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Abstract 

Background: Immunotherapy has demonstrated its potential to improve the prognosis of patients with 
hepatocellular carcinoma (HCC); however, patients’ responses to immunotherapy vary a lot. A comparative 
analysis of the tumor microenvironment (TME) in responders and non-responders is expected to unveil the 
mechanisms responsible for the immunotherapy resistance and provide potential treatment targets. 
Methods: We performed sequencing analyses using 10x Genomics technology on six HCC patients who 
responded to anti-PD-1 therapy and one HCC patient who did not respond. Additionally, we obtained single 
cell data from untreated, responsive, and nonresponsive HCC patients from public databases, and used part of 
the datasets as a validation cohort. These data were integrated using algorithms such as Harmony. An 
independent validation cohort was established. Furthermore, we performed spatial transcriptomic sequencing 
on the tumor adjacent tissues of three HCC responsive patients using 10x Genomics spatial transcriptomic 
technology. Additionally, we analyzed data about three HCC patients obtained from public databases. Finally, 
we validated our conclusions using immunofluorescence, flow cytometry, and in vivo experiments. 
Results: Our findings confirmed the presence of “immune barrier” partially accounting for the limited efficacy 
of immunotherapy. Our analysis revealed a significant increase in TREM2+ Macrophages among non-responsive 
patients expressing multiple immunosuppressive signals. anti-Csf1r monoclonal antibodies effectively 
eliminated these macrophages and augmented the therapeutic effects of anti-PD-1 therapy. TCR+ Macrophages 
possessed direct tumor-killing capabilities. IL1B+ cDC2 was the primary functional subtype of cDC2 cells. 
Absence of THEMIShi CD8+ T subtypes might diminish immunotherapeutic effects. Furthermore, CD8+ T cells 
entered a state of stress after anti-PD-1 treatment, which might be associated with CD8+ T cell exhaustion and 
senescence. 
Conclusions: The profiles of immune TMEs showed differences in HCC patients responsive, non-responsive 
and untreated. These differences might explain the discounted efficacy of immunotherapy in some HCC 
patients. The cells and molecules, which we found to carry unique capabilities, may be targeted to enhance 
immunotherapeutic outcomes in patients with HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is the third 

leading cause of cancer-related mortality [1], with a 
five-year survival rate nearing 18% [2]. 
Immunotherapy has transformed the landscape of 
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HCC treatments. In a double-blind, phase III trial, 
pembrolizumab, as a second-line treatment, 
significantly increases the median overall survival in 
patients with advanced HCC, compared to the 
placebo group; however, the objective response rate 
(ORR) is only 12.7% in the pembrolizumab group [3]. 
The outcomes achieved in the IMBrave150 study may 
herald an era of combination immunotherapy; 
nevertheless, the ORR remains at 30% in patients with 
unresectable advanced HCC [4]. Besides, a 
considerable proportion of HCC patients still exhibit 
suboptimal responses to immunotherapy, 
necessitating a comprehensive analysis of underlying 
cellular and molecular mechanisms. 

The suboptimal efficacy of immunotherapy can 
be attributed to several factors, including inadequate 
T cell infiltration and activation [5], low mutation 
burden [6], and presence of immunosuppressive cells 
in the microenvironment (TME) [7]. The infiltration 
and activation of CD8+ T cells within the TME are 
crucial determinants for the efficacy of 
immunotherapy in breast and oral cancers [8, 9]. The 
activation of intratumoral CD8+ T cells is influenced 
by various factors, particularly the level of 
conventional type 1 dendritic cells (cDC1s) that 
activate CD8+ T cells via antigen cross-presentation 
[10]. Studies have also highlighted the significant role 
of CCR7 negative cDC1s in promoting CD8+ T cell 
proliferation and activation [11]. In a recent research, 
one end of a monoclonal antibody is bound to the 
CLEC9A surface marker on cDC1s, while its other to 
PD-1 blocking antibodies; this approach draws cDC1s 
closer to activate CD8+ T cells, thereby stimulating a 
stronger anti-tumor activity [12]. Furthermore, the 
cDC2 subpopulation is a heterogeneous group with 
an unclear role in tumor development. Moreover, 
mregDCs exhibiting high LAMP3 expression and 
plasmacytoid dendritic cells (pDCs) in tumors have 
been recognized. In tumors, an immunosuppressive 
TME can be established by such cells as 
tumor-associated macrophages (TAMs), cancer- 
associated fibroblasts (CAFs), neutrophils, and 
regulatory T cells (Tregs) [10, 13, 14]. Researchers 
have discovered that CD8+T cells and CD163- Arg1hi 
macrophages are spatially close in non-responders to 
PD-1 therapy, suggesting their impairment on PD-1 
efficacy [15]. In addition, spatial barriers within 
tumors significantly affect the effectiveness of 
immunotherapy. For example, SPP1+ Macrophages 
and CAFs collaborate to form a peripheral immune 
barrier that hinders the infiltration of CD8+ T cells. 
Interventions can be designed to facilitate the 
infiltration of T cells through this barrier, thus 
enhancing antitumor responses [16]. Previous factors 
have also discovered an array of factors contributing 

to suboptimal immunotherapeutic responses in HCC 
[17, 18]. However, the immune TMEs among 
responders, non-responders, and untreated patients 
remain to be further profiled.  

In this study, we employed single cell 
sequencing technology and integrated data from 
public databases to comprehensively characterize 
myeloid and T cells associated with anti-PD-1 therapy 
in HCC, thereby offering new insights into the 
mechanisms underlying inadequate treatment 
responses. 

Materials and Methods 
Human subjects 

This study enrolled 16 patients diagnosed with 
HCC at the Third Affiliated Hospital of Naval 
Medical University, and had obtained relevant ethical 
approval (registration number: EHBHKY2020-K-022). 
Before surgery, all patients were informed about the 
potential use of their pathological specimens for 
medical research, and all patients signed on informed 
consent forms. Before surgical intervention, three 
cycles of pembrolizumab were administered to all 
patients, and two associate chief physicians evaluated 
the treatment response based on the mRECIST 
criteria. Single-cell sequencing was conducted on the 
tumor, adjacent, and transition zone tissues from 
seven patients, and spatial transcriptomic analysis 
exclusively on transition zone tissues from three 
patients. Patients’ information is detailed in the 
supplementary Table S1 

Preparation of single cell and spatial 
transcriptomics samples 

Single-cell transcriptome samples were prepared 
using Chromium Single Cell 5' Reagent Kits V2 from 
10x Genomics, following the manufacturer's 
instructions. The libraries were then sequenced. Cells 
from each patient were washed once with PBS 
containing bovine serum albumin (BSA) and 
resuspended in PBS containing 0.04% BSA at a final 
concentration of 500 to 1200 cells/mL. 
Approximately, 6000 to 10000 cells were captured 
using a cell counter to form nanogramme-scale GEMs. 
Reverse transcription was performed using a C1000 
Touch Thermal Cycler (Bio-Rad) with the following 
program: incubation at 53 °C for 45 min followed by 
denaturation at 85 °C for 5 min and cooling to 4 °C. 
After completion of reverse transcription and cell 
barcoding steps, emulsion breakage was performed, 
and cDNA was purified using a Cleanup Mix 
comprising DynaBeads and SPRIselect Reagents 
(Thermo Fisher Scientific). Subsequent PCR 
amplification was conducted, in which amplified 
cDNA underwent fragmentation, end-repairing, and 
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size-selection before PCR amplification using sample 
indexing primers. The PCR products generated 
during enrichment underwent further fragmentation, 
end-repair, and size selection, followed by another 
round of PCR amplification using sample indexing 
primers for a second time. Finally, libraries were 
prepared according to the manufacturer’s 
instructions, and subjected to quality assessment and 
purification before sequencing. 

Single cell data quality control 
To ensure the reliability of the data, we initially 

employed the DoubletFinder software to eliminate 
doublet cells. Subsequently, we utilized the 
PercentageFeatureSet function to quantify 
mitochondrial genes in each cell, only retaining cells 
with a percentage of mitochondrial genes (percent. 
mt) below 10%. 

Sc-RNA dimension reduction, clustering, and 
subtype identification 

After data normalization, the 
FindVariableFeatures function was used to identify 
the top 2000 genes exhibiting the highest variability 
for subsequent principal component analysis (PCA). 
The RunHarmony function was employed to correct 
batch effects arising from multiple datasets. by. vars 
parameter set to patient and dataset. Dimensionality 
was then reduced to 1-30 using the RunUMAP 
function, specifying 'Harmony' as the reduction 
method. Cells were clustered using the FindClusters 
function with a resolution of 0.5. Cell subpopulations 
were identified based on markers specific to various 
cell types (Figure 1D). 

