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Abstract 

Background: Dynamic real-time detection of dendritic cell (DC) maturation is pivotal for accurately 
predicting immune system activation, assessing vaccine efficacy, and determining the effectiveness of 
immunotherapy. The heterogeneity of cells underscores the significance of assessing the maturation 
status of each individual cell, while achieving real-time monitoring of DC maturation at the single-cell level 
poses significant challenges. Surface-enhanced Raman spectroscopy (SERS) holds great potential for 
providing specific fingerprinting information of DCs to detect biochemical alterations and evaluate their 
maturation status.  
Methods: We developed Au@CpG@PEG nanoparticle as a self-reporting nanovaccine for DC 
activation and maturation state assessment, utilizing a label-free SERS strategy. Fingerprint vibrational 
spectra of the biological components in different states of DCs were collected and analyzed using deep 
learning Convolutional Neural Networks (CNN) algorithms, aiding in the rapid and efficient identification 
of DC maturation.  
Results: This approach enables dynamic real-time detection of DC maturation, maintaining accuracy 
levels above 98.92%.  
Conclusion: By employing molecular profiling, we revealed that the signal ratio of 
tryptophan-to-carbohydrate holds potential as a prospective marker for distinguishing the maturation 
status of DCs. 
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Introduction 
Dendritic cell (DC), renowned as the most potent 

antigen-presenting cell, plays a pivotal role in 
regulating both innate and adaptive immune 
responses. DC exhibits two distinct functional states: 
mature and immature [1-3]. As DC undergoes 

maturation, the expression of MHC-II and 
co-stimulatory molecules increases, accompanied by 
the secretion of cytokines essential for T-cell 
activation. Mature DC (MDC) initiates metabolic and 
gene transcription programs. A hallmark of MDC is 
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the ability to activate antigen-specific naive T-cells, 
thereby initiating antigen-specific immune responses, 
which have become a competitive alternative for 
cancer therapy [4-6]. However, the tumor 
microenvironment can inhibit DC maturation and 
activation, suppressing their antigen-presenting 
function and thereby failing to effectively activate 
T-cells. The maturation state of DC profoundly 
impacts their immunizing activity in vivo. Immature 
DC (ImDC) can either enhance tolerogenicity or 
promote pro-tumorigenic responses, while MDC 
robustly induces anticancer immunity. Clinical 
research on DC vaccines for various tumors has 
gained attention due to their strong antigen- 
presenting activity and T-cell activation properties [7]. 
Consequently, assessing the maturation state of DCs 
is crucial for evaluating immune system activation, 
vaccine efficacy, and predicting the effectiveness of 
immunotherapy. 

Distinct combinations of DC phenotypic 
markers, DC-derived cytokines and chemokines, 
along with other characterized entities such as 
exosomes, collectively define the nature and 
progression of DC maturation [8-11]. In comparison to 
ImDC, MDC exhibits notable differences in receptor 
expression, cytokine secretion, and nucleic acid 
profiles. Traditional methods for assessing DC 
maturation primarily rely on enzyme-linked 
immunosorbent assay (ELISA) for cytokine detection 
and flow cytometry for the expression of surface 
marker analysis [12, 13]. However, these methods rely 
on costly antibodies and involve complex procedures. 
The heterogeneity of cells highlights the importance 
of analyzing the maturation status of individual cells. 
To uncover the complexity of individual cellular 
activities and accurately predict their effectiveness in 
triggering immune activation in subsequent 
processes, novel technologies are crucial for real-time 
analysis of the maturation status of single-DC. 

Raman spectroscopy provides unparalleled 
fingerprinting capabilities for biomolecules, as the 
spectra reflect the vibrational and rotational modes of 
molecules, ensuring the extraction of rich biological 
insights from cells and tissues [14-23]. Raman strategy 
provides exceptional specificity for biological analysis 
by capitalizing on the distinctive molecular 
fingerprints present within complex and intact 
biological samples [24-26], serving as an ideal tool for 
studying individual cells [27-32]. All cellular 
components contribute to Raman signals, yielding 
distinct spectral characteristics. Single-cell Raman 
spectrum serves as a phenotypic fingerprint 
encompassing all biomolecules within the cell, 
holding the potential to distinguish between different 
cell types and provide insights into the underlying 

biology. Nonetheless, the weak Raman intensity of 
biomolecules hampers biomedical research, limiting 
its biological applications. Fortunately, surface- 
enhanced Raman spectroscopy (SERS) is a sensitive 
analytical tool holding the potential to dramatically 
amplify the Raman intensity with an enhancement 
factor up to 107−1014 due to the electromagnetic field 
in a nanogap between plasmonic surfaces [33-46]. 

