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Abstract 

The utilization of extracellular vesicles (EVs) in wound healing has been well-documented. However, 
the direct administration of free EVs via subcutaneous injection at wound sites may result in the 
rapid dissipation of bioactive components and diminished therapeutic efficacy. Functionalized 
hydrogels provide effective protection, as well as ensure the sustained release and bioactivity of EVs 
during the wound healing process, making them an ideal candidate material for delivering EVs. In this 
review, we introduce the mechanisms by which EVs accelerate wound healing, and then elaborate 
on the construction strategies for engineered EVs. Subsequently, we discuss the synthesis strategies 
and application of hydrogels as delivery systems for the sustained release of EVs to enhance 
complicated wound healing. Furthermore, in the face of complicated wounds, functionalized 
hydrogels with specific wound microenvironment regulation capabilities, such as antimicrobial, 
anti-inflammatory, and immune regulation, used for loading engineered EVs, provide potential 
approaches to addressing these healing challenges. Ultimately, we deliberate on potential future 
trajectories and outlooks, offering a fresh viewpoint on the advancement of artificial intelligence 
(AI)-energized materials and 3D bio-printed multifunctional hydrogel-based engineered EVs delivery 
dressings for biomedical applications. 
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Introduction 
Wound healing involves four overlapping 

biological events, namely, hemostasis, inflammation, 
proliferation, and remodeling [1, 2]. Most wounds can 
heal properly, however, in cases of severe conditions 
such as burns, diabetes, infections, and others, the 
process of wound healing can be significantly delayed 
or even fail, causing a large medical burden and 
decreased quality of life for patients [3, 4]. However, 
traditional debridement, infection treatment and 
dressing lack individualized designs for pathological 
wound microenvironments, making it difficult to 

solve pathophysiological problems in complicated 
wound healing, and eventually leading to wound 
healing obstacles. For example, traditional therapies 
struggle to consistently control excessive inflam-
mation, reactive oxygen species overproduction, 
bacterial infections, and impaired angiogenesis within 
the diabetic microenvironment. Therefore, there is an 
urgent need for new means to address this issue. 

Extracellular vehicles (EVs) are small, 
membranous particles are produced by almost all cell 
types to facilitate communication between cells [5, 6]. 
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These vesicles contain a wide array of signaling 
molecules derived from their parent cells, including 
proteins, enzymes, cytokines, nucleic acids, lipids, 
metabolites, and cell surface receptors [7-9]. Mounting 
evidence suggests that in addition to transporting 
these cargos to recipient cells for intercellular 
communication, EVs may also play crucial roles in 
processes such as cell differentiation, proliferation, 
angiogenesis, oxidative stress response, and immune 
signaling [10-12]. One notable characteristic of EVs is 
their natural biocompatibility, circulation stability, 
low toxicity and immunogenicity, making them 
optimal candidates for therapeutic applications in 
regenerative medicine. Moreover, their efficiency in 
delivering molecular cargos further enhances their 
potential as valuable tools for developing novel 
therapies [13-16]. As the understanding of EVs 
continues to grow, their significance in biomedical 
applications is becoming increasingly apparent. In 
recent years, the use of EVs in the field of wound 
healing has garnered increasing interest. Studies have 
focused on the composition of EVs and their ability to 
reduce inflammation, regulate the extracellular matrix 
(ECM), and promote angiogenesis when applied to 
skin wounds [17]. The wound healing process is a 
multi-tissue coordinated pathophysiological process 
involving multiple tissues, usually involving hemo-
stasis, inflammation, proliferation, and remodeling 
[18]. EVs mediate signal transduction in all stages of 
physiological healing of skin wounds, with platelet 
and monocyte-derived EVs regulating clot formation 
to achieve hemostasis; neutrophil-derived EVs regu-
lating inflammation, macrophages and endothelial 
progenitor cell-derived EVs driving angiogenesis, and 
myofibroblast-derived EVs remodeling the ECM [19, 
20]. Overall, the use of EVs promotes skin 
regeneration in both diabetic and nondiabetic wounds 
and affects all aspects of the healing process.  

However, the clinical application of EVs is 
hindered by various challenges, such as their reduced 
bioavailability and susceptibility to environmental 
factors. The traditional application method of EVs 
involves subcutaneous injection at the wound edge, 
which may inflict secondary harm on the wound, 
leading to pain and even further tissue damage. In 
addition, using EVs directly as wound dressings can 
result in rapid clearance of bioactive substances and 
limited efficacy [21, 22]. When administered 
systemically via intravenous injection, EVs are 
quickly eliminated by the liver and spleen, leading to 
only approximately 1% of EVs remaining after 24 h. 
This limited bioavailability poses a significant 
obstacle to their therapeutic effectiveness [23, 24]. 
Furthermore, local administration of EVs presents its 
own set of limitations, as the EVs are rapidly 

eliminated after being transported to the surrounding 
tissues and capillaries. Repeated administration of 
EVs may delay the natural healing process by 
providing a continuous stimulus to the injured tissue. 
In addition, the accumulation of reactive oxygen 
species (ROS), variations in pH value and ionic 
components can also impact the stability of EVs, 
further complicating their clinical use [25]. To address 
the rapid clearance of EVs when administered 
intravenously, subcutaneously, or intraperitoneally, 
finding suitable biomaterials as vesicle release 
systems has become a major research focus for the 
successful translation of EVs-based therapies into 
clinical practice. 

To address these obstacles, there has been a 
growing focus on the use of three-dimensional (3D) 
materials, with hydrogels in particular garnering 
attention for their potential in promoting wound 
healing [26, 27]. Hydrogels, composed of 3D polymer 
networks, exhibit a high-water content, and they are 
designed to mimic the ECM with favorable 
biocompatibility and plasticity [28, 29]. Hydrogel 
dressings are anticipated to offer a range of beneficial 
functions for wound care, such as offering a moist 
wound environment, protection from secondary 
infections, absorption of excessive exudate, good air 
permeability and so on, thus accelerating the 
efficiency of wound healing [30-32]. Furthermore, as 
potential candidates for drug delivery systems, the 
release curves of encapsulated substances can be 
controlled by adjusting hydrogel properties, such as 
network morphology and crosslinking density, as 
well as hydrogel degradability [33-35]. Recently, 
several studies have shown that the encapsulation of 
EVs in hydrogel wound dressings can continuously 
release EVs during hydrogel biodegradation, thereby 
improving the bioactivity and therapeutic efficiency 
of EVs [36, 37]. Given these characteristics, hydrogels 
demonstrate significant promise as optimal wound 
dressings, because they create an environment 
conducive to healing and can also function as drug 
delivery systems, safeguarding and regulating the 
release of EVs. 