Trajectory analysis 
Trajectory analysis of CD8+ T cells was 

performed using Monocle2 software (version 2.30.0). 
Differential gene expression (DGE) analysis was 
conducted using the Differential Gene Test function to 
identify significant genes (p-values < 0.01), which 
were then subjected to unsupervised cell ordering. 
Trajectory construction was completed following 
dimensionality reduction and default parameters for 
cell ordering. For other CD8+ and CD4+ T cells, 
trajectory analysis was performed using Monocle3 
(version 1.3.4). Two-dimensional mapping 
coordinates were obtained by replacing int. 
embedded with UMAP coordinates after data 
dimensionality reduction. 

Cell-cell interaction analysis using Cellchat and 
CellphoneDB 

Cell-cell communication was analyzed using the 
Cellchat and CellphoneDB, with p-values below 0.05 
to determine receptors and signaling pathways. All 

other parameters were set at their default values. 
Receptors and signaling pathways were visualized 
using built-in functions in Cellchat and ggplot2. 

Spatial transcriptomics analysis 
All spatial transcriptomic data were processed 

using the Load10X_Spatial function, followed by data 
normalization using the SCTransform function. 
Spatial region clustering was conducted using the 
FindClusters function. Feature gene analysis for each 
cluster was performed using the FindAllMarkers 
function. To plot the density of the co-expressed gene 
regions (Figure 2D), spatial coordinates from spatial 
transcriptomics data were replaced with 
two-dimensional coordinates obtained from UMAP 
dimensionality reduction. Plots were generated using 
the Plot_density function. 

Survival analysis 
Survival curves were plotted for patients in 

TCGA-LIHC and other cohorts using the Survival and 
Survminer R packages. In patient groups, the 
surv_cutpoint function was used to calculate the 
optimal cut-off values, which were then based on to 
subgroup the patients for survival curve plotting. 

Bulk RNA-seq analysis 
Bulk RNA-seq data used in this study were 

sourced from The Cancer Genome Atlas Liver 
Hepatocellular Carcinoma (TCGA-LIHC), Interna-
tional Cancer Genome Consortium-Liver Cancer 
(ICGC-LINC-JP), and GSE14520 (Gene Expression 
Omnibus). The data were subjected to TPM 
(Transcripts Per Million) normalization before 
downstream analyses, including survival analysis, 
gene set enrichment analysis, and other related 
analyses. 

Gene bubble plot 
Feature genes for subpopulations were 

calculated using the FindMarkers function and plots 
were generated using the ggplot2 R package. The Diff 
parameter for results from FindMarkers was 
calculated as follows: Diff = pct.1 - pct.2. 

Cell subpopulation similarity analysis 
After standard procedures were applied to the 

target cell subpopulation of the Seurat object, the 
FindTransferAnchors function was used to search for 
anchors, with cell subpopulations in the discovery 
queue as references. Similarity between the anchors 
was predicted using the TransferData function. 
Finally, the average similarity score for a single-cell 
subpopulation was calculated and used as the 
similarity score. More detailed methods could be 
consulted at PMID: 35325594, section “method”. 
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Figure 1. Single cell atlas of HCC samples responsive and non-responsive to PD-1 blockade. (A) Workflow of this study. (B) MRI images of patients with and 
without response to treatment. (C) Cell type maps for different response conditions. (D) Cell subgroups and their corresponding gene markers. (E) Box plots showing the 
proportions and statistics of various cell types in response and non-response patients in the GSE206325 cohort (Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001). (F) The proportion of cell types across different response types in tumor tissue with our cohort. (G) UMAP plot illustrating myeloid cell subpopulations. (H) UMAP plot 
showing NK/T cell subpopulations. 
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Figure 2. Spatial transcriptomic features of responsive and non-responsive HCC adjacent tissues. (A-C) Cell types and corresponding markers in patients P1, P6, 
and P8. (D) Distribution images of POSTN, TREM2, CD8A, GZMK, and PD-1 in the tumor margin of patients and density distribution maps of POSTN and TREM2 expression, 
indicating the presence of immune barriers in both responsive and non-responsive patients. (E) TREM2 and CD68 represent TREM2+ Macrophages, and POSTN represents 
POSTN+ CAFs). Multicolor immunofluorescence staining of the tumor margin in patient P8 further demonstrates the existence of immune barriers composed of TREM2+ 
Macrophages and POSTN+ CAFs in responsive patients. 
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Cell type propensity analysis 
We referred to previously published literature 

(PMID: 37248301) for cell types and their 
corresponding characteristic genes, and utilized the 
Aucell algorithm to profile individual cells based on 
the scores of these gene sets. Subsequently, we 
calculated the mean score of all the cells in one 
subgroup. The results were visualized using radar 
plots. Detailed information regarding the relevant 
gene sets are found in the Supplementary Files, 
specifically in Table S7 and Table S8. 

Flow cytometry data analysis and visualization 
Fresh surgical specimens were minced into 

rice-sized tissue pieces using scissors, followed by 
tissue dissociation according to instructions provided 
with the Human Tumor Dissociation Kit (Miltenyi 
Biotec #130-095-929). Subsequently, the dissociated 
single-cell suspension was filtered through a 40 μm 
mesh. Resultant single-cell suspension was incubated 
with antibodies at 4 °C using Live-Death (BD, 
Cat#564406), CD68 (INVITROGEN, Cat#2473661), 
TREM2 (RD, Cat#FAB17291A), and CD45 (BD, 
Cat#557659) for 30 min, centrifuged again at 500 g and 
resuspended in staining buffer before being loaded 
onto a flow cytometer. The acquired data were 
analyzed using FlowJo software. 

Multiplex immunofluorescence 
Multiplex immunofluorescence staining was 

performed using a PANO 7-plex IHC Kit (Panovue, 
Cat#0004100100). Primary antibodies were sequen-
tially applied, followed by incubation with 
horseradish peroxidase-conjugated secondary 
antibodies. Tyramide signal amplification (TSA) 
allowed the acquisition of multiple immuno-
fluorescent markers. After each TSA step, the slides 
were heated with a microwave. Following labelling 
with all human antigens, cell nuclei were stained with 
4,6-diamidino-2-phenylindole (DAPI). To obtain 
multispectral images, stained slides were scanned 
using the Mantra System (PerkinElmer). Fluorescence 
spectra were captured at 20 nm wavelength intervals 
from 420 to 680 nm under identical exposure periods. 
The scanned images were combined to construct a 
single-stacked image. The extracted images were 
further utilized to build the spectral library required 
for multispectral unmixing, using the InForm 
Software (SlideViewer). Related antibodies used in 
this study included TREM2 (RD, Cat#MAB17291), 
CD68 (abcam, Cat#ab289671), PanCK (abcam, 
Cat#ab234297), POSTN (proteintech, Cat#66491-1-lg), 
CD3 (abcam, Cat#ab16669), CLEC10A (abcam, 
Cat#ab315086), HSPA1B (proteintech, Cat#10995- 
1-AP), DPYD (proteintech, Cat#27662-1-AP), IL1B 
(proteintech, Cat#16806-1-AP) and THEMIS 

(proteintech, Cat#27415-1-AP). 

Animal experiments 
All animals used in this study were housed in an 

SPF environment. 
All the HCC mouse models used in this study 

were created using the Sleeping Beauty transposon 
system. The mice aged 5-6 weeks were injected with 
25 μg Nras, 25 μg c-Myc, and 2 μg Sleeping Beauty 
plasmid via high-pressure hydrodynamic injection 
from the tail vein. Liver cancer was allowed to 
spontaneously develop between weeks 10-11, during 
which drugs were administered. After treatment, the 
mice were sacrificed through dislocation of the 
cervical vertebrae, and the following parameters were 
compared between the experimental and control 
mice: the number of tumors in each mouse, the weight 
of the liver, and the liver-to-body weight ratio. The 
plasmid used in this study was provided by Professor 
Wang Lei’s research team at the Department of 
Gastroenterology, Nanjing University, Drum Tower 
Hospital, China. Wild-type mice were purchased from 
Suzhou Saiye Biological Experimental Animal Co., 
Ltd., and C57BL/6Smoc-Trem2em1Smoc (catalog number: 
NM-KO-190402 (https://www.modelorg.com/ 
portal/article/index/id/3555/post_type/3.html)) 
was purchased from Shanghai Southern Model 
Organisms Co., Ltd. 