Label-free SERS technology has been explored 
for studying single-cell heterogeneity [47], biochemical 
variances across different cell cycles [48-50], cell death 
mechanisms, and cell proliferation [51]. Therefore, 
SERS technology has great potential for providing 
specific fingerprinting information of DCs to detect 
biochemical changes and assess their maturation 
status. However, the complex and heterogeneous 
signal patterns provided by various biomolecules 
constituting cells play a major role in the recognition 
of the maturation of DCs. Artificial intelligence 
techniques such as deep learning have been widely 
employed to extract distinctive features from SERS 
spectra, enabling the classification of different types of 
cells, exosomes, and tissues [52-63]. Thus, the 
collaboration of SERS strategy with deep learning 
algorithms shows great potential in various 
biomedical processes and offers an opportunity to 
identify meaningful patterns in the status of dendritic 
cells.  

Herein, we developed the Au@CpG@PEG 
nanoparticles (ACP NPs) as the self-reporting 
nanovaccine for DCs activation and maturation state 
assessment based on the label-free SERS strategy. The 
CpG oligodeoxynucleotides (abbreviated as CpG 
ODNs) are widespread in the genetic sequences of 
bacteria and viruses, which have been proven to 
possess the ability to activate DCs through toll-like 
receptor 9 (TLR9) mediation. The gold nanoparticles 
(Au NPs) served as both a vehicle for CpG 
intracellular delivery and a Raman-enhanced 
substrate due to their excellent enhancement 
performance and powerful loading efficiency. This 
dual role ensures the efficiency of cellular uptake, 
stability of CpG sequences against nuclease 
degradation, bioactivity of CpG sequences, and 
significant enhancement of Raman signals from 
intrinsic cellular components. Fingerprint vibrational 
spectra of the biological components in different 
states of DCs were collected and analyzed by 
Convolutional Neural Network (CNN) algorithms, 
facilitating rapid and efficient identification of DC 
maturation (Figure 1). Leveraging the Raman spectra 
self-reporting Au@CpG@PEG nanovaccine in 
conjunction with deep learning technology enables 
precise assessment of single-DC maturation status. 
Moreover, this approach allows real-time monitoring 
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and evaluation during the maturation process of 
individual DCs, achieving accuracy levels above 
98.92%. 

Materials and Methods  
Chemicals and Reagents: Chloroauric acid and 

sodium citrate were bought from Sigma-Aldrich. 
Thiol polyethylene glycol (SH-PEG, MW 2000) was 
sourced from J&K Scientific. All oligonucleotides 
were purchased from Sangon Biotech Co., Ltd. 
(Shanghai) and dissolved in ultrapure water refer to 
the instruction manual. DMEM, 0.05% trypsin-EDTA 
and fetal bovine serum were bought from GIBCO. 

Characterization: UV−vis absorption spectra of 
the prepared nanoparticles were measured with a 
UV-3600 plus spectrophotometer (Shimadzu, Japan). 
Raman spectra were recorded by a Raman microscope 
(Renishaw) system with a 633 nm laser. Morphology 
of the nanoparticles was characterized by 
transmission electron microscopy (TEM, HITACHI 
HT7700 Exalens). Dynamic light scattering and zeta 
potentials were measured with a Malvern Zetasizer 
(Nano seriesnZS, UK).  

Preparation of Au NPs: 40 nm Au NPs were 
synthesized using the classical sodium citrate 
reduction method. Initially, HAuCl4 solution (294 μL, 
100 mM) was added to 100 mL of ultrapure water in a 
250 mL three-neck flask. The solution was then heated 
to boiling under vigorous stirring. Subsequently, 
sodium citrate solution (1.5 mL, 10 mg/mL) was 
quickly added, and the reaction continued for 20 min. 
The resulting Au NPs solution was slowly stirred 