In this review, we discuss the strategy of 
hydrogels as delivery systems for sustained release of 
EVs to promote wound healing. Furthermore, in the 
face of complicated wounds, functionalized hydrogels 
with specific wound microenvironment regulation 
capabilities, such as antimicrobial, anti-inflammatory, 
and immune regulation, have been proposed for 
loading engineered EVs to address these healing 
challenges, thus providing a novel perspective for the 
study and development of engineered wound 
dressings. 
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Mechanism of EVs promoting wound 
healing 
Overview of EVs 

EVs are composed of lipid bilayers and wrapped 
in membranous particles ranging in diameter ranging 
from 30 nm to 10 µm. They are produced and released 
by almost all cell types, such as mesenchymal stem 
cells (MSCs), adipocytes, platelets, macrophages, 
umbilical vein endothelial cells, immune cells, and etc 
(Figure 1A), and can be found in nearly all bodily 
fluids, including blood, saliva, urine, cerebrospinal 
fluid, and milk [38-40]. The term EVs encompasses 
various types of vesicles released from cells through 
the well-established purification process (Figure 1B), 
including apoptotic bodies (diameter ranges from 
500 nm to 10 µm), which are large vesicles released 
from cells undergoing apoptosis; microvesicles 
(diameter ranges from 200 nm to 1.0 µm), which are 
shed from the plasma membrane; and exosomes 
(diameter ranges from 30 nm to 200 nm), which are 
generated within multivesicular bodies and 
subsequently released into the extracellular fluid 
upon fusion of these bodies with the plasma 

membrane [41, 42]. Initially, EVs were thought to be 
simply remnants of cellular debris or indicators of cell 
death, but further research has revealed that EVs are 
actually actively released by donor cells into the 
extracellular environment to perform a variety of 
important biological functions [43]. 

EVs are composed of the membranes and 
contents of their parent cells, resulting in a distinctive 
signature of macromolecules specific to the cell from 
which they originated [44-46]. A wide array of 
signaling molecules (including proteins, enzymes, 
cytokines, nucleic acids, lipids, metabolites, and cell 
surface receptors) derived from their parent cells, are 
found within and on the surface of EVs (Figure 1C) 
[44, 45]. When these macromolecules are released 
from EVs, they can trigger various responses in 
recipient cells, thus enabling them to perform a wide 
range of functions, including cell adhesion, 
proliferation, differentiation, angiogenesis, collagen 
deposition, and inflammation regulation (Figure 1D) 
[47-49]. This discovery has expanded our 
understanding of the significance and potential 
applications of EVs in accelerating wound healing. 

 

 
Scheme 1. Schematic diagram of multifunctional hydrogel-based engineered EVs delivery for enhancing complicated wound healing. 
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Figure 1. (A) EVs are derived from various cell types. (B) The production and purification process of EVs. (C) Various bioactive molecules carried on the surface and inside EVs. 
(D) EVs target specific cells and exert diverse biological functions. 

 

Wound healing process and its activated 
mechanism by EVs  

The process of wound repair typically involves 
four stages, including hemostasis, inflammation, 
proliferation, and remodeling (Figure 2A). The details 
are as follows [50-52]. (1) Hemostasis phase: In the 
case of skin injury, the first stage involves blood 
vessel constriction and fibrin clot formation, which 
prevent and protect the body from blood loss. (2) 
Inflammatory phase: After clotting, the body releases 
white blood cells and other chemicals to clear out 
infected and dead tissue, facilitating the proliferation 
of wound tissue. This stage lasts 4 to 6 days and is 
often accompanied by redness, swelling, fever, and 
pain. (3) Proliferation phase: This period lasts about 2 
to 24 days and can be divided into epithelial 
regeneration and granulation. The latter primarily 
involves the proliferation and differentiation of 
vascular endothelial cells and fibroblasts, as well as 
the development of new capillaries. These 
components work synergistically to form granulation 
tissue, which fills and covers wounds, ultimately 
leading to the formation of scars. (4) Remodeling (or 
maturation) phase: This period primarily involves the 
remodeling of scars. Following the repair process the 
wound achieves initial healing. Over time, the scar 
tissue, scabs, etc., gradually remodel to restore tissue 

integrity and physiological function, and eventually 
the appearance and function of the injured site are 
improved, which can generally last 21 days to 1 year.  

These four intricate biological processes 
encompass a staggered timeline for the proliferation 
and differentiation of various cell types. EVs are 
believed to be involved in almost all processes of 
wound healing. The function of EVs in the wound 
healing process is evident in their ability to expedite 
the process of wound clotting; regulate the 
polarization of macrophages to anti-inflammatory 
phenotype; induce the migration, proliferation, and 
differentiation of skin associated cells (e.g., 
keratinocytes, vascular endothelial cells, and 
fibroblasts); remold the ECM; and exhibit anti-aging 
and anti-scarring effects (Figure 2B) [53]. The specific 
details can be outlined as follows.  

(1) Hemostasis phase: Due to the elevated levels 
of phosphatidylserine and tissue factor expression, 
EVs have a significant blood clotting effect on human 
blood and platelet-free plasma, thus reducing the 
duration of the clotting process and increasing the 
area of blood clots [54]. 

(2) Inflammatory phase: EVs are involved in 
promoting immunomodulatory effects, ameliorating 
inflammation, and producing a suitable wound 
healing environment. EVs have been found to have a 
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regulatory effect on oxidative stress and inflammatory 
response damage induced by hyperglycemia in 
diabetic models [55]. This regulatory effect may 
involve the induction of macrophage polarization to 
M2 phenotype and the reduction of pro-inflammatory 
cytokines such as interleukin (IL)-1, IL-6, tumor 
necrosis factor α (TNF-α), and interferon-γ (IFN-γ) 
[56].  