The mouse was treated from week 7 after the 
model was established. anti-Csf1r monoclonal 
antibodies were administered at a dose of 400 μg/per 
mouse per injection, anti-PD-1 monoclonal antibodies 
at a dose of 200 μg/per mouse per injection, and 
isotype antibodies at a dose of 250 μg/per mouse per 
injection. The combined treatment group received 
anti-PD-1 monoclonal antibodies (200 μg/per mouse) 
plus anti-Csf1r monoclonal antibodies (400 μg/per 
mouse). The injection volume was set at 0.5 mL per 
mouse per injection. Antibodies were injected every 3 
days for a total of 7 times. AAV-Themis and 
scrambled short hairpin RNA (shRNA) were 
purchased from Jimin Biotech Co., Ltd. (Shanghai) 
Co., China). AAV was diluted in physiological saline 
to 1.5×1012 copies/mL, and for each mouse, every 0.1 
mL was injected via the tail vein daily for 12 
consecutive days. anti-PD-1 monoclonal antibodies 
(InVivoMab, Cat#BE0273), anti-Csf1r monoclonal 
antibodies (InVivoMab, Cat#BE0213), and mouse IgG 
antibodies (YEASEN, Cat#36111ES60) were used. 

Results 
Single cell atlas of HCC samples responsive 
and non-responsive to PD-1 blockade 

In this study, we constructed a high-resolution 
map at the single cell level to depict the heterogeneity 
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in the response and resistance of HCC toward 
anti-PD-1 therapy. Our conclusions were validated in 
independent cohorts and mouse experiments (Figure 
1A). Seven HCC patients were included. Their tumor, 
peritumoral (border), and adjacent non-tumor 
(normal) liver tissues were collected (Table S1). 
Among these patients, one exhibited resistance to 
PD-1 blockade, with inconsistent MRI results before 
and after treatment (Figure 1B). We employed the 10x 
Genomics single cell technology for comprehensive 
scRNA-seq analysis of 21 samples, and performed 
spatial transcriptomic analysis of three samples 
selected from these individuals. Owing to the limited 
number of responders in our cohort, we incorporated 
data sourced from publicly accessible databases, 
including scRNA-seq data from six patients and 
spatial transcriptomics data from three patients. Three 
untreated HCC cohorts were included as controls 
(Table S1). We delineated the single-cell landscape of 
the seven patients, and classified them into eight 
distinct cell types (Figure 1C, Figure S1A). The unique 
molecular features of each cell type were 
characterized (Figure 1D). Notably, patient 4 (P4), 
who exhibited resistance to treatment, demonstrated a 
proportion of epithelial cells exceeding 50% (Figure 
S1B-C). These epithelial cells primarily originated 
from the tumor and border regions (Figure S1D-E). 

Owing to the substantial disparity in patient 
numbers, we performed a statistical analysis of the 
proportions of different cell types using an 
independent dataset (GSE206325) (Figure S1F). Our 
findings revealed higher proportions of CD4+ T cells, 
dendritic cells (DCs), macrophages, stromal cells, and 
regulatory cells (Tregs) in non-response tumor tissues 
(Figure 1E). However, only DCs, stromal cells, and 
macrophages showed significant differences between 
responsive and non-responsive HCC tissues. Notably, 
the proportion of CD8+ T cells was significantly 
elevated in responsive HCC tissues, but did not 
exhibit similar patterns in normal tissue (Figure 1E). 
Our analogous analysis within our study cohort 
identified significant variations in the proportions of 
myeloid and NK/T cell types (Figure 1F). A 
remarkably low proportion of NK/T cells was 
observed in non-responsive patients (P4), both tumor 
and border tissues, compared to responsive patients; 
however, this proportion was similar to that observed 
in normal tissue (Figure S1E). Consequently, we 
analyzed myeloid and NK/T cells. As to myeloid 
cells, we characterized macrophages along with three 
distinct dendritic cell subtypes, two monocyte 
subtypes, and a unique neutrophil subtype (Figure 
1G), using specific markers (Figure S1G). The analysis 
of NK/T cells revealed two NK cell subtypes, three 
CD4+ T cell subtypes, seven CD8+ T cell subtypes, and 

one NKT cell subtype (Figure 1H, Figure S1H). 

Spatial transcriptomic features of responsive 
and non-responsive HCC adjacent tissues 

We performed spatial transcriptomic sequencing 
of HCC adjacent tissues obtained from three patients 
(Table S1). Additionally, we included the spatial 
transcriptomic data from three patients provided by 
Liu et al. [16] for secondary analysis. Among the six 
patients analyzed, four exhibited positive responses 
to anti-PD-1 therapy (P1, P6, P8, and P9T), whereas 
two were non-responders (P8T and P11T) (Figure 
2A-C; Figure S2A-C). Notably, significant hetero-
geneity was observed in the distribution of tumor cell 
types across different patients; however, normal 
hepatocytes were more concentrated (Figure S2D). 
These findings were further supported by a similarity 
analysis (Figure S2E). Interestingly, despite the 
interpatient heterogeneity in tumor cell distribution, 
two-layer structures were identified in tumor cells 
from patients P11T, P1, and P8. Further investigations 
are required to elucidate the mechanisms underlying 
these structures. 

As proposed by Liu et al., “immune barrier”, 
composed of SPP1+ Macrophages and CAFs, impedes 
T cell infiltration, thereby influencing the efficacy of 
immunotherapy [16]. In addition to spatial 
transcriptomics, other new methods like the spQSP 
have also shown that CD8+ T cells and macrophages 
are more closely distributed in HCC patients resistant 
to a combination of targeted treatment and 
immunotherapy [19]. TREM2 was predominantly 
expressed by macrophages and POSTN by CAFs, thus 
creating an immunosuppressive TME [20-23]. Using 
TREM2 and POSTN as markers (Figure 2D), we 
confirmed the existence of immune barriers in both 
responders and non-responders. Immunofluorescence 
staining of border tissues from patient P8 provided 
evidence supporting our observations (Figure 2E). 
Notably, two responsive patients (P6 and P9T) did not 
exhibit features of immune barriers. 

Further comparisons revealed significant 
difference in CD8+ T cell population between 
responsive and non-responsive patients. Responsive 
patients exhibited a significantly higher number of 
CD8+ T cells, with P8 showing a predominant 
distribution of CD8+ T cells within the tumor tissue, 
whereas P8T and P11T in the marginal regions. In 
contrast, CD8+ T cells in P1 were distributed within 
the immune cell reaction area, accompanied by the 
infiltration of some CD8+ T cells into the tumor 
interior. Overall, responsive patients demonstrated a 
higher abundance of CD8+ T cells, highlighting that 
the immunotherapeutic efficacy of anti-PD-1 therapy 
is influenced by various factors, including spatial 
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structure and the status (cold or hot) of tumors [24]. 

TREM2+ Macrophages represent a 
predominant immunosuppressive subset 
within the macrophage population 

Single cell technology has uncovered the pivotal 
role of myeloid cell subpopulations in the innate 

immunity [25]. Here, we analyzed the subpopulations 
of myeloid cells (Figure 1G). Neutrophils can be 
characterized by high expression of FCGR3B [26], one 
monocyte subpopulation by high expression of 
VCAN, EREG, and IL1B, and another by high 
expression of CDKN1C.  

 

 
Figure 3. TREM2+ Macrophages represent a predominant immunosuppressive subset within the macrophage population. UMAP plot illustrating 
subpopulations of macrophages in our cohort. (B) UMAP plot showing subpopulations of macrophages in different tissue sites. (C) Bar graph depicting the distribution of 
macrophage subgroups across different tissue types. (D) UMAP plot illustrating subpopulations of macrophages in the GSE206325 cohort. (E) Similarities between macrophage 
subpopulations in our cohort and the GSE206325 cohort. (F) Boxplot showing the distribution of macrophage subpopulation proportions in treatment response type and tissue 
type (Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (G) Multicolor immunofluorescence showing TCR+ Macrophages in HCC-mouse module tumor tissue. 
(H) Multicolor immunofluorescence showing TREM2+ Macrophages in human HCC tumor tissue. 
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Macrophages are marked by CD68, MRC1, and 
CD163 (Figure S3A) [25]. Moreover, investigations 
have revealed three DC types: DC1 cells expressing 
prominent CLEC9A, as the cDC1 subtype responsible 
for antigen presentation to CD8+ T lymphocytes; DC2 
cells characterized by increased expression of 
CLEC10A and FCGR1A, as the cDC2 subtype 
primarily interacting with CD4+ T cells; and an 
additional subpopulation marked by high LAMP3 
and CCR7 expression (Figure S3A) [25], capable of 
homing to lymph nodes that may be crucial for T 
lymphocyte activation within these nodes [27]. The 
proportion of macrophages increased gradually from 
the normal tissue, to the tumor boundary, and then to 
the core region, whereas the proportions of 
neutrophils, along with DC1, DC2, and CDKNIC+ 

monocytes, gradually decreased (Figure S3B, S3C). 
These alterations suggest that a flourish of 
macrophages coupled with a lack of DCs in the tumor 
tissue might contribute to tumor progression. 

