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Abstract 

Purpose: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) 
accurately using a multiomics machine learning (ML) model and to compare its performance with 
biopsy-proven GG (bxGG) assessment. 
Materials and Methods: A total of 146 patients with PCa recruited in a pilot study of a prospective 
clinical trial (NCT02659527) were retrospectively included in the side study, all of whom underwent 
68Ga-PSMA-11 integrated positron emission tomography (PET) / magnetic resonance (MR) before radical 
prostatectomy (RP) between May 2014 and April 2020. To establish a multiomics ML model, we 
quantified PET radiomics features, pathway-level genomics features from whole exome sequencing, and 
pathomics features derived from immunohistochemical staining of 11 biomarkers. Based on the 
multiomics dataset, five ML models were established and validated using 100-fold Monte Carlo 
cross-validation.  
Results: Among five ML models, the random forest (RF) model performed best in terms of the area 
under the curve (AUC). Compared to bxGG assessment alone, the RF model was superior in terms of 
AUC (0.87 vs 0.75), specificity (0.72 vs 0.61), positive predictive value (0.79 vs 0.75), and accuracy (0.78 
vs 0.77) and showed slightly decreased sensitivity (0.83 vs 0.89) and negative predictive value (0.80 vs 
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0.81). Among the feature categories, bxGG was identified as the most important feature, followed by 
pathomics, clinical, radiomics and genomics features. The three important individual features were bxGG, 
PSA staining and one intensity-related radiomics feature.  
Conclusion: The findings demonstrate a superior assessment of the developed multiomics-based ML 
model in whole-mount GG compared to the current clinical baseline of bxGG. This enables personalized 
patient management by identifying high-risk PCa patients for RP. 

Keywords: prostate cancer, PSMA, Gleason grading, machine learning, multiomics 

Introduction 
Prostate cancer (PCa) is the second leading 

cancer-related death in men, with an incidence of 
nearly 20% worldwide [1]. PCa has the highest 
five-year survival rate (98%) for all stages combined 
among different tumor types [2]. As first-line therapy, 
radical prostatectomy (RP) has substantially 
contributed to this phenomenon [3]. However, as a 
consequence of RP, around 31% of patients suffer 
from urinary incontinence [4], and about 90% suffer 
from erectile dysfunction [5]. Hence, precise 
identification of individuals who experience minimal 
clinical advantages but encounter substantial adverse 
effects in RP is of utmost importance. Currently, the 
decision on whether to perform RP is mainly 
determined by biopsy-proven Gleason score 
(bxGS)[6]. Despite its important role in identifying 
PCa type, stage, differentiation, and the resulting 
influence on treatment modality [7], several studies 
have revealed a strong discrepancy between bxGS 
and whole-mount GS after RP[8–10]. Since 
whole-mount GS holds a strong association with 
clinical outcomes [11–13], a more reliable method to 
assess whole-mount Gleason grading (GG) is needed 
to accurately identify candidates for RP.  

Multiomics provides urologists with 
comprehensive insights into various aspects of PCa 
[14], including genetic signatures from genomics, 
molecular heterogeneity from radiomics, and protein 
expression from pathomics. Genetic tests of PCa 
biopsy samples are currently available to predict 
subsequent disease progression after RP [15]. While 
genomics is nowadays part of the standard repertoire 
of cancer research approaches, the full prospects of 
pathomics and positron emission tomography 
(PET)-based radiomics yet remain to be explored. 
Radiomics is an emerging field where imaging 
features are extracted for objective and quantitative 
tumor characterization [16]. Radiomics application on 
prostate-specific membrane antigen (PSMA) PET 
scans has shifted clinical PCa research towards a 
personalized direction [17,18]. Recent studies have 
showcased the capability of pathomics, an approach 
for the extraction of quantitative features from 
pathological images, in PCa characterization [19–21]. 
However, no studies have yet leveraged the potential 

of combining genomics, radiomics, and pathomics. 
Machine learning (ML) can serve as an ideal platform 
for the integration of high-dimensional multiomics 
data. 