(3) Proliferation phase: In this phase, EVs can 
induce cell proliferation and angiogenesis to promote 
the healing process. Specifically, in the oxidative 
stress microenvironment simulated by hydrogen 

peroxide (H2O2), EVs improved the proliferation and 
migration of HaCaT cells, as well as inhibited 
apoptosis via the miR-93-3p/APAF1 pathway [57]. 
Previous observations indicated that EVs pretreated 
with DFO stimulated the PI3K/Akt signaling 
pathway by suppressing PTEN through the action of 
miR-126, which activated vascular generation in vitro 
[58]. Moreover, EVs elevated the S-phase fraction of 
fibroblasts and promoted their proliferation capacity, 
ultimately contributing to the process of skin 
regeneration [59]. 

 
 

 
Figure 2. (A) Four typical biological processes of wound healing. (B) Major events in each phase of EVs-induced wound healing. Adapted with permission [53]. Copyright © 2023, 
Springer Nature. 
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(4) Remodeling (or maturation) phase: EVs 
exhibit significant anti-aging and anti-scarring effects. 
EVs originating from adipose-derived mesenchymal 
stem cells (ADSCs) were able to suppress ROS 
accumulation and inflammatory cytokines, thus 
inhibiting the cellular senescence induced by high 
glucose levels [60]. This indicates that EVs have 
potential applications in preventing aging-related 
cellular damage in diabetic individuals. Furthermore, 
EVs have also been found to show a critical role in 
remodeling the ECM by reducing the differentiation 
of fibroblasts into myofibroblasts through the 
TGF-β2/Smad2 pathway, ultimately restraining scar 
formation and enhancing wound healing [53, 61].  

Construction of engineered EVs 
In the past decade, many EVs cargoes have been 

found to successfully promote the healing of various 
wounds [62, 63]. However, the clinical application of 
EVs in wound dressings still faces significant 
challenges. The reasons may include low EVs yield, 
insufficient concentrations of bioactive cargoes, 
limited targeting efficiency, decreased tissue repair 
ability, and restricted drug delivery capabilities of 
native EVs [64-66]. To enrich cargoes and improve the 
targeting efficiency of native EVs, engineered EVs 
have rapidly developed over the past decade, which is 
crucial for future clinical translation. In this chapter, 
we summarize three strategies for the construction of 
engineered EVs for tissue regeneration (Figure 3), 
namely, direct modification of EVs, chemical or 
physical treatment of parent cells, and genetic 
modification of parent cells. When constructing 

engineered EVs, the application scenario and mode of 
action should be fully considered, and the suitable 
construction mode for the engineered EVs should be 
selected. In the face of complicated application 
scenarios, the combination of multiple construction 
methods is also a strategy worth considering. 

Direct modification of EVs 
Direct modification of EVs involves the 

enhancement of their targeting ability by decorating 
surface proteins, or the improvement of their 
regulatory function by embellishing EVs cargos or 
exogenous bioactive molecules through physical 
methods such as electroporation or sonication [67, 68], 
or chemical methods such as the conjugation of 
peptides to the surface [69]. These approaches have 
been widely utilized to improve the targeting capacity 
and delivery efficiency of specific cargos to lesion 
regions in various diseases [70, 71]. For instance, Zha 
et al. utilized an electroporation strategy to 
encapsulate a plasmid containing vascular endothelial 
growth factor (VEGF) into EVs, and these engineered 
EVs possessed the remarkable capability to stimulate 
the regeneration of vascularized tissue on a 
substantial scale [72]. Sonication has emerged as an 
alternative method for loading hydrophilic molecules 
into EVs and has been shown to be significantly more 
efficient than electroporation [73]. Multiple studies 
have shown that the combination of bone 
morphogenetic protein-2 (BMP-2) protein and 
exosomes can be sonicated to create BMP-2-loaded 
EVs for tissue repair [74, 75]. 

 
 

 
Figure 3. Schematic diagram illustrating the three main strategies for the construction of engineered EVs. 
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Direct modifications of EVs include surface 
modifications and internal modifications. Surface 
modifications can be designed to target specific 
cell-surface receptors on membranes, allowing for 
targeted delivery to specific organs, tissues, and cells. 
Additionally, internal modifications can be used to 
modify the cargo structures within EVs [76]. The 
cargo properties can be classified into four categories: 
(1) small molecule drugs such as curcumin and 
adriamycin; (2) nucleic acids such as miRNAs, 
siRNAs, lncRNAs, and CRISPR/Cas9; (3) proteins; 
and (4) nanoparticles. Please refer to the previous 
review for more details [53]. In summary, these 
modifications play a crucial role in engineering EVs 
for precision medicine and targeted drug delivery. 

Chemical or physical modification of parent 
cells 

EVs, which originate from parent cells, exhibit 
biochemical and physiological alterations of their 
progenitor cells. Researches have demonstrated that 
pretreatment of parent cells using a variety of 
methods such as pharmacological agents, chemical 
reagents, metal ions, cytokines, hypoxia, static 
magnetic fields, and physical factors can enhance the 
function of stem cells [77-79]. This finding indicates 
the potential for manipulating stem cells to improve 
the therapeutic efficacy of EVs-based treatments. 

For chemical processing to prepare engineered 
EVs, chemical reagents and metal ions serve as two 
primary treatment methods. Here, growing 
progenitor cells in differentiation induced medium is 
the most commonly used strategy. For example, the 
engineered EVs isolated from BMSCs after osteogenic 
induction culture enhanced bone regeneration ability 
and induced rapid start of bone healing [80, 81]. In 
addition to the induced differentiation medium, 
various other chemical agents, such as TNF-α [82], 
short peptide [83], dimethyloxalylglycine [84], and 
parathyroid hormone [85], have also been utilized in 
the production of engineered EVs for enhancing tissue 
repair. In addition, pretreatment with metal ions such 
as strontium-substituted calcium silicate ceramics and 
titania nanotubes in parent cells could increase the 
capacity of EVs to accelerate osteogenesis and 
angiogenesis [86, 87]. In addition, a series of physical 
modifications of progenitor cells can also be used to 
prepare engineered EVs. For example, hypoxic 
pre-conditioning of MSCs-derived EVs promoted 
cartilage regeneration by the miR-205-5p/PTEN/AKT 
pathway [88]. Parent cells acceptance of mechanically 
strain-derived exosomes can promote stem cell 
proliferation [89]. To overcome the issue of low yield, 
an extrusion approach was used to prepare exosome 
mimetics from MSCs [90]. In addition, magnetic 

nanoparticles and static magnetic fields stimulate 
MSCs to release miR-1260a-rich EVs, which promote 
osteogenesis and angiogenesis [91]. 