until cooled to room temperature. 
Preparation of Au@CpG NPs, Au@Non-CpG 

NPs, Au@CpG@PEG NPs, Au@Non-CpG @PEG NPs: 
Initially, the obtained Au NPs underwent a 20-fold 
concentration through centrifugation (8000 rpm for 10 
min). Next, 110 μL of 100 μM thiol-modified CpG 
ODNs (or Non-CpG ODNs) were added to 1 mL of 
the Au NPs solution (2.7 nM) under magnetic stirring. 
Non-CpG ODNs were used as the negative control for 
the fabrication of Au@Non-CpG NPs. NaCl solution 
was dropped wisely added for facilitating the DNA 
functionalization process of Au NPs. The final 
concentration of NaCl was maintained at 0.1 M, and 
0.01% Tween 20 was added to the reaction mixture for 
stabilizing the Au NPs. Then the mixture was 
incubated at room temperature for 24 h under gentle 
stirring. The obtained solution was centrifuged to 
remove free CpG ODNs (or Non-CpG ODNs) and 
NaCl, and then the precipitates were redispersed in 
0.5 mL of 0.1% Tween 20 solution. Finally, Au@CpG 
NPs (or Au@Non-CpG NPs) solution was mixed with 
SH-PEG (1 μM) and allowed to react for 30 min. 
SH-PEG was conjugated to the nanoparticle surface to 
avoid non-specific adsorption and improve probe 
stability [64]. After that, the obtained Au@CpG@PEG 
(ACP NPs) solution was centrifuged (8000 rpm for 10 
min) for 3 times to remove the free SH-PEG. 
Au@Non-CpG@PEG NPs (abbreviated as ANP NPs) 
were prepared as the negative control to evaluate the 
immunostimulatory effects of ACP NPs. The purified 
ACP NPs (or ANP NPs) solution was stored at 4 °C 
for further use. 

 

 
Figure 1. (A) Synthesis of ACP NPs. (B) Collection of spectroscopic data of DCs. (C) The deep learning-based framework for identifying the maturation state of DCs, utilizing 
SERS spectra from DCs in various states for classification. 
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Cytotoxicity Evaluation of the ACP NPs and 
ANP NPs: DC2.4 cells were cultured in a complete 
DMEM medium composed of 10% FBS, 1% 
penicillin-streptomycin, glutamine, and β-ME at 37 °C 
with 5% CO2. The classical MTT method was used to 
investigate the biosafety of the ACP NPs at a cellular 
level. DC2.4 cells were placed in the 96-well plate with 
about 104 cells per well and cultured for 24 h at 37 °C. 
Subsequently, the cell supernatants were replaced by 
the medium that containing various concentrations of 
ACP NPs or ANP NPs (0, 0.02, 0.05, 0.1, 0.2 nM), and 
further cultured for another 24 h. After that, the cell 
samples were washed with PBS, and cultured with 
the medium which contained 5 mg/mL MTT for 4 h. 
Then the cell supernatants were removed. Afterward, 
120 μL of dimethyl sulfoxide was added into each 
well to dissolve the formazan crystal accumulated on 
the bottom. Ultimately, the absorbance at 490 nm of 
the cell samples was monitored by a microplate 
reader. 

Cytokine Detection: DC2.4 cells were placed in 
the 96-well plate and cultured overnight. Then Au 
NPs, ACP NPs or ANP NPs were added to the cells 
with a final concentration of 0.14 nM and incubated 
for various time points. Subsequently, supernatants of 
the cell samples were collected for interleukin-6 (IL-6) 
and tumor necrosis factor α (TNF-α) detection. The 
secreted cytokine was monitored by the 
cytokine-specific ELISA kits. The supernatants of the 
cell samples without any treatment were set as the 
control. All the samples were detected three times.  

Flow Cytometry: DC2.4 cells were seeded in 
12-well plates and cultured overnight. ACP or ANP 
nanoparticles were added to the cells at a final 
concentration of 0.14 nM and incubated for 2 h. Cell 
samples without any treatment served as the control. 
Subsequently, the cells were digested with trypsin 
and resuspended in PBS, followed by staining with 
CD80 (FITC-labeled) and CD86 (PE-labeled) 
antibodies at room temperature for 1 hour. After two 
washes with PBS, the fluorescence expression levels of 
the CD80 and CD86 markers were analyzed. 

Raman Detection of the DCs: Glass slides were 
placed on the bottom of the 12-well plates, and then 
DC2.4 cells (1×104 cells/well) were plated onto the 
glass slides. The cells were cultured at 37°C overnight. 
ACP NPs or ANP NPs solution (0.14 nM) was added 
to the cells co-incubated for about 20 h. After washed 
with PBS for three times the cell samples were fixated 
with 4% paraformaldehyde and then washed with 
PBS again. Finally, the Raman spectra of single-cell 
and multiple cells were recorded by a Raman confocal 
microscope (633 nm laser), with a power of 5 mW, 
exposure time of 1 s, and a 63× objective lens. For the 
acquisition of single-cell spectra, an individual cell 

was precisely positioned within the scanning area, 
and SERS spectra were systematically recorded at 1 
μm intervals. In the case of multicellular spectral 
acquisition, multiple cell groups were randomly 
selected, and spectra were obtained under identical 
experimental conditions. To detect Raman spectra of 
living cells, the DC2.4 cells (1×104 cells) were plated 
in the confocal dish cultured overnight. Then the cells 
were co-incubated with the ACP NPs or ANP NPs for 
different time points. After being washed with PBS, 
the Raman spectra of these living cells were detected 
by the Raman confocal microscope (633 nm laser), 
with an exposure time of 0.2 s, a 63× objective lens. 
The living individual cell was positioned within the 
scanning area, and SERS spectra were recorded at an 
interval of 1 μm. 

