figure S1. Acoustic simulation modeling for the heating transducer, with multi-focus beamforming
applied by programming phase delay on each heating element.



Figure S2. Photo of experiment setup for in vivo animal tests.
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Figure S3. Simulated acoustic pressure field of the designed heating transducer in the YZ plane,
including (A) not applying acoustic lens neither phase delay; (B) applying phase delay but not acoustic
lens; (C) applying acoustic lens but not phase delay; (D) applying both acoustic lens and phase delay.

The absence of phase delay and acoustic lens clearly resulted in broad ultrasound beams (Figure
S3A) lacking the beam focusing necessary to elevate acoustic pressure. The desired multi-focus
beamforming could be achieved once the phase delay was applied to each heating element, as
depicted in Figure S3B. Nevertheless, the lack of an acoustic lens contributed to a wide region of low
acoustic pressure between each focal point. When only the acoustic lens was applied to the heating
transducer, the simulated acoustic pressure field (Figure S3C) showed that there is a relatively high-
pressure area generated at a focal depth of approximately 35 mm. However, two higher acoustic
pressure regions were observed behind the intended focal area due to the absence of the necessary
phase delay. When both acoustic lens and phase delay were applied, the simulated results (Figure
S3D) demonstrated that the focal area of a single heating array overlapped with the other very well.
The generated focal area of dual heating arrays had an approximate -12 dB beamwidth of 10 mm.
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Figure S4. Comparison between measured and simulated acoustic pressure field of the designed
heating transducer in YZ plane. Note that the coordinate systems for the simulated and measured
acoustic pressure maps differ. In the measured map, the focal spot is located at an axial distance of
25 mm, whereas in the simulated map, it is at 35 mm.
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Figure S5. Measured transient temperature curve using fast-response thermocouple in (A) laser-
induced thermal tests and (B) ultrasound-induced thermal tests.
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