Based on the studies mentioned above, it has 
been established that pre-treated parent cells with 
chemical or physical methods is an efficient way to 
generate engineered EVs that can aid in tissue repair. 
Notably, the effectiveness of these engineered EVs is 
largely dependent on the cargos they carry. As such, a 
promising strategy for enhancing the functionality of 
these EVs is to modify the nucleic acid sequence of the 
parent cells to generate EVs with specific bioactive 
cargos. This alternative approach will be further 
discussed in the following sections. 

Genetic modification of parent cells 
As molecular biology technology continues to 

progress, gene editing has emerged as a pivotal 
methodology in molecular research. By manipulating 
specific genes in parent cells, it is feasible to engineer 
EVs that contain additional or entirely novel bioactive 
molecules. This approach holds great promise for the 
creation of EVs tailored to specific therapeutic or 
diagnostic needs. The cargos, including miRNAs, 
siRNAs, lncRNAs, mRNAs, and proteins, which play 
a fundamental role in the function of EVs, contribute 
to the promotion of tissue repair and regeneration. 
This discovery has inspired researchers to explore the 
potential of creating engineered EVs through genetic 
modification of the parent cells.  

To up-regulate the expression of miRNAs, Wang 
et al. utilized lentivirus transfection to modify BMSCs 
to acquire EVs overexpressing miR-140-3p, and 
demonstrated that this process has the capacity to 
induce osteogenic differentiation of MSCs and 
facilitate the healing of bone defects [92]. In addition, 
mRNA editing has emerged as a crucial focal point of 
this strategy. For instance, Li et al. introduced mutated 
hypoxia-inducible factor-1α (HIF-1α) into BMSCs via 
adenovirus transfection, and the results indicated that 
the mutant protein was significantly expressed in 
BMSCs-derived EVs, which led to a substantial 
increase in angiogenesis and tissue regeneration [93]. 
This finding suggests the potential for utilizing 
engineered EVs as a tool for promoting wound 
healing and regeneration through genetic 
modification approaches. 

Synthesis strategies of EVs combined 
with hydrogels 

Although modification strategies have been used 
to address some shortcomings of EVs, they are limited 
by several inherent physical limitations that hinder 
their widespread application in nanomedicine. 
Similar to synthetic nanocarriers, local administration 
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of EVs is quickly eliminated by the body or 
surrounding tissue upon application [94]. To address 
the rapid clearance of locally administered EVs, 
finding suitable biomaterials for localized retention of 
vesicles and their controlled release systems has 
become a major research focus for the successful 
translation of EV-based therapies into clinical 
practice.  

To accommodate the diverse wound 
microenvironments, as well as to obtain sustained 
release profiles of EVs and realize desired therapeutic 
requirements, numerous researches have been 
undertaken to merge EVs with hydrogels to enhance 
the healing process of various wounds [95]. EVs 
release can be controlled by hydrogel properties, such 
as network morphology and crosslinking density, as 
well as hydrogel degradability [96]. EVs encapsulated 
in the hydrogels can be continuously released during 
the biodegradation of hydrogels, thereby increasing 
the bioactivity and therapeutic efficiency of EVs [97, 
98]. For example, the release profiles of EVs 
encapsulated in a biodegradable polyethylene glycol 
(PEG) hydrogel can be adjusted between 6 to 27 days. 
Upon release from hydrogels, EVs well retain their 
physicochemical properties and biological functions 
[99]. 

The efficacy of binding techniques is 
significantly influenced by the method through which 
hydrogels are crosslinked to generate scaffolds and 
the timing of the integration of EVs with precursor 
materials or fully developed hydrogels [100]. In 
Figure 4 summarizes the synthesis strategies of EVs in 
combination with hydrogels to accelerate wound 
healing.  

Combining EVs after crosslink 
This technique, known as the “breathing” 

method, involves the initial crosslinking of raw 
materials for hydrogels, followed by the introduction 
of EVs [101]. To be specific, this is achieved by 
dehydrating the hydrogels to create pores. And then, 
these porous hydrogels are immersed in the EVs 
contained solution. During the subsequent swelling 
process of the hydrogels, the EVs become integrated 
or ‘composited’ within the hydrogel matrix. This 
approach enables the effective incorporation of EVs 
within the hydrogel structure, facilitating their 
utilization and delivery in subsequent applications. 
For example, Han et al. crosslinked raw materials by 
ultraviolet radiation to prepare an N-acryloyl 
glycinamide/gelatin methacryloyl (GelMA)/ 
liponite/glycerol hydrogel, and then introduced the 
periosteum-derived EVs solution into the hydrogel as 
a dressing for diabetic wounds [102]. In addition, 
platelet-rich plasma (PRP)-derived EVs were 
absorbed by cross-linked chitosan/silk hydrogels and 
found that it effectively enhanced collagen deposition 
and angiogenesis, thus accelerating the healing of 
diabetic wounds [103].  

Although the method is relatively 
straightforward, it has several drawbacks. A 
significant hurdle encountered in the field of 
hydrogels is ensuring that their pore size is adequate 
for the absorption of EVs; however, overlarge pore 
size leads to the rapid release of EVs, resulting in a 
loss of sustained release capacity [104]. Consequently, 
careful pre-design of composite hydrogels is crucial to 
ensure optimal release results. 

 

 
Figure 4. Schematic diagram illustrating the synthesis strategies of EVs combined with hydrogels for accelerating wound healing. 
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Crosslink after combining EVs 
In this strategy, the EVs solutions are first mixed 

with the hydrogel precursors, and subsequently 
crosslinked with the crosslinking agents or without 
agents. This strategy ensures minimal loss of EVs 
during the preparation of composite hydrogel 
dressings, while simultaneously providing precise 
control over the total amount and proportion of EVs 
and hydrogels. Additionally, it provides the flexibility 
to prepare smaller apertures, helping to increase the 
total amount of EV packaging [100]. For crosslinking 
by agents, the addition of transglutaminase (TGase) as 
a crosslinker to the EVs and type III collagen solution 
resulted in crosslinking of the mixture. TGase 
effectively enhanced the adhesion of EVs to the 
surface of collagen, ultimately extending the release 
profiles of EVs within the collagen hydrogel [105]. The 
crosslinking of hydrogel precursors and EVs without 
agents involves adjusting certain physical conditions, 
such as temperature and pH value, to promote 
crosslinking [99, 106]. 