Deep Learning: Before starting the artificial 
intelligence processing, the max-min normalization 
method was applied to the spectral data, scaling the 
spectral intensities to a common range, specifically the 
interval 0-1. To identify the most suitable AI 
algorithm for spectral discrimination, we assessed the 
performance and theoretical advantages and 
disadvantages of 3 representative algorithms 
including CNN, DNN and MLP. The Raman 
spectrum data for this study was randomly shuffled 
and divided into a training set, a validation set, and a 
test set. The strategy parameters were set as follows: 
Epochs=50, Batchsize=32, with stochastic gradient 
descent (SGD) chosen as the optimizer. During each 
iteration, SGD updates the model parameters using 
calculated gradients to minimize the loss function. 
The learning rate was set to 0.01 with a momentum of 
0.9. The loss function used was binary cross-entropy. 
A learning rate scheduler and callbacks were 
employed to prevent overfitting, with a patience of 10 
and a minimum learning rate of 0.00001. The loss 
value indicates the discrepancy between the model's 
predictions and the actual results in deep learning. A 
lower loss value signifies closer alignment between 
the model's predictions and actual results, indicating 
better performance. On the other hand, represents the 
ratio of correctly classified samples to the total 
number of samples in a classification task, reflecting 
the overall classification ability of the model across all 
categories. Additionally, the contribution of 
individual Raman spectral peaks to the CNN model's 
classification performance was evaluated.  

Results and Discussion 
Preparation and Characterization of ACP NPs 

Realization of the production of ACP NPs was 
started with the synthesis of 40 nm Au NPs, which 
according to the classical sodium citrate reduction 
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method [65]. Then CpG ODNs and PEG were modified 
on the surface of Au NPs. The addition of NaCl can 
increase the ionic strength of the solution, which 
shield electrostatic repulsion between negatively 
charged DNA molecules, allowing more DNA to bind 
closely to the gold nanoparticles [66]. Therefore, NaCl 
solution was added for enabling DNA to gradually 
stabilize and densely cover the Au NPs surface. 
Non-CpG ODNs were used as the negative control for 
the fabrication of Au@Non-CpG NPs [67, 68]. The size 
and morphology of Au NPs and Au@CpG NPs were 
characterized by TEM (Figure S1A-B). The Au NPs 
size analysis was performed, and the size range was 
39.75±0.1 nm (Figure S2). A classic core-shell 
nanostructure was clearly evident, with the CpG shell 
measuring about 4 nm in thickness, thus verifying the 
formation of the Au@CpG NPs. The UV-Vis spectra of 
Au NPs, Au@CpG NPs and ACP NPs were 
determined using a UV-3600 plus spectrophotometer. 
The absorption peak of Au NPs was observed at 528.5 
nm. After being coated with CpG or Non-CpG ODNs 
and PEG, the nanoparticles exhibited redshifted 
absorption peaks, confirming the successful 
modification with CpG or Non-CpG ODNs and PEG 
(Figure S1C, Figure S3B). Dynamic light scattering 
(DLS) was conducted using a Malvern Zetasizer ZS 
instrument (Malvern Zetasizer 3000HS) to monitor 
the hydrodynamic diameter of the nanoparticles. As 
shown in Figure S1D, the hydrodynamic sizes of Au 
NPs, Au@CpG NPs and ACP NPs were 
approximately 44 nm, 51 nm and 59 nm, respectively. 
The hydrodynamic diameters of the Au@Non-CpG 
NPs and ANP NPs were also recorded (Figure S3C). 
The increase in hydrodynamic diameter indicated the 
successful binding of CpG ODNs (Non-CpG ODNs) 
and PEG on the surface of Au NPs. The Zeta potential 
of the nanoparticles was determined, as shown in 
Figure S3A. The surface charge of the Au NPs 
exhibited a significant negative charge due to the 
abundant surface presence of sodium citrate. 
Following CpG or Non-CpG and PEG modification, 
the negative charge is progressively neutralized, 
leading to a diminished negative charge.  