Furthermore, we explored the heterogeneity in 
macrophages, which consist of six subpopulations, 
among samples (Figure 3A). Among them, the 
TREM2+ subpopulation was characterized by high 
expression of GPNMB, TREM2, ACP5, LGMN, and 
TIMP2 (Figure 4A, Figure S3D), and mainly 
distributed at the boundary and core region of the 
tumor (Figure 3B, Figure S3E). Furthermore, we 
conducted flow cytometry on tumor and adjacent 
non-tumor tissues from HCC patients, and the results 
showed that the density of TREM2+ subpopulation 
was higher in tumor tissues (Figure S3H). 
Immunofluorescence staining further confirmed the 
presence of TREM2+ Macrophages in both human and 
HCC mouse models (Figure 3H). We also identified a 
subpopulation of macrophages with T cell 
characteristics, namely TCR+ Macrophages, 
characterized by high expression of IFITM1, FYN, 
NKG7, CD3E, GZMK, and GZMA (Figure S3D, Figure 
4B). Furthermore, immunofluorescence staining 
confirmed the presence of this subpopulation in HCC 
tumor tissues (Figure 3G). To further investigate the 
robustness of these cell subpopulations, we divided 
the macrophages from the validation cohort into 10 
subpopulations (Figure 3D), and reanalyzed the 
similarity of macrophages between the two 
independent cohorts using the anchor point algorithm 
proposed by Ramos et al. [28]. Our findings suggested 
that the density of TREM2+ Macrophages 
subpopulation in our study cohort, as well as the 
expression patterns of TREM2 and SEPP1, were 
highly similar to those of the V_TREM2+ and 
V_SEPP1+macrophages subpopulations (Figure S3F). 
Furthermore, the similarity score was 0.59 between 
the TCR+ Macrophages subpopulation and the 

V_TCR+ Macrophages subpopulation, and 0.45 
between the Macro+ Macrophages subpopulation and 
the V_Marco+ Macrophages subpopulation. These 
results further confirm the stable presence of TREM2+, 
MARCO+, and TCR+ Macrophages subpopulations 
(Figure 3E). 

To investigate the relationship between these 
macrophage subpopulations and treatment responses, 
we conducted a statistical analysis of macrophage 
distribution in our study cohort. The proportion of 
TREM2+ Macrophages, at either the boundary or core 
region, was higher in non-responsive patients, 
compared to responsive patients (Figure 3C). In 
contrast, the proportion of TCR+ Macrophages within 
normal tissues showed no significant difference 
between responsive and non-responsive patients, but 
the proportion in the tumor boundary or core region 
was higher in responsive patients (Figure 3C). 
Consistently, both V_TREM2+ and V_SEPP1+ 
macrophages were more prevalent in non-responsive 
patients from the validation cohort. Notably, the 
V_SEPP1+ Macrophages subpopulation showed a 
statistically significant difference (Figure 3F, Figure 
S3G). Furthermore, results from other bulk RNA 
cohorts suggested that TREM2+ Macrophages were 
associated with a poor prognosis, while TCR+ 

Macrophages with a good overall survival (Figure 
S3I-L). 

Functional characterization revealed that 
TREM2+ Macrophages were implicated in various 
immune-related processes, including chemotaxis, 
PD-1 signaling, and TGF-β production. Among all 
subsets, TREM2+ Macrophages exhibited the most 
potent angiogenic capabilities. In contrast, TCR+ 

Macrophages were enriched in terms of cytotoxicity, 
TCR signaling pathways, and positive regulation of 
T-cell activation, all associated with the inhibition of 
tumor progression (Figure S3M). These findings 
highlighted a functional divergence between distinct 
macrophage subsets. This conclusion was supported 
by Gene Ontology (GO) enrichment analysis of 
marker genes (Figure 4C-D). In the TCGA-LIHC 
cohort, we found a moderate-to-high correlation 
between TREM2 and all the immune checkpoints 
(Figure 4E). Additionally, spatial transcriptomic 
analysis of the two patients revealed a significant 
correlation between TREM2 expression and 
exhausted T cell signature (Figure 4E, Figure S4A-B), 
implying TREM2+ Macrophages as a significant 
contributor to limited efficacy of anti-PD-1 therapy. 

Cellchat software revealed robust interactions 
specifically between TREM2+ Macrophages and 
C3_CD8+ Tex in tumor tissues, rather than in the 
border and normal tissues (Figure S4F).  
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Figure 4. TREM2+ macrophages represent a predominant immunosuppressive subset within the macrophage population. Marker genes of TREM2+ 

Macrophages (top50). (B) Marker genes of TCR+ Macrophages (top50). (C) GO enrichment results for the signature gene of TREM2+ Macrophages. (D) GO enrichment results 
for the signature gene of TCR+ Macrophages. (E) Correlation of TREM2 expression with HAVCR2, CTLA4, PDCD1, ENTPD-1 in the TCGA-LIHC cohort (analyzed using 
Log2(TPM+1) values) and spatial correlation of TREM2 expression with CD8+ Tex signatures in P11T. (F) The dot-plot shows the results of CD8+ Tex and macrophage subgroups 
pair-receptor combinations calculated by CellphoneDB software in the tumor tissue of our cohort (after filtering with p-values < 0.05 condition). (G) Kaplan-Meier survival 
analysis Trem2-/- and WT HCC-mouse module. (H) tumor numbers and liver-body weight ratio in Trem2-/- and WT HCC-mouse module (T-test. *P < 0.05, **P < 0.01, ***P < 
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0.001, ****P < 0.0001). (I) tumor numbers and liver-body weight ratio in Trem2-/- and WT HCC-mouse module after treated with anti-PD-1 (T-test. *P < 0.05, **P < 0.01, ***P 
< 0.001, ****P < 0.0001). (J) tumor numbers and liver-body weight ratio in Trem2-/- and WT HCC-mouse module after treated under different conditions (T-test. *P < 0.05, **P 
< 0.01, ***P < 0.001, ****P < 0.0001). (K) The difference of TREM2+ Macrophages ratio in anti-Csf1r and Isotype treatment condition (T-test. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001). (L-N) The difference in cell ratio of different treatment conditions (T-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 
These interactions included inhibitory 

ligand-receptor pairs, such as NECTIN2-TIGIT, 
LGALS9-HAVCR2, and CD86-CTLA4. Furthermore, 
TREM2+ Macrophages attracted exhausted CD8+ T 
cells through chemotaxis facilitated by CXCL12, 
thereby accelerating T cell exhaustion in tumor tissues 
(Figure S4C). Analysis of CXCL and CCL chemokine 
signaling pathways further demonstrated stronger 
immunoregulatory capabilities of TREM2+ 

Macrophages, compared to other types of 
macrophages (Figure S4G, Figure S4H). Additionally, 
a subpopulation of CD8+ T cells interacted with TCR+ 

Macrophages via the CD70 signaling pathway (Figure 
S4G), potentially enhancing the tumoricidal ability of 
these macrophages [30]. In border and normal tissues, 
MARCO+ Macrophages (Kupffer cells) were also 
identified to promote T cell exhaustion through 
expressing molecules such as NECTIN2, PDCD1LG2, 
and LAGLS9, which is in agreement with previous 
studies (Figure S4D-E). Although exhibiting less 
pronounced impacts in these areas than in tumor 
tissues (Figure S4C-E), TREM2 on CD8+ T cells are still 
considered to play a broad immunosuppressive role. 

We employed the CellphoneDB software to 
further investigate the cell types associated with 
TREM2+ Macrophages and exhausted CD8+ T cells 
within tumor tissues. Compared to other CD8+ T cells, 
CD8+ Tex cells exhibited a pronounced deficiency of 
inhibitory and stimulatory ligand-receptor pairs, 
when interacting with TREM2+ Macrophages in 
tumor tissues (Figure S4I). Exclusively, our analysis 
revealed a CSF1-CSF1R interaction between CD8+ Tex 
and TREM2+ Macrophages (Figure 4F), and the 
strength of this interaction was significantly higher 
than that observed in other macrophage subgroups 
(Figure 4F). Moreover, the inhibitory ligand-receptor 
pairs were predominantly concentrated within 
TREM2+ Macrophages and CD8+ Tex cells (Figure 4F). 
These findings suggested that a mutually reinforcing 
positive feedback loop exists between TREM2+ 
Macrophages and CD8+ Tex cells, and while receiving 
CSF1 from these T cell subsets, TREM2+ Macrophages 
provide sustained exhaustion signals to CD8+ Tex 
cells for proliferation, differentiation, and survival. 
This positive feedback loop may contribute to the 
resistance against anti-PD-1 therapy. 