As the hydrogels swell and degrade, controlled 
release profiles of EVs occurs. However, certain 
crosslinking methods, such as exposure to ultraviolet 
radiation or the application of specific crosslinking 
agents, may have side effects on the bioactivity of 
EVs. Therefore, in-depth consideration is required 
when determining the crosslinking conditions to 
ensure optimal EVs release and function. 

Crosslink in situ 
This strategy is similar to the method of 

“crosslinking after combining EVs”. However, in this 
particular approach, hydrogels need to possess 
distinctive attributes such as injectability or 
thermosensitivity, enabling them to undergo in-situ 
crosslinking and gelation. This transformation allows 
them to conformably adapt to the contours of the 
wounds, ensuring optimal coverage and filling. This 
approach allows the hydrogel to conform seamlessly 
to the unique shape and contours of the wound, 
providing an optimal healing environment. In this 
section, crosslinking in situ is achieved through 
separation of raw materials, temperature control, and 
shear thinning. 

Crosslink in situ through separation of raw materials 
In this way, in situ crosslinking is carried out by 

first mixing two or more hydrogel precursor materials 
with EVs individually. This mixing ensures that the 
EVs are uniformly distributed within the hydrogel 
precursors. Subsequently, the mixed solutions are 
simultaneously injected into the wound site, where 
crosslinking and gelation processes commence 
spontaneously on the wound surface. For instance, by 

combining two precursor materials, hydrazide- 
grafted hyaluronic acid (HAh) and aldehyde-grafted 
HA (HAa), with the EVs solution, the formation of 
composite hydrogel was observed followed by in situ 
injection through a dual-chamber syringe, owing to 
the Schiff base reaction between the hydrazides of 
HAh and the aldehydes of HAaq [107]. This novel in 
situ injectable hydrogel was introduced to greatly 
improve the diabetic wound healing. 

Crosslink in situ through temperature control 
To facilitate in situ cross-linking via temperature 

regulation, a mixture of temperature-responsive 
hydrogel precursors and EVs is applied directly onto 
the wound surface. This method offers significant 
advantages compared to traditional wound treatment 
methods, as it allows for precise delivery of 
therapeutic agents directly to the affected area, while 
also realizing convenient administration and 
automatic gelation at physiological temperature. 
Temperature-sensitive hydrogels, such as Pluronic 
F127, have attracted significant interest in the field of 
wound healing and tissue regeneration owing to their 
exceptional characteristics, such as sensitivity to 
temperature, biodegradability, injectability, and 
capacity to maintain a moist environment for wounds 
[108]. For example, Zhou et al. employed Pluronic 
F-127 hydrogel to encapsulate ADSCs-EVs for topical 
administration to a full-thickness cutaneous wound. 
After fine-tuning the concentration parameters of the 
precursor solutions, the hydrogel formed in about 17 s 
at 37 ℃ (the physiological temperature of the wound) 
[109]. This versatile biomaterial construction strategy 
holds great promise for advancing the development 
of efficient wound healing therapies. 

Crosslink in situ through shear thinning 
In this way, hydrogels should have 

shear-thinning characteristics to undergo in situ 
crosslinking through shear forces, which provides an 
alternative method for in situ gelling after local 
injection [110, 111]. When no force is applied, the 
structure of the hydrogel network is stabilized by 
non-covalent interactions. Owing to the reversible 
and dynamic interactions, the crosslinked networks 
were destroyed under shear force, resulting in the 
liquefaction of the hydrogel. However, the materials 
can quickly return to their gel state after the external 
forces are relieved [112, 113]. Therefore, these 
hydrogels prepared in advance in vitro undergo 
solid-liquid transformation under the action of 
injection force, and then achieve rapid in-situ gelation 
after injection into the wound. Due to the amino 
groups in the grafted polyethylene and the aldehydes 
in the aldehyde pullulan, the Pluronic F127-based 
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hydrogel possessed a shear-thinning ability via 
hydrogen bonding and Schiff base reactions with the 
wounds [114]. Hence, the combination of EVs with 
this composite hydrogel enabled the formulation to be 
easily administered through a syringe directly to the 
wound region, ensuring well fit to the size and shape 
of the injured area. 

Multifunctional hydrogel-based 
engineered EVs delivery for complicated 
wounds 

With the use of hydrogels as a sustained drug 
release system, combined with EVs treatment, most 
wounds can be successfully healed [115-117]. 
However, when serious conditions such as chronic 
diabetic wounds and infected wounds occur, the 
healing process may be delayed or even blocked. At 
this time, the strategy of delivering EVs via traditional 
hydrogels may not achieve satisfactory healing results 
in these cases. Therefore, the design of functionalized 
hydrogels with specific wound microenvironment 
regulatory capabilities, such as antioxidant, anti- 
inflammatory, immunoregulatory and antibacterial 
effects, for loading modified engineered EVs may be a 
potential approach to address the challenge of these 
complicated wounds. Here, taking diabetic wounds, 
infected wounds, burn wounds, and scar wounds as 
examples, we describe the ues of multifunctional 
hydrogel-loaded engineered EVs to promote wound 
healing, thus paving the way for the design and 
application of this novel wound dressing. 