Cytotoxicity Evaluation of the ACP NPs 
The DC2.4 cell line, derived from murine bone 

marrow, is extensively used in immunological 
research to investigate dendritic cell functions such as 
antigen presentation, cytokine production, and 
activation mechanisms [69]. Therefore, the DC2.4 cell 
line was selected for the cellular experiments. The 
cytotoxicity of the ACP NPs and ANP NPs was 
evaluated by the classical MTT method. DC2.4 cells 
were cultured in the 96-well plate for 12 h, and then 
the cells were incubated with the fresh medium which 

contained various concentrations of ACP NPs or ANP 
NPs for 24 h. Subsequently, the cell samples were 
cultured with the fresh medium containing MTT for 4 
h. Finally, the formazan crystal accumulated on the 
bottom was dissolved with dimethyl sulfoxide and 
the absorption at 490 nm of the cell samples was 
monitored by a microplate reader. The MTT results in 
Figure S4 showed that the cell viabilities were higher 
than 98% when the concentrations of ACP NPs or 
ANP NPs ranged from 0.02 to 0.1 nM. Moreover, the 
cell viability remained at 93.7% when the 
concentration of nanoparticles reached 0.2 nM. These 
results demonstrated the ACP NPs and ANP NPs 
possessed outstanding biocompatibility. 

Cytokine Detection 
To evaluate the maturation and activation of DC 

after co-incubation with the ACP NPs, the cell 
supernatant was collected for cytokine analysis. The 
cells co-incubated with ANP NPs or Au NPs and the 
culture medium was set as the control. Tumor 
necrosis factor α (TNF-α) and interleukin-6 (IL-6) 
were monitored by the cytokine-specific ELISA kits. 
As shown in Figure S5, the levels of TNF-α and IL-6 
secreted by the cells that treated with ACP NPs were 
significantly higher than those treated with ANP NPs 
or Au NPs, especially when the incubation time 
extended to more than 8 h. The TNF-α and IL-6 in the 
supernatant without any treatment remained at a low 
level. These results illustrated that the DCs were 
mature after being treated with the ACP NPs, while 
the cells treated with ANP NPs or Au NPs were still 
immature. 

Flow Cytometry 
To further evaluate the activation effect of ACP 

NPs on DC2.4 cells, flow cytometry was utilized to 
monitor the expression levels of CD80 and CD86 in 
DC2.4 cells co-incubated with ACP NPs or ANP NPs 
for 2 h. Cells without any treatment served as the 
control. As demonstrated in Figure S6, the expression 
levels of CD80 and CD86 in DC2.4 cells treated with 
ACP NPs were significantly higher than those in the 
ANP NPs or the control group. These results further 
confirmed the maturation of dendritic cells induced 
by ACP NPs. 

Raman Spectra Analysis 

MDC displays significant variances in receptor 
expression, cytokine secretion, and nucleic acid 
profiles when contrasted with ImDC. Throughout the 
maturation process, discernible phenotypic markers 
of DCs emerge. To elucidate this process, we obtained 
the Raman fingerprints of MDC and ImDC, and 
subsequently discerned Raman spectral biomarkers 
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associated with maturation. Raman spectroscopy 
offers unparalleled fingerprinting capabilities for 
biomolecules, facilitating the extraction of rich 
biological insights from cells. To investigate the 
disparities in Raman fingerprints between the mature 
and ImDC and identify maturation-associated 
spectral markers, the SERS spectra of MDC and ImDC 
were acquired and analyzed (Figure 2A). The 
averaged Raman spectra with a 95% confidence 
interval depicted in Figure 2B illustrate the typical 
signatures of each cell type encompassing distinctive 
bands. In detail, substantial variations were observed 
between the Raman spectra of the two types of cells 
across various regions, including methionine (647 
cm−1), O-P-O stretch of DNA (826 cm−1), 
phenylalanine (1000 cm−1), Stretching C-O of ribose 
(1018 cm-1), C-C/C-N stretching of proteins (1161 
cm−1), tyrosine (1206 cm−1), COO- (1562 cm−1), fatty 
acid (1444 cm−1), and tryptophan (1623 cm−1) (Figure 
2C-D) [70, 71]. To further illustrate the disparity in the 
Raman characteristics between MDC and ImDC, 
multiple average Raman spectra were randomly 
chosen from each cell type for visualizing the 
differences (Figure 2E). The heatmap representation 

of Raman spectra provides additional clarity 
regarding the notable distinctions between the Raman 
spectra of the two cell types. These results underscore 
the potential of cell-characterized Raman fingerprint 
spectra as an innovative platform for distinguishing 
mature stations of DCs. 