We conducted in vivo experiments to verify the 
efficacy of immunotherapy on TREM2+ Macrophages. 
A genetic HCC model was constructed using the 
Sleeping Beauty transposon cMyc-Nras system in 
Trem2-/- C57B/6J and wild-type (WT) mice, showing 

that the survival rate of Trem2-/- mice was better than 
that of WT mice (Figure 4G). In addition, we found 
that compared to WT mice, Trem2-/- mice had fewer 
tumors and lower liver-to-body weight ratios (Figure 
4H). To study the effect of Trem2 on the efficacy of 
anti-PD-1 therapy, we simultaneously administered 
anti-PD-1 therapy in Trem2-/- and WT mice, and the 
results showed that Trem2-/- mice were more 
responsive (Figure 4I). Since CSF1-CSF1R has a high 
specificity to TREM2+ Macrophages and CD8+ Tex 
cells, we explored the impacts of anti-PD-1 and 
anti-Csf1r treatment modalities on HCC in mice. 
Compared to isotype antibodies, both anti-PD-1 and 
anti-Csf1r treatments showed stronger effects, and 
their combination reaped the best outcomes (Figure 
4J). We also found that anti-Csf1r therapy effectively 
suppressed the levels of Trem2+ Macrophages in mice 
(Figure 4K, Figure S4J). Furthermore, anti-Csf1r 
therapy did not impact the overall abundance of CD8+ 

T cells (Figure 4L), but significantly diminished the 
population of PD-1+ CD8+ T cells and increased that of 
infiltrated NK cells, although these changes did not 
show statistical significance (Figure 4M-N). Based on 
these findings, we proposed that anti-Csf1r had the 
potential to suppress PD-1+ CD8+ T cell generation 
within the TME, and promote NK cell infiltration by 
reducing Trem2+ Macrophages, thereby synergizing 
with anti-PD-1 therapy. 

These findings suggest that TREM2+ 

Macrophages in HCC tumor tissues may impede the 
efficacy of anti-PD-1 therapy. However, this effect can 
be mitigated by inhibiting CSF1R to reduce the 
accumulation of TREM2+ Macrophages within the 
tumor tissue, thereby enhancing the effectiveness of 
anti-PD-1 therapy. Furthermore, it is hypothesized 
that TCR+ Macrophages within the tumor tissue exert 
an antitumor effect [29]; however, this hypothesis 
should be further validated with more experimental 
data. 

IL1B+ cDC2s are the main executor on cDC2s 
DCs act to support T cell proliferation and other 

functions, making the quantity and functionality of 
tumor-infiltrating DCs critical for the success of 
immunotherapy [30, 31], particularly in maintaining 
and expanding memory T cells [32]. We collected DCs 
from HCC responders and non-responders to 
anti-PD-1 therapy, as well as non-treated individuals, 
and categorized them into two main groups. Within 
the total population of DCs, the proportion of 
plasmacytoid dendritic cells (pDCs), characterized by 
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a high expression of CLEC4C and IL3RA [33], was 
found to be relatively low (Figure 5A, Figure 5E). The 
conventional dendritic cell (cDCs) subset comprises 
three major subtypes: traditional cDC1, cDC2, and 
cDC3 (mregDCs). Further analysis revealed that the 
cDC1 subset could be divided into two groups; one 
group expressing high levels of TOX, RUBCNL and 
CLNK, and one group lacking these characteristics 
but still expressing classical cDC1 markers (CELC9A 
and CADM1) (Figure 5A-B, Table S3). To validate the 
stability of these subpopulations, we isolated DCs 
from the validation cohort and divided them into five 
subpopulations (Figure S5B). Subsequent analysis 
revealed that the cDC2_c1 and cDC2_c2 
subpopulations in the validation cohort exhibited a 
high similarity to the DPYD+ cDC2 and IL1B+ cDC2 
subpopulations in the discovery cohort. pDC, 
cDC3_LAMP3, and cDC1_IDO1 subpopulations also 
displayed significant similarities in both cohorts 
(Figure S5C). Our findings continued to indicate a 
higher proportion of the IL1B+ cDC2 population in the 
tumor tissues of treatment-naïve patients, but not in 
their normal tissues (Figure 5D-E). Similar trends 
were also observed in the validation cohort, where the 
proportion of the cDC2_C1 population increased in 
the tumor tissues of treatment-naïve patients, 
compared to their normal tissues; however, statistical 
significance did not reach (Figure S5D). Conversely, 
no significant differences were found in the 
proportions of DPYD+ cDC2 and cDC2_C2 
subpopulations between tumor and normal tissues 
(Figure 5E, Figure S5D). These results suggested a 
potential correlation between IL1B+ cDC2 abundance 
and treatment response. Furthermore, immuno-
fluorescence staining of tumor tissues from HCC 
patients validated the characteristics of these two DC 
subpopulations (Figure 5G). 

A comparative functional analysis of the two 
cDC2 subgroups revealed intriguing disparities. The 
IL1B+ cDC2 subgroup exhibited a greater functional 
prominence than the DPYD+ cDC2 subgroup, 
encompassing differential expression of chemokine 
receptors, HLA-D, TLRs, regulatory molecules, 
migratory capabilities, and support for Th2 cells 
(Figure 5C). IL1B+ cDC2s expressed higher 
abundances of chemokine ligands, receptors, and 
related cytokines (Figure 5F). GO enrichment analysis 
showed that upregulated genes in IL1B+ cDC2s were 
associated with enhanced chemotactic and migratory 
capabilities, as well as a regulatory role in T-cell 
differentiation (Figure S5F). Furthermore, a 
comparison in the validation cohort exhibited similar 
findings (Figure S5E). Survival analysis indicated that 
IL1B+ cDC2s appeared to exert a negative impact on 
the prognosis of patients (Figure S5G). Given that 

both IL1B+ cDC2 and DPYD+ cDC2 belong to the 
cDC2 subpopulation of DCs, we further observed a 
lower overall survival rate in patients with a higher 
level of IL1B+ cDC2 infiltration (Figure S5G-I). 

We used Cellchat and CellPhoneDB to analyze 
the interaction between cDC2s and CD4+ T cells. The 
interaction between IL1B+ cDC2 and CD4+ T cells was 
more pronounced, particularly between CD4_Tcm 
and Treg cells (Figure 5I-J). Notably, IL1B+ cDC2 
exhibited prominent expression of signaling 
molecules that stimulate DC activation, such as 
CD40-CD40L [34] (Figure 5K), whereas the CSF 
signaling pathway [35] was mainly activated in 
CD4_Tcm and Treg cells (Figure S5J). Conversely, 
DPYD+ cDC2 cells primarily displayed the 
stimulation of CD4_Tcm on the TGF-β signaling 
pathway, known to inhibit DC function and 
proliferation [36] (Figure 5L). To facilitate a more 
intuitive comparison of ligand-receptor pairs between 
the two cDC2 subgroups and CD4+T cells, we 
conducted a comparative analysis using CellphoneDB 
under identical conditions (Figure 5H). The results 
revealed that compared to DPYD+ cDC2IL1B+, cDC2 
exhibited significantly higher expression levels of 
chemokine receptor pairs, particularly CXCL9-CXCR3 
which is exclusively expressed by IL1B+ cDC2. 
Moreover, signaling pairs, such as TNF-TNFRSF1B, 
IL10-IL10R, LGALS9-HAVCR2, C3_C3AR1, and 
TGF-β1-TGF-βR1/3, displayed stronger interactions 
between IL1B+ cDC2 and CD4+ T cells, especially in 
Treg cells, the growth and development of which 
were significantly promoted. These findings partially 
elucidated why IL1B+ cDC2 is associated with an 
unfavorable prognosis in HCC patients and may 
represent one factor limiting the efficacy of anti-PD-1 
therapy in this population. We must acknowledge 
that these data-driven analyses were insufficient to 
determine the overall contribution of the IL1B+ cDC2 
subpopulation to TME immunity, as they merely 
reflect the intricate characteristics of the cDC2 
subpopulation. Further comprehensive investigations 
are warranted to elucidate the roles of this 
subpopulation. 