In this study, we aimed to assess whole-mount 
GG in PCa accurately using a novel ML approach to 
identify appropriate candidates for RP and to 
compare it with biopsy-proven GG (bxGG). 

Materials and Methods 
Study Design 

A total of 146 patients with histologically- 
confirmed PCa from the pilot study of a prospective 
clinical trial (clinicaltrials.gov NCT02659527) were 
retrospectively enrolled, all of whom underwent 
68Ga-PSMA-11 PET/MR scans before RP between 
May 2014 to April 2020 at the Division of Nuclear 
Medicine in the Vienna General Hospital. This clinical 
trial complied with the Helsinki Declaration and its 
amendments. The inclusion and exclusion criteria 
were listed in Supplementary Method M1. The 
primary aim of this prospective trial was to improve 
the detection rate of primary localized PCa using 
non-invasive PSMA PET/MR in comparison with 
conventional biopsy. Our study, in contrast to 
previous work, incorporates radiomics, pathomics 
and genomics data, offering a more comprehensive 
analysis while predicting whole-mount Gleason 
grading rather than the improvement of detection 
rate. The study was approved by the ethics committee 
of the Vienna General Hospital (ID: 1649/2016). Each 
subject gave prior written informed consent.  

Clinical Data Acquisition 

Clinical parameters, including age, weight, 
height, body mass index (BMI), and pre-operative 
prostate-specific antigen (PSA) levels in serum were 
collected from the documentation of the clinical trial.  

Based on 68Ga-PSMA PET/MR images, two 
nuclear medicine physicians (S.R. and A.H.) with 
more than 10 years of experience, blinded to the 
outcome of each patient, assessed six parameters: (1) 
lesion involvement: whether the tumor affected one or 
two lobes or was diffusely spread throughout the 
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prostate; (2) lesion position in the anatomy zone: 
whether the tumor was located in the central zone 
(CZ), transition zone (TZ), peripheral zone (PZ), 
anterior fibromuscular stroma (AFS), or it was 
diffusely distributed (i.e., tumor lesions involving at 
least two anatomical zones or the whole prostate; (3) 
extracapsular extension: whether the tumor exceeded 
the prostate capsule; (4) contact with neurovascular 
bundles: whether the tumor infiltrated adjacent 
neurovascular bundles; (5) lymph node (LN) 
infiltration: whether the tumor infiltrated the pelvic or 
distant LNs; (6) bone metastasis: whether tumor 
metastasized to bones.  

Genomics Data Acquisition 
Formalin-fixed paraffin-embedded (FFPE) tissue 

sections (3×10 μm) were obtained from RP samples 
and DNA extraction was performed. Genomic 
libraries were prepared and the raw sequencing data 
were processed. Somatic small variants were 
identified from paired samples of the tumor and 
corresponding normal tissue using the SomaticSeq 
variant caller [22].  

Identified variants were annotated using 
Ensembl's Variant Effect Predictor (VEP) tool. 
Pathogenicity scores from the evolutionary model of 
variant effect (EVE) [23], Combined Annotation- 
Dependent Depletion (CADD) [24], and PolyPhen [25] 
were annotated and combined into a final 
pathogenicity metascore for each identified variant 
after normalization. Pathogenic genetic disruption 
was computed as the sum of combined pathogenicity 
scores of all variants in the given gene. Pathway 
genetic disruption was subsequently computed as the 
sum of the pathogenicity scores of all genes in each 
pathway based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG). 

The tumor mutational burden (TMB) for each 
sample was computed as the number of identified 
somatic variants per million base pairs of the 
sequence region. Copy number variants (CNVs) were 
called using the CNVkit tool [26] with the set of 
paired normal samples used as a panel of “normals" 
in the computation. CNV burden was computed as 
the ratio of CNV sum size to the sum size of all 
sequenced regions. More details are described in 
Supplementary Method M2 and Supplementary 
Figure S1. 