Diabetic wounds 
Diabetic foot ulcers (DFUs) are a prevalent and 

significant complication of diabetes, affecting as many 
as 25% of individuals living with the disease and 
presenting a high risk of persistent pain, delayed 
wound healing, amputation, and even early death 
[118]. Diabetic patients have impaired glucose 
metabolism leading to a high blood glucose state, 
which blocks all phases of healing. High blood 
glucose can disrupt a series of biological responses, 
including inhibiting the migration, proliferation, and 
differentiation of skin cells at the wound regions as 
well as the production of pro-healing factors, 
promoting the sustained secretion of pro- 
inflammatory cytokines, ROS accumulation, oxidative 
stress, immune response disorders, and angiogenesis 
obstruction, thus delaying the wound healing process 
[119]. Moreover, the harsh diabetic microenvironment 
not only presents obstacles in maintaining adequate 
activity and function of EVs, but also hinders their 
effective targeting and sustained release in the context 
of wound repair. Currently, the focus of diabetic 
wound treatment is to create an optimal local 

microenvironment that promotes and supports the 
healing process [120]. Therefore, designing function-
alized hydrogels to modulate excessive inflammation, 
dysregulated metabolic activity, and macrophage 
polarization in the DFUs microenvironment, and 
deliver engineered EVs, may be a potential strategy 
for promoting DFUs healing. 

miRNAs, which are carried in EVs, can inhibit 
the expression of target genes by binding to the 3′ 
untranslated regions of mRNAs after transcription 
[121]. Studies have indicated that overexpression of 
miR-17-5p can protect endothelial cell damage 
induced by high glucose (HG) [122], enhance the 
angiogenesis of endothelial cells [123, 124], and play a 
protective role in fibroblasts [125]. Therefore, Wei et al. 
fabricated miR-17-5p-engineered EVs and then loaded 
them in a GelMA hydrogel. This novel bioactive 
wound dressing improved the biofunctions of 
HG-induced endothelial cells and fibroblasts by 
targeting p21 as well as phosphatase and tensin 
homolog (PTEN) in vitro, and effectively promoted 
DFUs healing by accelerating collagen deposition and 
blood vessel formation in vivo (Figure 5A) [126]. In 
addition, VH298 is a small-molecule compound 
reported by Ciulli et al. in 2016, which can serve as a 
stabilizer of HIF-1α [127]. The integration of 
VH298-loaded EVs into a porous GelMA hydrogel has 
the potential to significantly extend the retention time 
up to 15 days, thus promoting the healing of DFUs 
through HIF-1α-mediated angiogenesis (Figure 5B) 
[128]. Therefore, these GelMA hydrogels 
encapsulating engineered EVs as novel bioactive 
wound dressings offer an option for DFUs 
management. 

Unlike traditional polymers, deoxyribonucleic 
acid (DNA) stands out as a natural biopolymer 
material with exceptional precision in terms of 
customization. Its unique ability to precisely control 
the number and order of its units offers a powerful 
toolbox for creating materials with tailored properties 
and functionalities, holding great promise for future 
applications in diverse fields [129, 130]. To address the 
complicated pathological issues of diabetic wounds, 
e.g., failure to up-regulate pro-healing factors, 
formation of biological barriers, microangiopathy and 
cutaneous neuropathy caused by hyperglycemia and 
hypoxia environment, Zhou et al. prepared 
polypeptide DNA hydrogel microneedles (P-DNA gel 
MNs) to incorporated EVs extracted under hypoxia. 
This multifunctional hydrogel-loaded engineered EVs 
strategy can activate immune regulation, promote 
neurogenesis and angiogenesis, and accelerate DFUs 
healing with high quality by alleviating the wound 
microenvironment, scavenging free radicals, and 
alleviating inflammation (Figure 6A) [131]. Compared 
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with normoxia, the survival and proliferation of MSCs 
were significantly enhanced after hypoxia induction, 
and hypoxia-induced MSCs-derived EVs can inhibit 
inflammation and promote DFUs healing through the 
PI3K/AKT signaling pathway [132]. A 
multifunctional hydrogel with antibacterial and 
antioxidant abilities consisting of gallic acid 
(GA)-conjugated chitosan (Chi-GA) and partially 
oxidized hyaluronic acid (OHA) was designed as a 
vehicle for hypoxic BMSCs-derived EVs. The 
composite dressing relieved macrophage dysfunction 
during DFUs healing by inducing polarization toward 
M2 phenotype, possibly because the exosomal 
miR-4645-5p and the antioxidant ability of the 
hydrogel synergistically restrained SREBP2 activity in 
the macrophages (Figure 6B) [133]. 

In general, the use of miRNA-engineered EVs or 
hypoxia-pretreated MSCs-derived EVs combined 
with multifunctional hydrogels as bioactive dressings 
is an alternative strategy for improving wound 
healing and provides a reference for the basic 
mechanism of clinical transformation in managing 
DFUs. 

Infected wounds 
Wound infection poses a significant risk within 

the healthcare system. Opportunistic pathogens have 
the ability to invade, colonize, and proliferate in the 
wound region, leading to potential infection in a 
variety of wound types, such as burns and traumas 
[134-136] Bacterial infections can cause dramatic 
changes in the microenvironment around the wound, 
including increased levels of bacterial secretory 
enzymes and decreased microenvironment pH due to 
acidic metabolites [135]. Infected wounds can lead to a 
protracted healing process and, in severe cases, may 
result in complications such as magnified 
inflammation, septicemia, osteomyelitis, disability, 
and even death [137, 138]. Traditional pathways and 
the overuse of antibiotics have contributed to the 
increase in antibiotic resistance. The emergence of 
multidrug-resistant conditions is predicted to pose 
great challenges. Consequently, there is an urgent 
need to devise innovative drug delivery systems 
capable of regulating drug release within the target, 
ultimately mitigating antibiotic resistance.  

 

 
Figure 5. (A) The process of preparing miR-17-5p-engineered EVs loaded GelMA hydrogels and the regulatory mechanisms involved in promoting DFUs healing. Adapted with 
permission [126]. Copyright © 2024, John Wiley & Sons, Inc. (B) VH298-loaded EVs incorporated GelMA hydrogel induced DFUs healing via HIF-1α-mediated angiogenesis. 
Adapted with permission [128]. Copyright © 2022, Elsevier Ltd. 
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Figure 6. (A) Synthesis process and multifunctional properties of P-DNA gel MNs to incorporate EVs extracted under hypoxia for DFUs. Adapted with permission [131]. 
Copyright © 2023, John Wiley & Sons, Inc. (B) Hypoxic MSCs-derived EVs loaded multifunctional hydrogel accelerated DFUs healing by relieving macrophage dysfunction. 
Adapted with permission [133]. Copyright © 2024, John Wiley & Sons, Inc. 

 
Multifunctional hydrogels with inherent 

antimicrobial activity or antimicrobial delivery are 
considered as alternative strategies to overcome this 
address [139]. When using EVs to manage infected 
wounds, the development of smart hydrogel 
dressings that can achieve on-demand antibacterial 
properties has broad application prospects in the 
future. 