Transcriptional changes of CD8+ T cells after 
anti-PD-1 treatment 

After a comprehensive analysis, all CD8+ T cells 
were divided into seven distinct subgroups (Figure 
6A), including a proliferative subgroup characterized 
by high expression of MKI67 and TOP2A, an 
exhausted subgroup of CD8+ T cells by high 
expression of PDCD1, LAG3, HAVCR2, and CTLA4, 
and a subgroup by high expression of GNLY [37], 
indicative of a predisposition towards cytotoxic T 
cells.  
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Figure 5. IL1B+ cDC2s are the main executor on cDC2s. UMAP plot showing DC subgroups of the discovery cohort. (B) Bubble plot displaying unique markers of 
different DC subgroups. (C) Differential expression of genes related to DC function across DC subgroups. (D) UMAP plot illustrating the distribution of DC subgroups across 
different tissues and under different treatment conditions. (E) Bar graph showing the proportion of DC subgroups across different tissues and under different treatment 
conditions. (F) Volcano plot depicting differential genes between two cDC2 subgroups. (G) Multicolor immunofluorescence staining confirms the presence of two types of cDC2 
in human HCC tissues. (H) Bubble plot shows the differences in the co-receptor pairing between the two types of cDC2 and CD4+ T cell subgroups (p-values < 0.05, IL1B+ cDC2 
vs DPYD+ cDC2). (I) Cell interactions between IL1B+ cDC2 dendritic cell and CD4+ T cell subgroups in the tumor tissue of non-responsive patients. (J) Cell interactions between 
DPYD+ cDC2 dendritic cell and CD4+ T cell subgroups in the tumor tissue of non-responsive patients. (K) Communication of the CD40 signaling pathway between cDC2 
dendritic cells and CD4+ T cell subgroups. (L) Communication of the TGF-β signaling pathway between cDC2 dendritic cells and CD4+ T cell subgroups. 
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Additionally, a subgroup expressing high levels 
of NEAT1[38] and LRBA [39] was identified as a 
marker typically associated with T cell dysfunction 
[40] (Figure S1H). The C0 cluster exhibited diverse 
cellular characteristics; therefore, it was termed as a 
mixed CD8+ T cell population (Figure 6B). Gene set 
enrichment analysis (GSEA) further teased out 
distinct phenotypic traits in each subgroup (Figure 
S6C, Figure S6E). All CD8+ T subgroups were found in 
the tissues of different regions, without significant 
statistical differences in their proportions (Figure 
S6A-B). A notable reduction was observed in CD8+ T 
cells in tumor tissues from non-responsive patients, 
despite inequality between sizes of responsive and 
non-responsive patients (responsive: non-responsive 
= 6:1), suggesting that the reduction in CD8+ T cells 
keeps significant regardless of the difference between 
proportions of patients. This characteristic was also 
observed in border tissues, but absent in normal 
tissues (Figure S6D), implying a link between 
immunotherapeutic outcomes and the abundance of 
CD8+ T cells within both tumor core and border 
tissues. 

To gain deeper insights into the effects of CD8+ T 
cells on the outcomes of anti-PD-1 therapy, we 
combined the data of CD8+ T cells from the tumor 
tissues of untreated and non-responsive patients 
(Figure S6F-G). Furthermore, we incorporated an 
additional validation cohort comprising patients with 
treatment responses and non-responses, as well as 
untreated patients. CD8+ T cells were isolated from 
their tumor tissues for subpopulation analysis (Figure 
S8A), and further categorized into 12 subgroups 
based on classical markers and common attributes of 
CD8+ T cells, including naïve, effector, cytotoxicity, 
exhaustion, and senescence (Figure 6E-F, Figure S7B, 
Table S4).  

A comprehensive analysis was conducted on 
CD8+ T cells from untreated, responsive, and 
non-responsive patients. CD8+ T cells from responsive 
patients exhibited more pronounced glucose 
metabolism and TCR signaling than untreated CD8+ T 
cells (Figure 6G, Figure S8B). Contrary to our 
expectations, CD8+ T cells from responsive patients 
exhibited a greater degree of exhaustion, including 
elevated TOX and LAG3 expression (Figure 6H). 
However, genes associated with CD8+ T cell 
differentiation, such as THEMIS [42], and genes 
maintaining IFN-γ levels, such as IFITM1, were found 
at higher expression levels (Figure 6H). Functionally, 
terms related to CD8+ T cell activation were enriched 
in responsive patients, because of the effects of 
anti-PD-1 therapy (Figure 6I). Using pan-cancer 
analyses [43], Chu et al. have identified a subset of 
stressed CD8+ T cells characterized by elevated 

expression of HSP family genes, JUN, FOS, and 
NFKBIA; this subset was also observed in our 
comparative analysis between responsive and 
untreated patients (Figure 6J). Functions of these cells 
included protein folding, hypoxia response (Figure 
6K, Figure S8E), and activation of NF-κB pathways 
(Figure 6K), which is consistent with Chu’s 
descriptions [43]. To validate our findings in the gene 
sets provided by Chu et al., we employed the AUcell 
algorithm for single-cell scoring, yielding results 
consistent with our expectations. The highest score 
was observed in responsive patients, followed by 
non-responsive patients, and the lowest in untreated 
patients (Figure 6L-M, Figure S8G). Additionally, the 
expression levels of stress-related gene HSPA1B were 
consistent with those observed across the three 
groups (Figure S7C) and confirmed by mIHC analysis 
(Figure 6N). We further revealed a positive 
correlation between stress level and exhaustion score 
(Figure 7A). Similarly, we discovered that elevated 
stress levels generally corresponded to enhancements 
in CD8+ T cell cytotoxic activity, exhaustion, and 
senescence (Figure 7B, Figure S8H). Despite what we 
found in the validation cohort, both the cytotoxicity 
and exhaustion of CD8+T cells demonstrated a 
decreasing trend during the early phase of TSTR 
(Figure S8H), with cytotoxicity more associated with 
stress than exhaustion alone (Figure 7B, Figure S8H). 
Furthermore, a higher level of stress was linked to a 
gradual enhancement of glucose metabolism, fatty 
acid metabolism, and oxidative phosphorylation in 
CD8+ T cells (Figure 7C, Figure S8I), suggesting that 
elevated stress levels indicate hyperactivity of CD8+ T 
cells. Responsive patients exhibited higher stress 
levels, potentially due to the reactivation of T-cells 
following anti-PD-1 therapy. Non-responsive patients 
showed a low tumor-killing ability of CD8+ T cells, 
but it does not imply that CD8+ T cells take no role in 
immune responses to blockade treatment. 

A significant decrease in C6_Tex_TOX and 
C3_Tn_THEMIS subgroups was observed in 
non-responsive patients compared to responsive 
patients, accompanied by an increase in the 
C5_Tprf_MKI67 subgroup (Figures 7D-E). We 
confirmed the presence of THEMIS+ CD8+ T cells 
using immunofluorescence staining (Figure 7M). The 
C3 subgroup with high expression of THEMIS [42] 
and SKAP1 [44] presented T cell proliferation and 
activation (Figure 7G), along with elevated glucose 
metabolism and TCR signaling scores (Figure 7H). 
Moreover, the survival rate increased in patients 
exhibiting a higher level of the C3 subgroup (Figure 
7F), while the C6 subgroup exhibited high expression 
of TOX and PDCD1 (Figure S7E).  
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Figure 6. Transcriptional changes of CD8+ T cells after anti-PD-1 treatment. (A) UMAP plot showing CD8+ T cell subgroups. (B) Differential expression of genes 
related to CD8+ T cell function across subgroups. (C) CD8+ T cell developmental trajectory simulated with monocle2. (D) IL7R, GZMK, PDCD1, and CBLB expression levels 
along the developmental trajectory. (E) UMAP plot for re-clustering and defining CD8+ T cells from the discovery cohort. (F) Feature plot showing expression levels of GZMB, 
PDCD1, TOX, and MKI67. (G) Gene Set Enrichment Index of all CD8+ T cells from responsive, non-responsive, and untreated patients. (H) Volcano plot showing differential 
genes in CD8+ T cells from responsive and non-responsive patients. (I) GO enrichment of differential genes between responsive and non-responsive groups. (J) Volcano plot 
showing differential genes in CD8+ T cells from responsive and untreated patients. (K) GO enrichment of up-regulated differential genes in CD8+ T cells from responsive patients. 
(L) Scoring of the TSTR signature in CD8+ T cells from non-responsive, responsive, and untreated patients. (M) Violin and box plots showing TSTR scores in CD8+ T cells from 
responsive, non-responsive, and untreated groups (Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (N) Multicolor immunofluorescence shows a statistically 
significant difference in the abundance of HSPA1B+ CD8+ T cells between responders and non-responders in the treatment (T-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001). 
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Figure 7. Transcriptional changes of CD8+T cells after anti-PD-1 treatment. (A) Grouping of CD8+ T cells based on TSTR scores, shown with box and violin plots for 
exhaustion scores (Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (B) Trends in cytotoxic, exhaustion, and senescence scores about TSTR scores. (C) 
Trends in glucose metabolism, oxidative phosphorylation, and fatty acid metabolism about TSTR scores. (D) UMAP plot showing the distribution of CD8+ T cell subgroup in 
responsive, non-responsive, and untreated patients. (E) Bar graph showing the proportion of CD8+ T cell subgroup in responsive, non-responsive, and untreated patients. (F) 
Kaplan-Meier survival analysis of the signature of C3_Tn_THEMIS in the TCGA-LIHC cohort. (G) Bubble plot showing Top30 marker genes of C3_Tn_THEMIS. (H) GO 
enrichment results for marker genes of C3_Tn_THEMIS. (I) Correlation of CD8A and THEMIS in the TCGA-LIHC cohort. (J) UMAP plot illustrating the developmental 
trajectory of non-responsive CD8+ T cells simulated with monocle3. (K) UMAP plot showing the developmental trajectory of responsive CD8+ T cells simulated with monocle3. 
(L) Radar plot showing cell type inclination scores for C1_Tn and C3_Tn_THEMIS subgroups. (M) Multicolor immunofluorescence staining confirms the presence of THEMIS+ 