Radiomics Data Acquisition 
The imaging protocol was described in a 

previously published study [27]. 68Ga-PSMA-11 
PET/MR images were acquired and volumes of 
interest (VOIs) were delineated on PET images with 
the T2-weighted imaging (T2WI) as anatomical 

reference. The delineations were performed manually 
by two nuclear medicine physicians (S.R and A.H) 
with more than 10 years of diagnostic experience in a 
slice-by-slice fashion. In instances of differing 
viewpoints, the physicians reached a consensus 
through discussion, ensuring precise and accurate 
identification of the VOIs. PET image intensities were 
converted to standardized uptake values (SUV) 
normalized to body weight, and conventional SUV 
metrics were extracted from VOIs, including SUVmin, 
SUVmax, SUVmean, SUVpeak, PSMA-tumor volume 
(PSMA-TV) and total lesion-PSMA (TL-PSMA) [28].  

Radiomics features were computed using 
PyRadiomics 3.0.1 [29]. All extracted features were 
compliant with the international biomarker 
standardization initiative (IBSI) [30]. PET images were 
resampled to an isotropic voxel size of 2x2x2 mm3 
using B-spline interpolation and bin width was set to 
0.3 SUV units. The workflow is shown in 
Supplementary Figure S2. 

Pathomics Data Acquisition 
Tissue samples were obtained from FFPE 

specimens. Tumor areas and normal areas from each 
sample were delineated on hematoxylin and eosin 
(H&E)-stained slides by an uro-pathologist with over 
30 years of diagnostic experience (L.K.). Three 
cylindrical cores (diameter: 2.2 mm) were punched 
from annotated tumor areas and three from normal 
areas. These cores were transferred to a recipient 
paraffin block to create an array of tissue samples. The 
recipient block was sectioned into 2-5 µm thick 
sections and TMA slides were prepared. The tumor 
cores were specifically chosen from areas within the 
RP specimens that presented the most aggressive 
features upon pathological morphology in order to be 
most representative of the PCa tissue aggressiveness. 

H&E and IHC staining were performed on the 
TMA slides. PSMA[31], androgen receptor (AR) [31], 
Ki-67[32], PSA[31], NK3 homeobox 1 (NKX3.1) [31], 
cyclin-dependent kinase 2 (CDK2) [33,34], cluster of 
differentiation 3 (CD3) [35], signal transducer and 
activator of transcription 3 (STAT3) [36], fatty acid 
synthase (FASN) [31], thyroid hormone receptor beta 
(TRβ) [37] and interleukin-6 signal transducer 
(IL6ST)[38] were selected as targets. The antibodies 
for IHC staining were listed in Supplementary 
Method M3. 

The uro-pathologist (L.K.), blinded to the clinical 
data, evaluated the GS of each core based on 
H&E-stained TMA slides. As the punching process 
effectively mimics the targeted biopsy in clinical 
routines [39,40], the GS from each core was 
considered as bxGS to eliminate any time 
discrepancy. Moreover, the pathologist determined 
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the percentages of strongly, moderately, or weakly 
stained cells of each core on IHC slides using the 
modified H-score [41], which was calculated using the 
formula: ([% of weak staining] × 1) or ([% of moderate 
staining] × 2) or ([% of strong staining] × 3), yielding a 
range from 0 to 300 [42,43]. The average and 
maximum H-score values from tumor cores were 
considered representative indicators of different 
targets’ expression levels. The workflow is shown in 
Supplementary Figure S3. 

Reference Standard 
As binary ML prediction target, the 

post-operative International Society of Urological 
Pathology (ISUP) grading derived from whole-mount 
samples was split into low-risk (ISUP < 3) and 
high-risk (ISUP ≥ 3) [44]. This aligns with a previous 
large multicenter study indicating that the best 
prognostic stratification can be achieved at the 
threshold of grade three [45]. The ISUP grading 
system allows for better interpretation of 
morphological patterns and more accurate GG 
stratification [46,47].  