Driven by the great clinical need, Wang et al. 
designed a polysaccharide-based multifunctional 
hydrogel with thermosensitivity, injectability, 
self-healing properties, and adhesion to incorporate 
MSCs-derived nanoscale EVs through a reversible 
Schiff base reaction of electrostatic interactions. The 
composite dressing possessed sufficient antibacterial 
ability for multidrug-resistant bacteria, hemostatic 



Theranostics 2024, Vol. 14, Issue 11 
 

 
https://www.thno.org 

4210 

capacity, excellent UV-shielding property, and 
pH-responsive EVs release profiles, thus inducing 
wound healing (Figure 7A) [114]. Garlic-derived 
exosome-like nanovesicles (GELNs) not only have 
various biofunctions, such as anti-inflammatory and 
anti-antibacterial effects, but also have an efficient 
capacity for cellular internalization as potential 
nanocarriers to deliver specific cargoes [140, 141]. 
Four methods (including freeze–thaw, sonication, 
electroporation, and incubation) were used for 
embedding vancomycin into GELNs to prepare 
engineered EVs (Van@EVs), which were then 
encapsulated them in a Pluronic F127-based 
thermosensitive and visible hydrogel dressing. This 
multifunctional hydrogel loaded with Van@EVs 
enabled efficient healing and direct visualization of S. 
aureus infected wounds (Figure 7B) [142]. 

To obtain higher quality EVs, 3D cell culture can 
achieve greater yields of EVs and better healing 
results than 2D cell culture [143]. Chitosan-grafted- 
dihydrocaffeic acid (CS-DA) and benzaldehyde- 
terminated Pluronic F127 (PF127-CHO) were 
combined by dynamic Schiff base bonding, and then 
fused tannic acid (TA) and 3D cultured MSCs-derived 

EVs. As a result, this composite dressing exerted 
various performance, such as antibacterial, tissue 
adhesive, hemostatic, anti-inflammatory, and 
antioxidant effects, to promote neovascularization 
and wound healing (Figure 8) [144]. TA has a large 
number of phenolic hydroxyl groups, which have 
been shown to hinder the synthesis of bacterial cell 
walls and disrupt the membrane structures. This 
disruption leads to altered permeability and results in 
the impairment of barrier function [145]. Furthermore, 
TA has the ability to suppress extracellular microbial 
enzymes, thus depriving microorganisms of essential 
substrates for growth and ultimately interrupting 
microbial metabolism by inhibiting oxidative 
phosphorylation, all of which contribute to its 
excellent antibacterial properties [146]. Due to the 
excellent antibacterial property of TA, the 
CS-DA/PF/TA/3D MSCs-EVs hydrogels show great 
potential in the management of infected wounds. 

In conclusion, endowing a composite system 
with superior antibacterial properties, whether 
through modification of EVs or optimization of 
hydrogel formulations, is a critical strategy for 
addressing the issue of infectious wound healing. 

 

 
Figure 7. (A) Illustration of the synthesis process of polysaccharide-based multifunctional hydrogels and nanoscale EVs-loaded wound dressings and their potential application 
in promoting infected wound healing. Adapted with permission [114]. Copyright © 2019, ACS Publications. (B) Scheme of the HRP&ABTS/Van@GELNs/F127 hydrogel for S. 
aureus infection visualization and management of the wound. Adapted with permission [142]. Copyright © 2024, ACS Publications. 
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Figure 8. Illustration of the preparation of CS-DA/PF/TA/3D MSCs-EVs hydrogel and its excellent antibacterial ability for wound treatment. Adapted with permission [144]. 
Copyright © 2023, Elsevier Ltd. 

 

Other complicated wounds 
In addition to diabetic wounds and infected 

wounds, multifunctional hydrogel-based engineered 
EVs delivery can also be applied to some other 
complicated wounds, such as burn wounds and scar 
wounds. ADSCs-EVs have shown great potential in 
regenerative medicine and have been shown to 
benefit wound repair, such as burns [147]. Zhu et al. 
designed a high-performance ADSCs-EVs sustained 
release hydrogel dressing for burn wound healing by 
loading 3D-printed microfiber culture-derived EVs in 
a highly biocompatible hyaluronic acid. Compared 
with conventional 2D plate culture (2D-EVs) and 
microcarrier culture (2.5D-EVs), 3D-printed 
microfiber culture promoted keratinocytes and 
human umbilical vein endothelial cells (HUVECs) 
proliferation and migration, as well as induced 
angiogenesis of HUVECs. Additionally, hydrogel- 
loaded 3D-EVs promoted burn wound healing to a 
greater extent than did 2D-Exos or 2.5D-Exos, 
enhancing the burn wound healing rate and inducing 
collagen remodeling [148]. To better control the 
infection and scarless healing in the burn wounds, as 
well as long-term preservation and activity 
maintenance of EVs, Yang et al. proposed the 
utilization of rapid freeze-dry-thaw macroporous 

hydrogels for the encapsulation of MSCs-EVs 
combined with an antimicrobial peptide coating. In 
the deep second-degree burn infection models, this 
composite dressing could effectively regulate the 
behaviors of various skin-related cells, thus inducing 
tissue repair and inhibiting scar formation [149]. 

For scarless skin healing, MSCs-EVs 
incorporated with biofunctional hydrogels exert 
immunomodulatory effects by driving macrophages 
toward an anti-inflammatory and anti-fibrotic (M2c) 
phenotype [150]. At present, the application of 
multifunctional hydrogel-based engineered EVs 
delivery is mainly focused on diabetic wounds and 
infected wounds, and there are few reports on the use 
of these materials to burn wounds and scar wounds. 
However, we believe that with the advancement of 
synthesis technology of multifunctional hydrogels 
and the development of engineered EVs preparation, 
this multifunctional hydrogel-based engineered EVs 
delivery strategy will have an increasing number of 
applications in burn wounds and scarless healing. 

