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Abstract 

Radiopharmaceutical therapy (RPT) is a rapidly developing field of nuclear medicine, with several RPTs already 
well established in the treatment of several different types of cancers. However, the current approaches to 
RPTs often follow a somewhat inflexible “one size fits all” paradigm, where patients are administered the same 
amount of radioactivity per cycle regardless of their individual characteristics and features. This approach fails 
to consider inter-patient variations in radiopharmacokinetics, radiation biology, and immunological factors, 
which can significantly impact treatment outcomes. To address this limitation, we propose the development of 
theranostic digital twins (TDTs) to personalize RPTs based on actual patient data. Our proposed roadmap 
outlines the steps needed to create and refine TDTs that can optimize radiation dose to tumors while 
minimizing toxicity to organs at risk. The TDT models incorporate physiologically-based radiopharmacokinetic 
(PBRPK) models, which are additionally linked to a radiobiological optimizer and an immunological modulator, 
taking into account factors that influence RPT response. By using TDT models, we envisage the ability to 
perform virtual clinical trials, selecting therapies towards improved treatment outcomes while minimizing risks 
associated with secondary effects. This framework could empower practitioners to ultimately develop tailored 
RPT solutions for subgroups and individual patients, thus improving the precision, accuracy, and efficacy of 
treatments while minimizing risks to patients. By incorporating TDT models into RPTs, we can pave the way for 
a new era of precision medicine in cancer treatment. 
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1. Introduction 
Cancer is a complex disease and a leading cause 

of death worldwide [1]. Despite recent advancements 
in cancer therapy, many treatments are often not fully 
effective for different types of cancers, underscoring 
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the need for further research and development efforts 
[2]. In addition, current treatments often lack true 
personalization and can follow an empirical “one size 
fits all” approach [3]. Meanwhile, cancer complexities, 
such as heterogeneities and microenvironment- 
related characteristics are critical factors that are not 
fully considered in current cancer treatment strategies 
(4,5). Furthermore, the potential for detriment to 
healthy tissues remains a major concern in most of 
these therapies, which limits treatment dose 
escalation. 

Radiopharmaceutical therapy (RPT) is a 
long-established tool in the armamentarium for the 
treatment of numerous cancers and most recently has 
gained a pivotal role in the management of advanced 
prostate cancer (PCa) and neuroendocrine tumors 
(NETs) [4–6]. RPT, although not a recent innovation, 
stands as a firmly established and evidence-based 
approach in the treatment of various diseases. Its 
applications span the management of differentiated 
thyroid cancer, benign thyroid diseases, synovial 
ablation in conditions like pigmented villonodular 
synovitis (PVNS), and addressing refractory bone 
pain in breast and prostate cancer [7]. Additionally, 
RPT is recognized for its efficacy in the ablation of 
hepatocellular carcinoma (HCC) and liver metastases 
through Y-90-SIRT, with endorsement from 
guidelines in many instances [8]. Beyond these 
well-established uses, emerging therapies have 
gained marketing approval, notably for squamous cell 
cancers and a diverse array of investigational 
theragnostic compounds.  

It is crucial to recognize the extensive history of 
RPT, encompassing both enduring practices and 
evolving therapeutic landscapes. While some older 
treatments like P-32 for Polycythemia Vera, MIBG 
therapy, and CD-20 mABs for Lymphoma may have 
lost favor, they demonstrate the rich history of 
theranostic approaches in nuclear medicine [9]. 
Buoyed by this success, there are ongoing research 
efforts to develop RPTs in other entities, for example 
in the management of myeloma and plasma-dyscrasia 
[10], with an even greater role for RPT expected in the 
coming years. However, despite legal mandates 
calling for personalized dosimetry, such as the 
European Council directives enshrined in the 
Euratom treaty [11], personalized dosimetry is seldom 
performed. It is therefore a major shortcoming of RPT 
that patients most commonly receive a standard and 
empirical activity (e.g., 7.4 GBq) [12]. For example, 
Lu-177-Lutathera was approved with a standard 
administration dosage (7.4 GBq every 8 weeks for a 
total of 4 administrations) without any requirements 
for personalized dosimetry [13]. Furthermore, in the 
peptide receptor radionuclide therapy (PRRT) of 

NETs, the maximum tolerable dose to limiting organs 
often is not reached. With the majority of patients 
eventually progressing, there is substantial risk that 
the use of empirical “one size fits all” approaches 
leads to undertreatment in many patients [14].  