Machine Learning 
The resulting 203 input features included 13 

clinical features, 113 radiomics-wide features (107 
radiomics features and 6 conventional SUV metrics), 
53 genomics features, 23 pathomics features, and 1 
feature, namely biopsy-proven ISUP (bxISUP). All the 
features are listed in Supplementary Table S1. 

ML was conducted using five classification 
algorithms, namely k-nearest neighbors (kNN), 
random forest (RF), extreme gradient boosting (XGB), 
support vector machine (SVM) and logistic regression 
(LGR). Robust performance evaluation was 
performed using 100-fold stratified Monte Carlo 
cross-validation with 70% of samples in the training 
set and 30% in the test set. The test set was exclusively 
used for testing, while a subset of the training data 
was employed for preprocessing and hyperparameter 
tuning. Features with more than 30% missing values 
were excluded. Any remaining missing values were 
imputed using k-nearest neighbor imputation with 
distance weighting [48]. Features were normalized 
using z-score. Feature selection was performed using 
minimum redundancy and maximum relevance 
(mRMR) [49]. Hyperparameter tuning was performed 
using random search. All procedures, including 
imputation, normalization, feature selection, and 
hyperparameter tuning, were performed separately 
for each fold while fitting on the training set and 
performing corresponding transformations on the test 
set to avoid any data leakage. Probability calibration 
was performed using an isotonic regression. 

To ensure maximum transparency of the ML 
models and to enable the interpretation of decisions 
made by the applied algorithms, a set of explainable 
artificial intelligence (XAI) methods were employed, 
Shapley additive explanations (SHAP), permutation 
feature importance, and surrogate models. 
Permutation and SHAP importance both show feature 
importance, but the calculation of importance values 
differs [50]. Surrogate models are post-hoc 
explainable artificial intelligence techniques that aim 
to estimate the predictions of black-box models using 
a simple and interpretable model. In this study, we 
extracted this description from the RF model to create 
a simplified diagnostic workflow (decision tree). 
Further details on ML are described in 
Supplementary Method M4. 

Statistical Analysis 
The Python 3 package-scipy package 1.11.4 was 

used for statistical analysis. Quantitative metrics were 
calculated as mean ± standard deviation (SD), and 
categorical variables as percentages. Mann-Whitney 
test was used for comparison between quantitative 
variables. The chi-square test was used for 
comparison between categorical variables. All p 
values were tested as two-tailed. P values less than 
0.05 were regarded as statistically significant. 

Results 
Data Overview  

A total of 65 PCa patients (age: 64 ± 7.6) with 
clinical, genomics, radiomics, and pathomics data 
were included for final analysis following the cohort 
flow chart in Figure 1. Of these patients, 28 (43%) 
patients (age: 62.4 ± 7.9) were categorized as low risk 
(ISUP < 3) and 37 (57%) patients (age: 65.2 ± 7.1) as 
high risk (ISUP ≥ 3). Clinical and imaging parameters 
of both groups are shown in Table 1. 

Based on the KEGG database, a total of 10,305 
genes were identified in the exome of DNA. The 
overall mutation frequency was low, with only 29 
genes mutated in ≥10% of patients (Supplementary 
Figure S4). No significant correlation (p ≥0.05) was 
found between any of the gene mutations and TMB, 
CNV burden, or whole-mount ISUP. Due to the 
sparse distribution of gene mutations, only 
pathway-level genomics features were employed for 
the subsequent ML analysis (Figure 2). Among 341 
pathways annotated in the KEGG database, 51 
pathways were selected due to their association with 
PCa tumorigenesis, aggressiveness, progression, or 
metastasis. The literature is listed in Supplementary 
Table S2 to show the predictive potential of 51 
pathways. 
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Figure 1. Flowchart of the study cohort. PCa: prostate cancer; TMA: tumor microarray; FFPE: formalin-fixed paraffin-embedded; SUV: standardized uptake value. 