CD8+ T cells in human HCC tissues. (N) tumor characteristics of HCC-mouse models after treatment with anti-PD-1 and anti-PD-1 combined with AAV-Themis (T-test. *P < 
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (O) Bubble plot showing cell communication between cDC1, LAMP3+ cDC3, and various types of CD8+ T cells in the tumor tissue 
of responsive patients. (P) Communication of TIGIT, PDL1, PDL2, and CD40 signaling pathways between cDC1 and CD8+ T cells. 
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The C5_Tprf_MKI67 subgroup was character-
ized by high expression of TOP2A, MKI67, and 
HMGB2 (Figure S7F), as well as enhancements of 
glucose metabolism and oxidative phosphorylation 
(Figure S7H), and predominantly associated with cell 
proliferation (Figure S7G). Cell trajectory analysis 
based on Tn and Naïve scoring (Figure S7B) identified 
both C3 and C1 subgroups as potential developmental 
starting points for CD8+ T cells (Figure 7J-K), wherein 
cell type propensity analysis revealed high naïve 
scores of both subgroups. However, C3_Tn_THEMIS 
displayed more pronounced characteristics of 
early-stage Tem, relative to C1_Tn (Figure 7L), 
suggesting that C3_Tn_THEMIS may represent an 
immature state of Tem capable of further expansion 
and functional engagement. Additionally, 
C6_Tex_TOX displayed developmental features 
closer to C3_Tn_THEMIS than to C1_Tn (Figure 7K), 
suggesting that C6_Tex_TOX might originate from 
C3_Tn_THEMIS, which was conspicuously absent in 
non-responsive patients (Figure 7J). C3_Tn_THEMIS 
in the tumor tissues of non-responsive patients may 
account for the lack of response to anti-PD-1 therapy. 
THEMIS plays a crucial role in T-cell differentiation, 
and we observed high expression of THEMIS in 
C3_Tn_THEMIS cells. Furthermore, THEMIS levels 
decreased after PD-1 treatment in the discovery and 
validation cohorts, with non-responders showing 
lower THEMIS levels than others (Figure S8J-M). In 
addition, genes highly correlated with THEMIS might 
regulate the cytotoxicity and activity of DCs 
(CLEC9A, CD40LG), naïve T cells (CCR7, SELL), and 
CD8+ T cell (CD8A, GZMK, LCK [45]) in the 
TCGA-LIHC cohort (Figure S7J). These findings 
suggested that THEMIS modulation might tune the 
efficacy of anti-PD-1 therapy on T cell responses. 
Consequently, we reduced the expression of THEMIS 
in mice by injecting AAV-Themis intravenously 
during the administration of anti-PD-1 therapy. The 
results showed that the effectiveness of anti-PD-1 
therapy was significantly reduced after the 
intervention of AAV-Themis, implying a contribution 
by THEMS to the limited efficacy of anti-PD-1 therapy 
(Figure 7N). 

Analysis of cellular interactions revealed that 
C3_Tn_THEMIS exhibited the weakest interactions 
with other CD8+T cells, whereas C2_Tex_early 
displayed the strongest interactions (Figure S7K). 
Notably, the inhibitory ligand-receptor interactions 
between LAMP3+ cDC3 and CD8+ T cells were more 
pronounced in the other two cDC1 subgroups (Figure 
7O-P), suggesting a potential role of LAMP3+ cDC3 in 
regulating CD8+ T cell exhaustion. Additionally, 
C4_Tem_IL7R was identified as the primary cell 
cluster promoting cDC1 activation via CD40 signaling 

(Figure 7P). Although these findings may not directly 
correlate with responses or non-responses to 
immunotherapy, they provide a new prospective into 
the immune TME during anti-PD-1 treatment. 

Transcriptional changes of CD4+ T cells after 
anti-PD-1 treatment 

Multiple datasets were integrated to compare the 
profiles of CD4+ T cells between untreated, 
responsive, and non-responsive patients. We 
identified 10 clusters of CD4+ T cells (Figure 8A, Table 
S5), including well-known subsets such as regulatory 
T cells (Tregs) expressing FOXP3 [46], naïve CD4+ T 
cells (Tn) expressing CCR7 and SELL [41], and 
exhausted CD4+ T cells (Tex) expressing TOX [47]. 
Moreover, we discovered a sub-cluster expressing 
GZMH and NKG7, two cytotoxic markers associated 
with CD8+ T cells; this sub-cluster was named 
CD4_CTL [48]. Another cluster exhibiting high 
expression of IL7R, GPR183, and CD69 was 
designated as CD4_Tcm [41], while other clusters 
showed elevated THEMIS expression (Figure 8B, 
Figure S9I). Relative to responsive patients, 
non-responsive patients revealed a low specificity to 
normal or tumor tissues in the distribution of 
differentially expressed genes (DEGs) within the 
CD4+ T cell population. Specifically, 340 genes were 
upregulated in tumor tissues compared to normal 
tissues, but most were overlapped between the two 
groups (Figure 8C). These tumor-specific upregulated 
genes included inhibitory receptors, such as ENTPD-1 
[49] and PDCD1, as well as effector molecules, such as 
GZMK and IFNG, all involved in antitumor activity. 
Additionally, we further characterized CD4+ T cell 
populations in the responders and non-responders of 
the validation cohort, respectively (Figure S10A-D). 

Both Treg cells and CD4_Tfh cells increased 
significantly in tumor tissues. In contrast, CD4_CTL 
cells were more prevalent in normal tissues than in 
tumor tissues (Figure S9A-B). Furthermore, the 
proportion of CD4_CTL cells was higher than that in 
non-responsive patients (Figure S9C), which is 
consistent with Ramanuj’s study [50]. Notably, the 
CD4_THEMIS subgroup was the only group that 
showed a significant between-group difference, and 
was almost absent in the tumor tissues of 
non-responsive patients (Figure 8E). Similarly, the C4 
subgroup was identified in the tumor tissues of the 
validation cohort, exhibiting a high similarity to 
CD4_THEMIS cells and expressing high levels of 
CBLB, THEMIS, and CAMK4 (Figure S10F). This 
subgroup was also significantly abundant in 
responsive patients, but not observed in normal 
tissues (Figure S10C-E).  
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Figure 8. Transcriptional changes of CD4+T cells after anti-PD-1 treatment. (A) The UMAP plot illustrates the subpopulations of CD4+ T cells in the discovery cohort. 
(B) The marker genes associated with CD4+ T cell subpopulations are identified in the discovery cohort. (C) Comparison of differentially expressed genes in CD4+ T cells 
between responders and non-responders to anti-PD-1 treatment in tumor and normal tissues. (D) The figure shows the distribution of CD4+ T cell subpopulations in the 
discovery cohort across different tissues and treatment conditions. (E) The distribution of CD4+ T cell subpopulations in tumor tissue across responders and non-responders in 
the discovery cohort. (Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (F) The bubble plot shows the top 50 genes of the CD4_THEMIS subpopulation. (G) 
GO enrichment results for marker genes of CD4_THEMIS. (H) Kaplan-Meier survival analysis of the signature of CD4_THEMIS in the TCGA-LIHC cohort. (I) The differentially 
expressed genes between the high and low infiltration levels of CD4_THEMIS in TCGA-LIHC. (J-K) The legend illustrates the main findings of this study. 
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Moreover, CD4_THEMIS expressed high levels 
of THEMIS and other genes, such as RUNX1 [51] and 
CAMK4 [52], which promote T cell proliferation and 
activation (Figure 8F). Our propensity score analysis 
demonstrated that CD4_THEMIS cells were closer to 
Tcm cells (Figure S9D). Functional analysis further 
demonstrated that CD4_THEMIS cells exhibited 
similar functions to those of CD8_THEMIS cells, 
including T cell activation and proliferation (Figure 
8G). Importantly, previous research has suggested an 
essential role of THEMIS in T cell function, and we 
found that THEMIS was highly and specifically 
expressed in T cells (Figure S9H), indicating a good 
prognosis across two independent cohorts (Figure 
S9F-G). Upon stratifying patients in the TCGA-LIHC 
cohort into high and low groups based on 
THEMIS+CD4+T cell infiltration, differential and 
functional analyses revealed that elevated expression 
of molecules was associated with DCs (CLEC10A, 
CD1C, FCER1A, and CD40LG), B cells, and plasma 
cells (CD79A, MS4A1, and IGHG1), as well as various 
chemokines and chemokine receptors (Figure 8I). 
These molecules are involved in antigen presentation, 
B-cell-related pathways, and chemotaxis. These 
suggest that this cell type has the potential to regulate 
the immune system through multiple mechanisms 
(Figure S9E). 