Summary and Perspectives 
As discussed in this review, the strategy of 

multifunctional hydrogel-based engineered EVs 
delivery has been well demonstrated to promote the 
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repair of complicated wounds, including diabetic 
wounds, infected wounds, burn wounds, and scar 
wounds. Faced with these wounds, functionalized 
hydrogels with specific wound microenvironment 
regulatory capabilities, such as antimicrobial, 
anti-inflammatory, and immune regulation, used for 
loading engineered EVs, provide potential 
approaches for addressing these healing challenges. 
However, developing EVs-loaded hydrogel dressings 
still poses some potential obstacles: (1) EVs: 
standardized protocols for producing, extracting, 
modifying, and storing EVs need to ensure the 
stability and reliability of therapeutic EVs; (2) 
hydrogels: developing hydrogel formulations with 
better properties, such as optimized biocompatibility 
and release performance; and (3) synthesis strategies: 
improving preparation methods to decrease adverse 
effects on EVs and further optimize the properties of 
composite dressings to adapt to more personalized 
and customized clinical applications.  

Apart from ensuring consistent yield and batch 
quality, the process of producing and extracting EVs 
is still in the experimental stages and involves limited 
purification. The techniques of ultracentrifugation 
and differential centrifugation, which can achieve 
clinically acceptable purity, are hindered by high 
costs, lengthy processing times, and low yields [151]. 
Nevertheless, as technology continues to advance and 
equipment continues to evolve, it is anticipated that 
high-precision, high-throughput purification techno-
logies such as microfluidics and immunomagnetic 
bead techniques will emerge as the industry 
standards for EVs production and extraction. This 
shift could revolutionize the purification process for 
EVs in terms of efficiency and effectiveness [95]. The 
establishment of standardized processes is imperative 
for the utilization of EVs in wound treatment. When 
employed as a therapeutic delivery vehicle, different 
cultivation, extraction, and engineering modification 
procedures can impact EVs viability and introduce 
foreign contaminants into the products. Additionally, 
variations in characterization and counting strategies 
can affect the quality control of EVs [152]. Moreover, 
at present, composite hydrogels are usually used 
immediately after preparation, and related storage 
methods are lacking. Despite recent advancements in 
EVs research, there is still a deficiency in 
comprehensive understanding of EV functions and 
mechanisms, as well as the composition and 
characterization of EVs subgroups. Therefore, 
developing standardized protocols for the sourcing, 
collection, processing, extraction, characterization, 
and analysis of EVs is essential for mass production 
and clinical translational applications [153]. 

Another challenge that needs to be highlighted is 
how to explore hydrogel formulations with improved 
properties to better adapt to the complicated wound 
microenvironment and thus achieve better healing 
results. Artificial intelligence (AI) has the potential to 
revolutionize the design and preparation of hydrogels 
[154]. In terms of advantages, the AI approach can 
efficiently predict and optimize the composition and 
properties of hydrogels. Through the use of AI 
models, parameters can be automatically adjusted 
during the hydrogel preparation process to obtain the 
optimal formulations. This capability holds promise 
for streamlining the overall process and improving 
the quality and efficiency of hydrogel production 
[155, 156]. Specifically, the potential for AI to 
revolutionize the workflow of hydrogels as drug 
delivery vehicles has been highlighted by developing 
predictive models, algorithm optimization, and image 
processing and recognition. The use of AI has shown 
promise in accurately predicting hydrogel formation, 
optimizing hydrogel performance, and fine-tuning 
drug release profiles (Figure 9A) [157]. The AI 
algorithm predictive models can guide the 
preparation of novel long-acting injectable 
formulations effectively. Using this data-driven 
approach holds the potential to reduce time and costs 
associated with drug formulation exploitation (Figure 
9B) [158]. These advancements represent a significant 
step forward in the application of AI within the field 
of hydrogel-based drug delivery systems. 
Furthermore, AI has the capacity to substantially 
influence the utilization of composite hydrogel 
dressings. The image processing and recognition 
abilities of AI can automatically assess and diagnose 
the wound or lesion region, ultimately aiding in the 
identification of appropriate hydrogel dressings and 
preparation protocols (Figure 9C) [159]. In addition, 
AI has the potential to play a crucial role in enhancing 
the performance of hydrogels and their application in 
various environments. Through the use of sensor 
networks and data acquisition systems, it has become 
possible to monitor key parameters such as 
temperature, humidity, and pH value in real time. By 
integrating AI algorithms into this monitoring 
process, any deviations from the expected conditions 
can be swiftly identified, allowing timely 
interventions to safeguard the characteristics and 
stability of the hydrogels [160-163]. This approach has 
the potential to revolutionize the development and 
application of hydrogels in biomedical settings. In 
addition to AI-energized hydrogel manufacturing and 
optimization strategies, 3D printed multifunctional 
hydrogel-based engineered EVs systems are also 
considered suitable for more personalized and 
customized clinical applications.  



Theranostics 2024, Vol. 14, Issue 11 
 

 
https://www.thno.org 

4213 

 
Figure 9. (A) Through the application of AI strategies, the preparation of hydrogels as drug delivery systems has been improved in multiple stages. Adapted with permission 
[157]. Copyright © 2022, Elsevier Ltd. (B) Training and analysis of AI models to accelerate the manufacturing cycle of novel long-acting injectable systems. Adapted with 
permission [158]. Creative Commons CC BY license. (C) Schematic illustration of intelligent wound monitoring by multifunctional hydrogel dressings, such as wound recognition, 
real-time status supervising, and customized wound management. Adapted with permission [159]. Copyright © 2022, Elsevier Ltd. 

 
In the area of wound healing, 3D bio-printing 

provides a precise method for creating 
custom-shaped hydrogel materials that are 
specifically designed to match the contours of the 
wound. The versatility of 3D bio-printing method 
offers a potential strategy for optimizing the 
preparation process and properties of composite 
hydrogel dressings, facilitating controlled EVs 
delivery to accelerate wound healing efficiently 
[164-166].  

In summary, the use of multifunctional 
hydrogels loaded with engineered EVs is a promising 

approach for promoting wound healing. Moving 
forward, a more comprehensive understanding of the 
properties of EVs and hydrogels will greatly improve 
the efficacy of complicated wound healing. 
Furthermore, as technology continues to advance, the 
combination of AI-energized material design and 
high-precision 3D bio-printing technology will 
significantly improve the effectiveness of EVs-loaded 
hydrogels and expand their potential clinical use in 
complicated wounds. This advancement is 
anticipated to open up new possibilities for treating 
tissue damage and promoting regenerative medicine. 
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