 
Table 1. Comparison of clinical and imaging parameters 
between the ISUP low (ISUP<3) group and ISUP high 
(ISUP≥3) group. Continuous data are expressed as mean ± 
standard deviation (SD); categorical variables are presented as 
numbers and percentages. 

Parameters   Low risk 
(ISUP < 3) 

High risk 
(ISUP ≥ 3) 

p value 

Clinical Parameters     
Age (years)  62.4 (7.9) 65.2 (7.1) 0.14 
Weight (kg)  80.5 (10.9) 86.7 (11.1) 0.01 
Height (m)  1.8 (0.1) 1.8 (0.1) 0.25 
BMI (kg/m2)  25.8 (2.8) 27.4 (3.3) 0.05 
PSA-pre OP (µg/l)  9.4 (8.0) 55.4 (135.0) <0.001 
Pre-OP therapy No 27 (96.43%) 30 (81.08%) 0.21 

Yes 1 (3.57%) 5 (13.51%)  
NA 0 (0%) 2 (5.41%)  

Image-based Parameters         
Lesion involvement One lobe 13 (46.43%) 20 (54.05%) 0.23 

Two lobes 5 (17.86%) 3 (8.11%)  
Whole 
prostate 

0 (0%) 2 (5.41%)  

NA 10 (35.71%) 12 (32.43%)  
Lesion position in  
anatomy zone* 

CZ 1 (3.57%) 0 (0%) 0.49 
TZ 2 (7.14%) 1 (2.7%)  
PZ 12 (42.86%) 18 (48.65%)  
AFS 0 (0%) 1 (2.7%)  
Diffusion 2 (7.14%) 5 (13.51%)  
NA 11 (39.29%) 12 (32.43%)  

Extracapsular extension No 17 (60.71%) 11 (29.73%) <0.001 
Yes 1 (3.57%) 14 (37.84%)  
NA 10 (35.71%) 12 (32.43%)  

Contact to neurovascular 
bundles 

No 18 (64.29%) 20 (54.05%) 0.06 
Yes 0 (0%) 5 (13.51%)  
NA 10 (35.71%) 12 (32.43%)  

Lymph node infiltration No 17 (60.71%) 17 (45.95%) 0.03 
Yes 1 (3.57%) 9 (24.32%)  
NA 10 (35.71%) 11 (29.73%)  

Bone metastasis No 17 (60.71%) 21 (56.76%) 0.38 
Yes 1 (3.57%) 4 (10.81%)  
NA 10 (35.71%) 12 (32.43%)  

Clinical T staging cT2a 3 (10.71%) 4 (10.81%) 0.03 
cT2b 5 (17.86%) 2 (5.41%)  
cT2c 8 (28.57%) 4 (10.81%)  
cT3a 1 (3.57%) 3 (8.11%)  
cT3b 1 (3.57%) 12 (32.43%)  
cT3a+b 0 (0%) 1 (2.7%)  
cT4 0 (0%) 1 (2.7%)  
NA 10 (35.71%) 10 (27.03%)  

Value in the bracket is standard deviation for numeric data and percentage for 

categorical data 
*CZ: central zone; TZ: transition zone; PZ: peripheral zone; AFS: anterior 
fibromuscular stroma; Diffusion means PCa lesions involve any two/three 
anatomy zones or the whole prostate; NA: not applicable. 

 
In total, 107 radiomics features were extracted 

and categorized into shape (n=14), histogram (n=18), 
and texture (n=75) features. Texture features included 
24 gray level co‐occurrence matrix (GLCM), 16 gray 
level run length matrix (GLRLM), 16 gray level size 
zone matrix (GLSZM), 14 gray level dependence 
matrix (GLDM) and 5 neighboring gray-tone 
difference matrix (NGTDM) features. Features are 
categorized in Supplementary Table S3.  