As a prime example of cutting-edge RPTs, 
consider their remarkable efficacy in treating 
advanced prostate cancer (PCa), notably metastatic 
castration-resistant prostate cancer (mCRPCa) using 
therapies such as Lu-177-PSMA [15]. This targeted 
approach, utilizing Lu-177-PSMA, capitalizes on the 
overexpression of prostate-specific membrane antigen 
(PSMA) receptors on prostate cancer cells [16]. PSMA 
serves as a critical biomarker for disease progression, 
playing a pivotal role in guiding treatment decisions 
and monitoring response to therapy. In addition to its 
role as a biomarker, PSMA is implicated in various 
aspects of prostate cancer biology, including tumor 
growth, metastasis, and disease aggressiveness [17]. 
Its overexpression on cancer cells makes it an 
attractive therapeutic target, enabling selective 
targeting while minimizing off-target effects on 
healthy tissues. Moreover, PSMA's utility extends 
beyond treatment; it serves as a valuable diagnostic 
tool for identifying and monitoring prostate cancer 
progression, aiding in disease staging and prognosis 
assessment.  

Despite their remarkable success, current RPT 
approaches face a critical challenge: the lack of 
specific and optimized protocols for individualized 
therapy. Remarkably, all mCRPCa patients are 
subjected to the same standardized treatment 
regimen, underscoring a glaring gap in personalized 
medicine within this field [18]. This “one size fits all” 
paradigm increases the risk of both overdosing and 
underdosing, and reduces the likelihood of achieving 
optimal tumor control while mitigating normal tissue 
complications [19]. In fact, in current non- 
personalized paradigms, the range of absorbed doses 
to organs-at-risk (e.g. salivary glands) can span an 
order of magnitude [20] resulting in conservative 
schemes in practice where many of patients are 
undertreated. There is thus a need for innovative 
approaches to optimize therapies while mitigating the 
side effects of treatment and enhancing the well-being 
of patients undergoing RPTs. Finding effective 
solutions including to manage toxicity levels is 
essential for maintaining a high quality of life 
throughout the treatment process [15]. In other areas 
of oncology, substantial progress toward the 
realization of personalized treatments has been made 
[21]. By utilizing advanced technologies such as 
omics-based approaches (e.g., genomics, radiomics) 
and artificial intelligence (AI), it is now possible to 
identify unique biomarkers that can help predict 



Theranostics 2024, Vol. 14, Issue 9 
 

 
https://www.thno.org 

3406 

treatment response and guide personalized therapies 
[22,23]. As a result, promising outcomes have been 
observed in clinical trials and real-world settings, 
suggesting that personalized treatments have the 
potential to greatly improve patient outcomes and 
quality of life [24] and which we are confident will 
also make a positive impact if integrated into RPT.  

Some initial efforts have already been made 
toward developing precision RPTs and have yielded 
promising results. We have categorized and 
summarized these approaches in Figure 1, dividing 
them into four main categories, including: (i) clinical 
biomarkers, (ii) imaging biomarkers, (iii) 
physiologically-based pharmacokinetic (PBPK), and 
(iv) computational oncology-based methods. 
However, the potential for personalization of RPTs 
through these approaches has not yet been fully 
investigated. Furthermore, many of these methods are 
population-based and therefore lack personalization 
[25], while also failing to account for the multi-scale 
modeling required in RPTs. 

Moreover, computational and imaging 
technology has undergone very rapid and recent 
change. Substantial improvements in generative AI 
[26], coupled with improvements in computational 
technology, can now afford improved simulation and 
big data analytics to improve the field of 
mathematical oncology [27]. Generative AI provides 
the capability to generate new or improved images; as 
an example, there is significant potential to map 
shorter-scan or lower-resolution images (e.g. SPECT) 
to higher-resolution (PET) images for improved 
assessments. Mathematical or computational 
oncology involves the application of mathematical 
models and computational approaches to understand 
and predict the dynamics of cancer growth, 
progression, and response to treatment. In nuclear 
medicine, these techniques can be utilized to optimize 
imaging and therapeutic strategies, enhancing the 
precision and effectiveness of cancer diagnosis and 
treatment. Significant advances in scanner technology 
have resulted in substantial improvements in scanner 
sensitivity [28,29] and the ability to observe organ- 
organ interactions in real-time through extended 
field-of-view systems [30]. These advances have also 
led to the development of novel tools and methods for 
cancer diagnosis, prognosis, and therapy, including 
predicting patient outcomes and optimizing 
treatment protocols [31,32]. The development of 
cancer digital twins (DTs) is a significant example of 
computational and mathematical oncology [33–35]. 
DTs can apply mathematical models to create virtual 
replicas of tumors and their microenvironments, 
which can be used to simulate and predict the 
behavior of tumors in response to different treatments 

[36]. This allows for more precise and personalized 
treatment planning and optimization, potentially 
leading to better outcomes for cancer patients.  