Deep Learning Algorithm 
To identify the most suitable AI algorithm for 

spectral discrimination, we assessed the performance 
and theoretical advantages and disadvantages of 
three representative algorithms including CNN, Deep 
Neural Networks (DNN) and Multilayer Perceptron 
(MLP). Both CNN and DNN algorithms 
demonstrated superior accuracy (Figure S7, Figure 3). 
However, CNN could automatically extract spectral 
local features through convolutional layers, making it 
suitable for spectral data with complex patterns and 
overlapping peaks. Additionally, CNN exhibits good 
robustness against noise, enabling better handling of 
spectral noise that may occur during experiments. 
Ultimately, the CNN model was chosen for spectral 
classification. The CNN model conducts neural 
network computations through the utilization of 

 

 
Figure 2. (A) Cell activation artificial intelligence process of the multiple DCs. (B) SERS spectra of DCs co-incubated with ACP NPs and ANP NPs with 95% confidence interval 
ranges. (C) Detailed display of the Raman intensity at 647, 826, 1000, 1018, 1161, 1206, 1444, 1562, and 1623cm-1 between the spectra. (D) Heatmap representation of Raman 
spectra (E) Multiple average Raman spectra randomly chosen from each cell type. 
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filters and convolutional properties, has 
demonstrated notable success in image recognition 
tasks [72-76]. Firstly, CNN can autonomously learn and 
extract valuable features from Raman spectra, thereby 
eliminating the need for manual feature extraction 
methods [77]. This significantly streamlines data 
preprocessing, rendering it suitable for spectral 
analysis. Secondly, Raman spectra frequently display 
numerous overlapping peaks and intricate patterns, 
presenting significant challenges for conventional 
classification methods. The CNN algorithm adeptly 
addresses these complexities by leveraging the 
capabilities of the convolutional layers, offering 
robust classification capabilities [78, 79]. Moreover, 
CNN demonstrates robustness against noise and 
minor spectral deformations by effectively learning 
local data features. After training, a CNN model can 
be easily deployed to rapidly classify large volumes of 
spectral data, facilitating efficient analysis and 
interpretation of complex datasets. The Raman 
spectra of MDC and ImDC were employed to train 
and validate the CNN-based binary classification 
model.  

Firstly, the Conv1D layer consists of 
one-dimensional convolution (with 32 filters, kernel 
size=3, stride=1) and the ReLU activation function. 
The final output shape is (32, 1013, 32), Param=128. A 
dropout layer is typically added after the 
convolutional layer to prevent overfitting. This layer 
randomly sets a portion of the input units to 0 during 
training, aiding the model in learning more robust 
features. The MaxPooling 1D layer consists of a 
pooling layer, which is used to reduce the 
dimensionality and computational complexity of the 
data. With a pooling size of 2 (pool size=2) and a 
stride of 2, it takes the maximum value from every 
two consecutive data points as the output. The output 
shape is (32, 506, 32). The Flatten layer flattens 
multidimensional data into one-dimensional data so 
that it can be input into fully connected layers. The 
first Dense layer consists of a fully connected layer 
with 32 neurons. Similarly, it is equipped with the 
ReLU activation function. L2 regularization is added 
to prevent overfitting. The second Dense layer is the 
output layer of the model, consisting of only one 
neuron. The activation function is sigmoid, which is 
used to compress the model's output between 0 and 1, 
suitable for binary classification problems. A learning 
rate scheduler was added that reduces the learning 
rate when validation losses do not improve over 
several consecutive training cycles. This helps the 
model jump out of local optimality and continue to 
learn. Finally, the model is compiled with the binary 

cross-entropy loss function, which is also suitable for 
binary classification problems. The evaluation metric 
is accuracy, and the optimizer is stochastic gradient 
descent (SGD).  

Compared to the default Adam optimizer, SGD 
updates the gradient for only one sample at a time, 
making it highly efficient in computation, especially 
when dealing with large-scale datasets. The CNN 
model has been customized to integrate convolutional 
kernels, pooling layers, and fully connected layers 
into one-dimensional modules tailored for processing 
Raman spectra. Moreover, the fully connected layers 
comprise two Dense layers: the first, equipped with 32 
nodes and ReLU activation function, aids in further 
feature extraction; the second is an output layer with a 
single node and Sigmoid activation function, tailored 
for binary classification problems. The CNN model 
has been designed to ensure classification efficiency 
while mitigating the risk of overfitting and preserving 
simplicity in model structure and computational 
efficiency. 