ISUP grading was determined by H&E-staining 
with morphological details depicted in Figure 3A. 
Representative images of PSA expression between 
ISUP high and low groups are shown in Figure 3B. 
After statistical analysis of the whole cohort, we found 
that the maximum H-score of PSA was the most 
distinguished biomarker, and its value in high-risk 
PCa was lower than that of the low-risk group. 

Machine Learning Performance 
The five ML models (KNN, RF, SVM, LGR, XGB) 

were compared based on area under the curve (AUC), 
accuracy (ACC), sensitivity (SNS), specificity (SPC), 
positive predictive value (PPV) and negative 
predictive value (NPV), as depicted in Figure 4A. In 
terms of AUC, the RF model achieved the highest 
performance (Supplementary Table S4). The AUC, 
ACC, SNS, SPC, PPV, and NPV of the RF model were 
0.87 (95%confidence interval ([CI], 0.85-0.89), 0.78 
(95%CI, 0.76-0.80), 0.83 (95%CI, 0.80-0.86), 0.72 
(95%CI, 0.68-0.76), 0.79 (95%CI, 0.77-0.81) and 0.80 
(95%CI, 0.77-0.83) respectively. 

The performance metrics of needle biopsy AUC, 
ACC, SNS, SPC, PPV, and NPV were 0.75, 0.77, 0.83, 
0.61, 0.75, and 0.80 respectively. In comparison, the 
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performance of RF showed an increase in AUC, ACC, 
SNS, and NPV by 12%, 1%, 11%, and 1%, respectively 

while SNS and PPV decreased by 6% and 4% (Figure 
4B. 4C).  

 

 
Figure 2. Genomics profile indicates the heterogeneity of the 51 investigated biological pathways in 65 PCa patients. The top bar shows TMB and CNV burden 
distribution. The top panel shows the correlation of genes/pathways mutation profile with ISUP groups. The top dendrogram shows the clustering patterns of genes/pathways 
based on their mutation profiles. TMB: tumor mutational burden; CNV: copy number variant; ISUP: International Society of Urological Pathology; PCa: prostate cancer. 
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Figure 3. Representative images of H&E staining and PSA staining on TMA slides revealing less PSA expression when PCa tissue is more aggressive. A. 
Representative images of H&E staining for each ISUP grade: a. Patient 1, GS 6 (3+3); b. Patient 2, GS 7 (3+4); c. Patient 3, GS 7 (4+3); d. Patient 4, GS 8 (4+4); e. Patient 5, GS 
9 (4+5); according to ISUP consensus 2019. B. Representative images of PSA expression in each ISUP grade core. a. Patient 1, high PSA expression; b. Patient 2, relatively high PSA 
expression; c. Patient 3, moderate PSA expression; d. Patient 4, relatively low PSA expression; d. Patient 5, negative PSA expression. The corresponding H&E core and PSA core 
are from the same cylinder of the same patient. The scale bars of the overview core and enlarged details are 400 μm and 100 μm respectively. C. The maximum H-score of PSA 
is significantly different between ISUP high and low groups (p < 0.0001). TMA: tumor microarray; PSA: prostate-specific antigen; ISUP: International Society of Urological 
Pathology; GS: Gleason score. 
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Figure 4. ML Performance of the ISUP prediction in PCa. A. Performance comparison of the five ML algorithms (KNN, RF, SVM, LGR, XGB). Ranked by AUC, the RF 
model had the best performance. B. Overall comparison of different performance metrics between the RF model and ISUP derived from needle biopsy. C. Comparison of the 
mean permutation importance between different types of features. D. Detailed comparison of different performance metrics between the RF model and ISUP derived from 
needle biopsy. E. The top 10 performing features in ISUP prediction based on permutation importance over all cross-validation folds. F. SHAP importance of the eight features 
included in the final RF model trained on the entire dataset. Each dot represents a single patient and higher feature values are labeled as red while lower values are blue. The 
increasing positive SHAP values are indicative of the model’s tendency to predict high ISUP while decreasing SHAP values indicate the tendency of the model to predict low ISUP. 
KNN: k-nearest neighbors; RF: random forest; XGB: extreme gradient boosting; SVM: support vector machine; LGR: logistic regression; AUC: area under the curve; ACC: 
accuracy; SNS: sensitivity, SPC: specificity; PPV: positive predictive value; NPV: negative predictive value; ML: machine learning; SUVmean: mean standardized uptake value; 
PSAmax: maximum H-score of PSA expression on three cores of TMA slides; PSAavg: average H-score of PSA expression on three cores of TMA slides. 
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Figure 5. Proposed diagnostic flowchart for prostate cancer (PCa) management. PSAmax: maximum H-score of PSA expression on three cores of TMA slides; PSA: 
prostate-specific antigen. 