In the realm of RPTs, we recently proposed 
theranostic DTs (TDTs). We predict that TDTs will 
revolutionize the design and optimization of RPT by, 
for the first time, enabling realistic simulations of their 
distribution and effect in a virtual environment [37–
39]. TDTs could be used to predict the distribution of 
radiopharmaceuticals in tissues and organs, as well as 
their radiation dose to both the target and healthy 
tissues, which can inform the design of optimal 
radiation dose regimens for RPTs. In addition, TDTs 
can also be used to personalize treatment planning by 
simulating the response of patient-specific tumors 
and tissues to various radiation dose regimens, which 
can help tailor the treatment to the individual patient. 
Overall, the use of DTs in RPTs has the potential to 
improve treatment efficacy and minimize radiation 
toxicity, ultimately leading to better patient outcomes. 

The objective of the present work is to propose a 
comprehensive roadmap for the development, 
enhancement, and adoption of TDTs as a promising 
future strategy for improving RPTs. We first briefly 
discuss the concept of DTs, TDTs and then present a 
framework and roadmap for the development and 
implementation of TDTs. Finally, we discuss our 
proposed strategy and outline future directions, 
followed by concluding remarks. 

2. Digital Twins and Theranostic Digital 
Twins 

Recently, DTs have gained significant attention 
and adoption due to their potential applications in 
many areas of research and development, including 
industries and healthcare [40]. DTs are virtual replicas 
of physical objects, systems, or processes that are 
created using data from different sources [41]. They 
are designed to simulate the behavior and 
performance of a real system, allowing for better 
analysis, optimization, and decision-making [42]. In 
healthcare, DTs have been directed toward 
developing feasible and more accurate models for 
personalized diagnosis or therapy [43]. Furthermore, 
a range of DTs are designed or suggested in different 
scales from subcellular to whole organ levels, and 
specific or general disorders have been investigated 
[44]. The idea of developing and using DTs to 
understand tumor dynamics and personalized 
management of cancer patients has grown in 
popularity due to improvements in experimental 
approaches to quantitatively characterize cancer and 
improvements in the mathematical and 
computational sciences and modeling strategies [45]. 

DTs have found various applications in 
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healthcare, including biomanufacturing, viral 
infections, orthopedic surgery, cardiology, nutrition, 
drug discovery, neurology, and oncology. DTs have 
received attention in drug discovery, with the concept 
of Drug Development Digital Twins (DDDT) 
proposed for drug research and development [46]. As 
another example, they have also been developed for 
neurology to improve diagnosis, treatment, and 
management strategies for multiple sclerosis patients 
[47]. As such, they have been proposed for precision 
cancer care and have been used to predict the 
progression of prostate cancer [48] and neurological 
complications in pediatric cancers [49]. 

Current RPT protocols often overlook several 
important factors that may influence treatment 
planning and outcome, including tumor character-
istics, such as heterogeneity, tumor microenviron-
ment, spread, size, volume, and location, as well as 
normal tissue factors like functionality, 
radiosensitivity, and perfusion [50,51]. Moreover, 
other critical factors, such as immune system status, 
tumor and normal tissue pharmacokinetics, receptor 
density/heterogeneity, protein binding, age, sex, 
socioeconomic status, and combination therapies, are 
not fully considered in these therapies [52]. This 
limited, impersonalized approach can increase the 
likelihood of over/underdosing, side effects, and 
treatment failure. Therefore, we propose a more 
personalized approach, using theranostic digital 
twins (TDTs), which leverage patient data and 
advanced computational modeling to create a virtual 
treatment world. Here, a range of treatment protocols 
can be tested and optimized, and personalized 
protocols can be selected for individual patients. This 

approach has the potential to improve treatment 
outcomes and quality of life and reduce patients’ costs 
and economic burden. Figure 2 provides a visual 
representation of our proposed approach toward 
connecting the small physical world to the 
personalized world using the TDT approach. TDTs 
are computational avatars for patients based on 
imaging and clinical data on which virtual treatments 
can be performed. TDTs will enable optimized and 
personalized RPTs by simulating injection protocols 
with acquired data from diagnostic nuclear medicine 
scans or other imaging modalities. 

