Supplementary materials

Platelet membrane decorated exosomes enhance targeting efficacy

and therapeutic index to alleviate arterial restenosis

Shan Lu^{1,2,3#}, Ruihan Wang^{1,2,3#}, Minghao Cai^{1,2,3#}, Chen Yuan⁴, Bin Gao^{1,2,3}, Daqiao Guo^{1,2,3}, Yisheng Xu⁴, Weiguo Fu^{1,2,3*}, Xiaohua Yu^{5,6*}, Yi Si^{1,2,3*}

- 1. Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
- 2. Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China.
- 4. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- 5. Department of Orthopedics, The second Affliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- 6. Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, Zhejiang, PR China

#Shan Lu, Ruihan Wang and Minghao Cai contributed equally to this work.

*Corresponding authors: Weiguo Fu (<u>fu.weiguo@zs-hospital.sh.cn</u>), Xiaohua Yu (<u>xiaohua.yu@zju.edu.cn</u>), Yi Si (<u>si.yi@zs-hospital.sh.cn</u>).

Figure S1. Spearman's correlation analysis of the miRNA profiles of EXOs and PM-EXOs.

Figure S2. Gene ontology analysis of targeted genes in key biological process in the EXOs and PM-EXOs.

Figure S3. Quantification of major angiogenesis-related miRNAs in HUVECs and immunomodulation-related miRNAs in RAW264.7 cells after coincubation with EXOs or PM-EXOs for 24 h. Data are expressed as the mean \pm SD (n = 3, **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by one-way ANOVA with a Tukey post hoc test).

Figure S4. Ability of PM-EXOs to traverse endothelium by monocyte adhesion. (A) Schematic illustration of transwell assay. (B) Representative images and (C) semiquantification of DiI-labeled EXOs or PM-EXOs (red) on monocytes in the lower chamber after migration through the endothelium. Scale bar = 50 μ m. (D) Bright field images of the crystal violet-stained transwell inserts to view the migrated THP-1 cells captured by HUVECs. Scale bar = 100 μ m. Data are expressed as the mean \pm SD (n = 3, ***P < 0.001 by unpaired two-tailed Student's *t*-test).

Figure S5. Representative confocal images of THP-1 monocytes and RAW264.7 macrophages co-incubated with DiI-labeled EXOs or PM-EXOs. Scale bar = $20 \mu m$.

Figure S6. (A) Semi-quantification of VEGFR2 and VEGF expression in HUVECs after 24-h incubation with PBS, EXOs or PM-EXOs (n = 4). (B) Semi-quantification of PTEN expression and activation of AKT in Raw264.7 cells after 24-h incubation with PBS, EXOs or PM-EXOs following LPS pretreatment (n = 3). Data are expressed as the mean \pm SD (**P* < 0.05, ***P* < 0.01, ****P* < 0.001 by one-way ANOVA with a Tukey post hoc test (A, B)).

Figure S7. Representative images of the harvested injured common carotid artery.

Figure S8. (A) Flow cytometric analysis of the binding ability of PM-EXOs to Ly6C⁺ monocytes in the blood circulation 24 h after arterial injury and (B) quantification of the percentage of DiD⁺Ly6C⁺ cells (n = 3). Data are expressed as the mean \pm SD (**P* < 0.05, ***P* < 0.01, ****P* < 0.001 by unpaired two-tailed Student's *t*-test (B)).

Figure S9. (A) ELISA analysis of TNF- α and IL-6 concentrations in serum on day 7 and day 28 after drug administration that reflects the systemic inflammation level in mice (n = 4). (B) ELISA analysis of the concentrations of pro-inflammatory cytokines (TNF- α and IL-1 β) and anti-inflammatory cytokines (TGF- β and IL-10) in carotid artery homogenate on day 7 after drug administration (n = 3). Data are expressed as the mean \pm SD (**P* < 0.05, ***P* < 0.01, ****P* < 0.001 by one-way ANOVA with a Tukey post hoc test (A, B)).

Figure S10. Western blotting analysis of OPN, α -SMA, CNN-1 and SM22- α expression in carotid artery homogenate on day 28 after arterial injury.

Figure S11. *Ex vivo* near NIRF imaging of the injured carotid artery and other vital organs in the rat carotid artery balloon injury model on day 1 after the intravenous administration of PBS or DiD-labeled PM-EXOs (B: brain, CA: carotid artery, H: heart, K: kidney, Li: liver, Lu: lung, S: spleen).

Figure S12. Representative fluorescence images of CD31 stained rat carotid arteries in the different groups harvested on day 14 after injury and semi-quantification of the reendothelialization rates (n = 4). Scale bar = 200 μ m. Data are expressed as the mean \pm SD (**P* < 0.05, ***P* < 0.01, ****P* < 0.001 by one-way ANOVA with a Tukey post hoc test).

Figure S13. Inhibition of neointima hyperplasia by PM-EXOs in the rat carotid artery balloon injury model. (A) Representative images of H&E immunostaining of rat carotid arteries harvested on day 14 after arterial injury and following treatment with PBS, EXOs or PM-EXOs. Scale bar = 200 μ m and scale bar = 50 μ m (enlarged). The black line segments indicate the intima and media. (B) Quantification of the neointima area and the intima/media ratio (n = 4). Data are expressed as the mean \pm SD (**P* < 0.05, ***P* < 0.01, ****P* < 0.001 by one-way ANOVA with a Tukey post hoc test (B)).

Figure S14. Coagulation function level in mice after drug administration of PBS or PM-EXOs. Data are expressed as the mean \pm SD (ns: *P* > 0.05 by one-way ANOVA with a Tukey post hoc test).

Figure S15. Representative H&E immunostaining images of vital organs in the PBS, EXOs and PM-EXOs group. Scale bar = $200 \mu m$.

Figure S16. Quantification of the serum levels of general antibodies IgM and IgG by ELISA assay after drug administration of PBS, EXOs or PM-EXOs. Data are expressed as the mean \pm SD (ns: P > 0.05 by one-way ANOVA with a Tukey post hoc test).