Next, we observed that TREM2+ Macrophages 
exhibited high MHC-II expression and antigen 
presentation (Figure S3M), which sparked our interest 
in investigating the crosstalk between CD4+ T cells 
and macrophages. Cellchat analysis revealed that 
TCR+ Macrophages displayed the closest interaction 
with CD4+ T cells in tumor tissues from responsive 
patients, whereas TREM2+ Macrophages were 
predominantly associated with CD4+ T cells in tumor 
tissues from non-responsive patients (Figure S9J). We 
identified ligand-receptor pairs involved in the 
interactions between CD4+ T cells and macrophages, 
specifically in the tumor tissues of non-responsive 
patients. Chemokines and their corresponding 
receptors were primarily found on TREM2+ 
Macrophages and CD4+ T cells, where TREM2+ 
Macrophages inhibited CD4+ T cell function through 
multiple immunosuppressive ligands (Figure S10H), 
including PDL2 signals specifically targeting 
CD4_Tfh (Figure S9M). Conversely, TGF-β signaling 
mainly affected TREM2+ Macrophages (Figure S9L), 
reprogramming them into a pro-tumoral phenotype 
characterized by angiogenesis and maintenance of an 
immunosuppressive microenvironment. 
Interestingly, IL-2 [53], crucial for promoting the 
proliferation and differentiation of Tregs, was 
predominantly stimulated by CD4 + Tfh cells, 
potentially representing a key regulatory mechanism 

controlling Treg activity (Figure S10G). 
In summary, we observed elevated levels of 

THEMIS+ CD4+ T cells in tumor tissues from 
non-responsive patients, suggesting that this cell 
population may modulate the efficacy of anti-PD-1 
treatment by regulating CD4+ T cell development. 
Additionally, the interaction between TCR+ 
Macrophages and CD4+ T cells was most pronounced 
in tumor tissues from responsive patients, whereas 
that between TREM2+ Macrophages and CD4+ T cells 
was more intimate in tumor tissues from 
non-responsive patients. Notably, TREM2+ 
Macrophages promoted the transition of CD4+ T cells 
into an anti-tumor phenotype through inhibitory 
receptors such as PDL2 and other inhibitory 
receptors, while CD4_Tcm further enhanced the 
differentiation of TREM2+ Macrophages into a 
tumor-promoting phenotype via the TGF-β pathway. 

Discussion 
The efficacy of immunotherapy on HCC is 

influenced by several factors, including mutational 
burden [54], lack of immune cells (cold tumor) [55], an 
immunosuppressive TME, and barriers impeding T 
cell infiltration around the tumor [16]. Complex 
crosstalk among players in the immunosuppressive 
microenvironment is a key factor [55]. Here, through a 
comprehensive analysis of responders and 
non-responders to PD-1 treatment, along with 
myeloid and T-cell subpopulations in untreated 
patients, we identified previously unreported features 
of the TME in HCC patients (Figure 8J-K). We 
discovered that not all patients with immune barriers 
exhibited poor treatment outcomes, which were 
largely dependent on CD8+T cell infiltration levels. 
TREM2+ and TCR+ Macrophages may play 
contradictory roles in the HCC TME. In 
non-responsive patients, the proportion of TREM2+ 
Macrophages increased. Previous studies have also 
indicated an inhibitory role of TREM2+ Macrophages 
in various tumors [56]. However, the precise role of 
TCR+ Macrophages in HCC remains unclear. 

Our research revealed that TREM2+ 
Macrophages can directly induce CD8+ T cell 
exhaustion through ligand-receptor interactions, such 
as NECTIN2-TIGIT/LGALS9-HAVCR2, and recruit a 
substantial number of CD8+ T cells via CXCL and 
CCL-related chemokines, thereby exacerbating their 
exhaustion. anti-Csf1r effectively hinders the 
accumulation of Trem2+ Macrophages in HCC tumor 
tissues and synergistically enhances the therapeutic 
efficacy of anti-PD-1. Conversely, TCR+ Macrophages 
can directly eliminate tumor cells using cytotoxic 
granules, such as GZMA and GZMK. The cDC2 
population can be functionally classified into two 
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subgroups, with the IL1B+cDC2 subgroup 
undertaking the primary role. The CD40-CD40L 
co-receptor system is essential for DC activation, 
primarily mediated by CD4_Tcm cells; however, it 
exerts a significantly stronger stimulus on IL1B+ cDC2 
than on DPYD+ cDC2. Moreover, IL1B+ cDC2 highly 
expresses NECTIN2 which mediates the suppression 
of CD4+ T cells via either CD226 [57] or TIGIT. 
Targeted blockade of NECTIN2 may enhance the 
intra-tumoral activation of CD4+ T cells. 

It has been demonstrated that CD8+ T cells can 
induce the expression of PD-1 through endoplasmic 
reticulum stress [58]. Here, we found that CD8+ T cells 
also fall into a heightened state of stress in 
non-responsive patients, which may be associated 
with the transition of T cells into a full-play mode 
following treatment with anti-PD-1 inhibitors. In this 
state, the cytotoxic activity of T-cells is enhanced, and 
their exhaustion and senescence accelerated. We 
observed elevated stress levels in CD8+ T cells in 
PD-1-responsive patients. Further investigation is 
required to determine whether this state contributes 
to the acceleration of CD8+ T cell exhaustion or 
senescence. Additionally, we identified a subset of 
CD8+ T cells expressing a high level of THEMIS but 
absent in non-responsive patients. We hypothesize 
that these cells have the capacity to further proliferate 
and eventual differentiate into terminally exhausted 
T-cells characterized by high levels of PD-1 and 
CTLA4 expression, and their absence may contribute 
to the poor outcomes of immunotherapy in 
non-responsive patients. Additional analyses using 
TCR sequencing provided insights into the function of 
these tumor-reactive T cells. Similarly, we observed 
the absence of CD4+ T cells with high THEMIS 
expression in non-responsive patients. Furthermore, 
inhibition on THEMIS expression may discount the 
efficacy of anti-PD-1 therapy. The AAV-Themis we 
used did not bind specifically to CD8 or CD4 
promoters, which resulted in a weaker suppression on 
T cells by the AAV virus. Therefore, we cannot 
conclude by announcing that THEMIS acts by relying 
on T cells, or a specific subpopulation of T cells in 
combination with PD-1. It remains unclear how 
THEMIS regulates T-cell function, and its negative 
impact on anti-PD-1 therapy efficacy should be 
addressed in future investigations. 

In non-responsive patients, TREM2+ 
macrophages and CD4+ T cells exhibited more 
intimate interactions. Numerous CD4+ T cells 
reprogram TREM2+ macrophages by means of TGF-β. 
Additional CD4 + Tfh cells promote the differentiation 
of Treg cells via IL2 [59], thereby fostering an 
immunosuppressive TME. Other factors in the TME 
of HCC wait to be explored. For instance, neutrophils 

can tilt the balance within the TME through various 
mechanisms, and specific monocyte subgroups may 
charge the functionality of CD8+ T cells through 
cytokine signaling. As primary components of tumor 
tissue, tumor cells can suppress an immune TME 
through various mechanisms, such as PDL1 
expression on their cell membrane and release of 
immunosuppressive molecules like TGF-β [60].  

This study investigated the factors accounting 
for the poor responses to anti-PD-1 therapy in HCC 
patients; however, some of our findings through data 
analysis require validation through more rigorous cell 
or animal experiments, as well as large-scale clinical 
samples. Nonetheless, the cells and molecules, which 
we found to present unique functions in this study, 
may be targeted to improve the efficacy of 
immunotherapies for HCC. 
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