The CNN model excels in detecting subtle 
variations across the entire spectrum through neural 
network computations based on convolution features. 
By employing a filter, the correlation between 
spatially adjacent peaks in spectra is captured, 
enabling the extraction of abstracted spectral features 
through iterative filtering processes (Figure 3A). 
Initially, we randomly divided the Raman spectral 
data into training, validation, and testing sets, with 
proportions of 70%, 20%, and 10% respectively. The 
confusion matrix results demonstrated the trained 
models exhibited a commendable prediction 
accuracy, achieving 99.99% for the training dataset 
and 99.98% for the validation dataset (Figure 3B). The 
Raman intensity at 1623 cm-1 which is related to 
tryptophan, significantly contributed to the 
classification. By analyzing the weights in the final 
layer of the CNN, we quantified the contribution of 
each Raman peak to the model's classification 
performance (Figure S8). The results demonstrated 
that the peak at 1623 cm-1 possessed 6.1% contribution 
to the classification, making it the most significant 
among all the Raman peaks. Tryptophan catabolism is 
a known mechanism involved in immune system 
modulation and plays a multifaceted regulatory role 
in the antigen-presenting function of DCs and 
activation of T-cells, which is probably due to 
elevated indoleamine 2,3-dioxygenase (IDO) 
expression may reduce local tryptophan levels in 
ImDC [80, 81]. Furthermore, the ratio of 1623 cm-1 to 
1025 cm-1 (related to Carbohydrates) exhibited a clear 
distinction (P<0.0001), as shown in Figure 3C.  
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Figure 3. (A) Illustration of CNN model for DC maturation identification. (B) Confusion matrix for training, validation and test sets. (C) SERS intensity ratio of 1623 cm-1 to 1025 
cm-1 from MDC and ImDC datasets (p < 0.0001). (D) LOSS curves. (E) ROC curves. (F) The output probabilities of each predicted cell present the classification accuracy of DC. 

 
As the training iterations progressed, the 

discrepancy between model predictions and actual 
results gradually decreased, as depicted by the LOSS 
curve (Figure 3D). During the assessment of 
diagnostic values using a receiver operator curve 
(ROC), which demonstrated remarkable accuracy in 
classifying both training and validation samples, 
achieving an area under the curve (AUC) of 1.00 
(Figure 3E). Additionally, we extracted weights from 
the final layer and monitored the predicted 
classification probabilities of the two cell types. Upon 
comparing heatmaps illustrating the classification 
outcomes, MDC and ImDC can be readily discerned 
(Figure 3F). These findings underscore the 
outstanding predictive accuracy of the CNN model 
for the maturity status of DCs. 

Single cells represent the fundamental structural 
and functional units of all living organisms, integral to 

the functioning of multicellular systems. They exhibit 
considerable variability in molecular expression in 
response to external stimuli or pathological 
conditions, even among cells of the same type. 
Traditional analyses based on cell populations 
frequently mask these individual differences, leading 
to the loss of critical biological information. Single-cell 
analysis is not only a crucial approach for elucidating 
cellular heterogeneity and differentiation but also an 
effective strategy for precisely studying the 
relationships between biomolecules and associated 
signaling pathways [82, 83]. The complex diversity of 
intracellular structures poses a challenge in extracting 
comprehensive information from individual cells, 
while most SERS research focuses on cell populations, 
overlooking the heterogeneity and diversity within 
individual cells. Delving into single-cell analysis 
becomes crucial for identifying distinct subgroups 
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and uncovering intricate interactions among analytes. 
Supervised classification employing CNN was 
utilized to train classifier models using the spectral 
dataset and forecast the maturity status of the 
individual DC cells (Figure 4A). Around 20,000 
Raman spectra were collected, derived from 196 
mature DCs and 210 immature DCs. The average 
spectrum of individual cells was calculated and then 

randomly divided these average spectra into training, 
validation, and testing sets, each undergoing 50 
epochs. Remarkably, the CNN model demonstrated 
strong performance in predicting the Raman spectra 
dataset, as evidenced by the results summarized in a 
confusion matrix. The sensitivity of the test set was 
99% (Figure 4B).  

 

 
Figure 4. (A) Illustration of CNN model for individual DC maturation identification. (B) Confusion matrix representing the identification accuracy for each class of the proposed 
model. (C) ROC curves, (D) Loss curves and (E) accuracy curves. The loss and accuracy shown are the values recorded at the end of each training epoch. (F) The output 
probabilities of each predicted cell present the classification accuracy of single-DC. The top and bottom rows in each heatmap showed the true labels and predicted labels of the 
individual DC in each group. (G) Average Raman spectra of single MDC and ImDC. (H) Typical Raman mapping imaging of the two types of cells at the channel of 1025 cm-1 and 
1623 cm-1. 
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Figure 5. (A) Schematic diagram of real-time monitoring living DC maturation. (B) Monitoring the dynamic SERS spectra of living DCs at various time points and illustrating the 
schematic diagram of real-time dynamic classification of DC maturation through artificial intelligence. ROC curves and Confusion matrix for training, validation and test sets of 
SERS spectra collected from 2 h (C), 4 h (D) and 6 h (E).  