 

Table 2. Performance for different input feature type combinations.  

Feature types ACC SNS SPC PPV NPV BACC AUC 
Genomics and pathomics 0.805 0.830 0.775 0.822 0.820 0.803 0.893 
Radiomics and genomics 0.727 0.743 0.708 0.770 0.716 0.726 0.835 
Radiomics and pathomics 0.781 0.820 0.735 0.795 0.803 0.778 0.874 
Radiomics, genomics and pathomics 0.779 0.827 0.722 0.791 0.804 0.774 0.869 

ACC: accuracy; SNS: sensitivity; SPC: specificity; PPV: Positive predictive value; NPV: Negative predictive value; BACC: Balanced accuracy; AUC: Area under the receiver 
operating characteristic curve. 

 
A total of 73 features were selected in the 

validation procedure, consisting of 1 feature, namely 
bxISUP, 5 clinical features, 12 gene-level genomics 
features, 43 radiomics-wide features and 13 
pathomics features. After comparison of the mean 
permutation importance of different types of features, 
bxISUP was identified as the most attributable 
feature, followed by pathomics, clinical, radiomics, 
and genomics features (Figure 4D). Ranked by 
permutation importance value, the ten most 
important features included six radiomics features, 
three pathomics features, one clinical feature, and 
biopsy-derived ISUP (Figure 4E). More details were 
described in Supplementary Results R1-3. 

SHAP importance revealed bxISUP as the most 
predictive feature, followed by maximum H-score of 
PSA, and texture/histogram-based radiomics 
features. Figure 4F shows the top 8 features and their 
SHAP importance values between high and low ISUP 
groups. In the ISUP high group, ISUP derived from 
needle biopsy tends to be higher, PSA is less 
expressed on IHC slides and GLCM Joint Energy 

values are lower compared to the ISUP low group.  
A surrogate model was established to provide a 

simplified diagnostic workflow describing the more 
complex ML model (RF). The resulting simplified 
diagnostic workflow included three features, which 
were GLCM_Joint Energy, PSAmax_IHC, and 
bxISUP, which achieved a performance of AUC 0.89 
in estimating the output of the complex ML model 
(Supplementary Figure S5). Based on the surrogate 
model, the ML-based workflow is incorporated in the 
clinical diagnostic scheme (Figure 5). We further 
performed three analyses, each using a combination 
of two feature types, including genomics, pathomics, 
and radiomics as input. AUC values ranged between 
0.84 and 0.89 with the full performance metrics for the 
individual analyses shown in Table 2. 

Discussion 
In this study, we integrated clinical, imaging, 

pathomics, and genomics data for the ML-based GG 
prediction in PCa and demonstrated the superiority of 
the ML approach over the clinical standard of bxGG 
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assessment. Furthermore, we developed a simplistic 
and interpretable diagnostic workflow, enabling a 
software-independent step-by-step procedure for the 
identification of high-risk patients instead of running 
the ML software. This makes validation and 
integration of the presented findings substantially 
easier since the repeatability and adaptability of ML 
models are major hurdles for the translation of 
ML-based software into clinical settings [51,52]. 