Our proposed TDT uses available patient- 
specific information, including imaging and clinical 
data. The TDT is much more than a specific solution. 
It is a discovery/solution-providing paradigm 
providing a tool to personalize RPTs by enabling 
investigation of a variety of intervention parameters 
that can be optimized, e.g., optimal injected 
radioactivities (for a given specific activity), injection 
sites, injection intervals and profiles, and combination 
interventions/therapies. TDTs can enable reliable 
predictive dosimetry, for which we will leverage 
clinical trial data and prospectively collect additional 
clinical data to validate and refine our TDTs. We will 
predict the time activity curves (TACs) of a 
therapeutic radiopharmaceutical and will perform 
absorbed dose assessments even before the 
administration of the first therapy cycle (what we 
term “predictive dosimetry”, moving beyond our 
current post-image-acquisition dosimetry).  

Our TDT approach is consistent with the 
important ongoing theme of deploying in silico/ 
computational/virtual clinical trials [53,54]. This is 

 

 
Figure 1. Approaches toward personalized radiopharmaceutical therapies. We divide these approaches into four main categories, including (i) Clinical Biomarker-based, (ii) 
Imaging Bionarker-based, (iii) Physiologically-based pharmacokinetic (PBPK), and (iv) Computational Oncology-based.  
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also reflected in increasing guidance by the United 
States Food and Drug Administration (FDA) on the 
use of such models and trials in submissions [55,56], 
and the European Union REACH (Registration, 
Evaluation, Authorization, and Restriction of 
Chemicals) legislation’s goal of reducing animal 
testing by embracing in silico methods [57]. New 
legislation for the FDA introduced in 2023 mandates 
that instead of animal testing, new drugs can now 
move onto human trials following successful rounds 
of “non-clinical tests,” which includes “Computer 
modeling” [58].  

2. TDTs framework 
In pursuit of our main objective to develop TDTs 

for personalized RPTs, we begin by presenting a 
general framework that outlines how we plan to 
predict treatment outcomes. This framework provides 
a comprehensive overview of the necessary steps and 
components required to predict and optimize 
treatment plans accurately. We depict our TDT 
framework in Figure 3. As is shown, our TDT models 
can be developed through advanced computational, 
mathematical, or artificial intelligence (AI) models 
using multimodal and multi-scale data. Then, the 
developed models will be utilized to predict and 
optimize multi-purpose or multi-scale tasks based on 
the clinical situation. In the following section, we 
describe in detail the components of our framework. 

2.1. Data and data collection strategies 
RPT is a complex therapeutic approach which 

operates at the intersection between different 

branches of sciences, including medicine, physics, 
mathematics, radiobiology, radiochemistry, 
physiology, pharmacology, and immunology [59]. 
Incorporating these interdisciplinary approaches will 
be critical in ensuring that RPTs are effective, safe, and 
have minimal patient side effects. Furthermore, since 
the effects of RPTs on the human body can be highly 
complex and interdependent, the study and 
optimization of RPTs can be achieved through a 
multi-scale framework that considers the therapy at 
different scales. In this case, to develop TDTs, we need 
multi-scale data from the sub-atomic to whole-body 
levels. As such, data can be collected and analyzed in 
a temporal scale from a few seconds to months. From 
this point of view, it is necessary to gather data that 
encompasses a range of scales and modes to create 
versatile TDTs models. The following are examples of 
the types of data that should be collected. In Figure 4, 
these data are described.  

To clarify the data collection process, we employ 
a comprehensive strategy integrating various 
diagnostic techniques tailored for this therapeutic 
context. Essential biochemical markers indicative of 
the patient's health status are assessed through blood 
tests, while urine tests provide valuable insights into 
metabolic processes influenced by the therapy. 
Imaging modalities, particularly SPECT/CT scans in 
the case of Lu-177-PSMA, play a pivotal role by 
offering detailed anatomical and functional 
information, contributing to a holistic dataset for 
precise treatment evaluation. Additionally, real-time 
monitoring is facilitated through the integration of 
body-attached sensors, capturing dynamic physio-