 
Corresponding receiver operator curves (ROC) 

were plotted to illustrate classification performance, 
as shown in Figure 4C. The area under the curve 
(AUC) was 1.00. Figures 4D and 4E display the 
recognition loss and accuracy curves of the CNN 
model, showcasing the effective discriminative 
capacity. To gain deeper insights into the model's 
architecture and understand its output framework, 
we extracted weights from the final layer and then 
conducted statistical analysis on the output 
probabilities of each predicted mature or immature 
cell. We observed that almost every individual cell 
was accurately classified into either mature or 
immature categories from the heatmaps (Figure 4F). 

The precise prediction of the maturity status of DCs 
demonstrates that Raman spectra have the capability 
to capture intricate biomolecular characteristics of 
DCs, crucial in determining the maturation outcome. 

As the significant discrepancy was observed of 
the intensity ratio of 1623 cm-1 to 1025 cm-1 in the 
Raman spectra of mature and immature DC cells, 
with mature cells displaying notably higher SERS 
intensity (Figure 4G). Raman mapping imaging of the 
two types of DCs was acquired at 1025 cm-1 and 1623 
cm-1, respectively (Figure 4H). In the 1025 cm-1 
channel, both mature and immature DC cells 
exhibited similar high intensity and abundant Raman 
signal distribution. However, in the 1623 cm-1 
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channel, the signal from MDC was significantly 
stronger, while almost imperceptible signals were 
detected in the immature cells. Under bright-field 
microscopy, mature cells displayed irregular 
elongated protrusions characteristic of mature DC 
morphology. The robust alignment between the CNN 
model predictions and the dynamic alterations 
observed in cellular Raman imaging implies the 
potential to differentiate MDC and ImDC at the 
single-cell level using deep learning-based SERS 
spectral analysis. 

Real-Time Identification of Dendritic Cell 
Maturation  

To further validate the effectiveness of the deep 
learning-based SERS technique, we performed 
real-time SERS detection of individual living DCs at 
various time points (Figure 5A). SERS spectra of 
living DCs at various time points were dynamically 
monitored and the CNN model was used to real-time 
predict the maturity status of DC (Figure 5B). As 
evidenced by the results summarized in the confusion 
matrix, the classification accuracy was separately 
achieved 99.18%, 99.39%, 98.92% at various time 
points (2, 4 and 6 h). ROC curves (2 h, 4 h) 
demonstrated remarkable accuracy in classifying both 
training and test samples, achieving an area under the 
curve (AUC) of 1.00, whereas ROC curves (6 h) 
demonstrated a slightly lower accuracy of 0.99. The 
specificities at 2 h, 4 h, and 6 h separately reached 
98.36%, 98.78%, 97.83% (Figure 5C-E). Figure S9 
displayed the recognition loss and accuracy curves of 
the real-time classification model, showcasing the 
effective discriminative capacity. These findings 
further underscore the superiority of the deep 
learning-based SERS technique in discerning the 
maturity status of DCs. 

Conclusion 

In summary, we introduced a novel platform for 
assessing the maturation status of dendritic cells, 
integrating SERS with artificial intelligence techno-
logy. The platform employed Au@CpG@PEG NPs as 
self-reporting nanovaccines to assess DC activation 
and maturation state through a label-free SERS 
approach, relying on Au NPs as Raman-enhanced 
substrates. The fingerprint vibrational spectra of 
biological components in various states of DCs were 
collected and analyzed using CNN algorithms, 
facilitating the rapid and accurate identification of DC 
maturation, with an accuracy of up to 99%. Utilizing 
the self-reporting Au@CpG@PEG nanovaccine in 
combination of SERS with deep learning technology 
enabled precise assessment of individual DC 
maturation status. Furthermore, this approach 

allowed for real-time monitoring and evaluation 
throughout the maturation process of individual DCs, 
achieving an accuracy above 98.92%. This platform 
offers a powerful tool for classifying the maturation 
status of DCs, reducing redundant experimental 
procedures, lowering testing expenses, facilitating 
real-time monitoring, and enabling rapid and accurate 
detection. In addition, the SERS intensity ratio of 1623 
cm-1 to 1025 cm-1 (tryptophan-to-carbohydrate) has 
been found as a potential marker for the maturation 
status of DC cells. These findings indicated the 
capability of the CNN-based SERS strategy for 
dynamically real-time monitoring and classifying the 
maturation status of dendritic cells. This method 
holds clinical translational potential in autologous DC 
transfusion therapy for cancer patients, providing a 
means to detect DC maturation status after ex vivo 
expansion. 
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