Numerous published multiomics studies in PCa 
aimed to guide clinical decision-making by directly 
inferring clinically relevant outcomes and parameters 
[53–56]. However, most of them focused on predictors 
from genomics, epigenomics, transcriptomics, and 
proteomics, omitting image-based predictors, which 
is problematic given that imaging features have been 
shown to be important for GS prediction [57–59]. This 
study addresses this gap by integrating not only 
PSMA PET radiomics with genomics features but also 
additional pathomics and clinical features. Thus, by 
leveraging diverse data sources, the ML model 
capitalized on comprehensive and complementary 
underlying information, facilitating more accurate GG 
assessment.  

Despite the slight decrease in SNS and NPV, the 
AUC, ACC, SPC, and PPV of the ML model were 
superior to those of needle biopsy. The increased 
specificity, in comparison with the current clinical 
standard, indicates that the ML model has the ability 
to identify low ISUP patients accurately, which is 
aligned with our goal to avoid unnecessary 
interventions. Also, the high PPV is indicative of our 
study’s reliability in identifying high-risk patients to 
provide timely and appropriate treatment. 

Despite a discrepancy between bxGG and 
whole-mount GG, bxISUP was among the most 
important features in our analysis. Especially when 
combining needle biopsy with additional features 
such as PSA, ML outperformed the current clinical 
standard of bxGG substantially. Additionally, our 
findings unveil that PSAmax as the most important 
feature in predicting whole-mount GG based on two 
importance measurement algorithms. PSAmax 
represents the maximum H-score of the tumor tissue 
in needle biopsy and our results denote the more 
aggressive PCa is, the less PSA the tumor tissue 
expresses. This is consistent with the study that also 
explored the correlation between PSA H-scores and 
GG using TMA slides [60]. In line with other 
investigations [61], our study identified the first-order 
radiomics feature Maximum as an important feature 
in GG prediction. This is because this histogram- 
based feature, similar to the conventional SUVmax, 
manifests the highest uptake of 68Ga-PSMA-11. 

Of note, our ML model provides a simplified 

surrogate diagnostic workflow by combining the 
radiomics feature GLCM_Joint Energy, PSAmax_IHC, 
and ISUP in needle biopsy. Following the 
corresponding decision tree, urologists can select 
appropriate candidates for RP, which has the 
potential to revolutionize the diagnostic workflow of 
PCa. In addition to the two previously mentioned 
common features, the decision tree also includes 
GLCM_Joint Energy, a radiomics feature indicative of 
homogeneous patterns within PCa lesions. The lower 
Energy value means more heterogeneity within the 
tumor. Our results demonstrate that PCa with higher 
GG is more heterogeneous, as previously suggested 
by a study that identified the transcriptomic 
heterogeneity of GG 5 groups in a large dataset [62]. 

Despite the promising results, our study still has 
several limitations. First, due to its design as a 
retrospective multiomics study, not all the required 
parameters were available in some patients, resulting 
in a relatively small number of subjects for analysis. 
Second, due to the complexity and unique nature of 
our study, incorporating an independent validation 
cohort from another center poses significant 
challenges, particularly in the retrospective collection 
of high-dimensional datasets that are consistent with 
the ones used in our study. However, to ensure the 
robustness and validity of our findings, employed a 
rigorous 100-fold Monte Carlo cross-validation 
scheme, which enhanced the robustness, 
generalizability, and reduced bias of our study. Third, 
ML models in medical imaging, specifically in nuclear 
medicine, are known to suffer from center-specific 
variabilities, reducing the reproducibility of radiomics 
features [63–65]. Consequently, external validation is 
needed to verify the reliability of the developed 
approach in the future. 

In conclusion, the presented multiomics ML 
model poses a promising advance in GG assessment 
for the improved stratification of PCa patients for RP. 
Our findings have the potential to substantially 
impact clinical decision-making and personalized 
management of PCa patients. 

Supplementary Material  
Supplementary materials, figures and tables. 
https://www.thno.org/v14p4570s1.pdf  
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