 
Figure 2. From the real world toward the personalized world through the digital world. In the current real world, patients are treated using “one size fits all” approaches 
resulting in non-optimal clinical outcomes. Using the digital world, referred to as “theranostic digital twins” (TDTs), different treatment protocols can be developed and tested 
in a digital environment. The optimal personalized protocol can be utilized for each patient in the “personalized world” which we envisage will result in improved clinical 
outcomes and quality of life. 
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logical changes over the course of radiopharma-
ceutical therapy. Given the nuanced nature of this 
therapeutic approach, the proposed methodology 
involves a series of targeted experiments and 
examinations to ensure the comprehensive acquisition 
of pertinent data. Pharmacokinetics, a critical 
parameter in RPTs, is meticulously determined 
through the analysis of both animal and patient data, 
establishing a robust foundation for our model. This 
detailed explanation aims to provide a more explicit 
depiction of the specialized methodologies employed 
in our data collection process, specifically tailored to 
the intricacies of RPTs applications like Lu-177-PSMA. 
It is essential to emphasize that the proposed 
methodology for data collection endeavors are 
inherently multiscale and multimodal, spanning 
across various levels, including population, 
individual, tissue/organs, and cellular dimensions. 
Our comprehensive approach involves gathering 
diverse datasets across these scales. Subsequently, we 
plan to establish a robust biobank, utilizing the 

collected data as a foundation. This strategic initiative 
positions us to develop diverse models and conduct 
thorough analyses, fostering a deeper understanding 
of the intricate relationships and patterns inherent in 
the data collected across different scales. 
2.1.1. Physicochemical data 

Physicochemical data are integral for developing 
(TDTs) models, emphasizing radiopharmaceutical 
physical properties [55]. Key considerations include 
physical half-life, maximum administrable activity, 
and specific activity, influencing delivery, effective-
ness, and toxicity [56,57]. Chemical and radiochemical 
impurities impact in vivo behavior, affecting efficacy 
and safety [58]. Dose rate, emission type, particle 
energy, range, and linear energy transfer (LET) are 
crucial factors influencing radiobiological events 
[59][60]. For example, Beta-emitting radioisotopes 
offer a longer range and greater tissue penetration 
due to their longer particle pathlength (≤12 mm) and 
lower linear energy transfer (LET) (;0.2 keV/mm), 

 

 
Figure 3. Framework for developing TDTs. In this framework, we need multimodal and multi-scale data, which cover all we need for modeling. These data will be processed 
and analyzed through advanced mathematical and computational approaches and then will be used to predict and optimize the treatment. The TDTs will be used based on the 
scale and purpose of the required task. RP: Radiopharmaceuticals; R-D: Radiopharmaceuticals-Drug. 

 
Figure 4. Different types of data are required to develop TDTs. These multi-scale/multimodal data include physical, radiobiological, immunological, pharmacological, and 
physiological. 
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while alpha-particles have a moderate pathlength (50–
100 mm) and high LET (80 keV/mm). These 
properties shape the interaction between 
radiopharmaceuticals and cells or tissues, affecting 
therapeutic efficacy and potential side effects. 
Distinguishing between beta-emitting radioisotopes 
and alpha-particles is crucial for understanding 
radiation dynamics, impacting treatment effectiveness 
and potential adverse effects. 

2.1.2. Pharmacological data 
Radiopharmaceutical pharmacokinetics 

(radiopharmacokinetics) is critical for the success of 
RPTs and TDTs modeling [61]. It involves studying 
the distribution and elimination of 
radiopharmaceuticals within the body, determining 
treatment effectiveness, and assessing adverse side 
effects, especially in critical organs like the kidneys 
and bone marrow [62]. Important pharmacological 
factors include protein binding, metabolism, 
permeability, solubility, transport mechanism, 
lipophilicity, and drug-drug interactions [63]. Blood 
proteins like albumin significantly impact distribution 
and elimination [64], while permeability and 
solubility affect distribution throughout the body. The 
transport mechanism dictates radiopharmaceutical 
movement through the body, and lipophilicity 
impacts distribution [65]. Radiopharmaceutical-drug 
interactions must be considered during TDT 
development, involving potential interactions with 
other drugs, influencing treatment effectiveness and 
safety, especially in combination therapies [21]. 

2.1.3. Physiological data 
Understanding physiological factors influencing 

radiopharmaceutical pharmacokinetics is crucial for 
developing and personalizing RPTs. Achieving 
optimized therapeutic outcomes with minimal side 
effects requires accurate modeling and personalized 
dosing, considering various physiological parameters 
[67–69]. Pharmacokinetics encompass absorption, 
distribution, metabolism, and elimination of 
radiopharmaceuticals, making it crucial for RPT 
success. Physiological processes, including organ 
function, receptor density, blood flow rate, protein 
abundance, tissue composition, and volume, 
intricately influence radiopharmaceutical pharmaco-
kinetics. For example, cardiac function is vital for 
distributing radiopharmaceuticals via blood flow, 
while kidney function plays a crucial role in 
elimination through urine. Receptor density dictates 
radiopharmaceutical binding, and blood flow rate 
affects distribution to various organs. Protein 
abundance in the blood can influence metabolism and 
elimination processes. Advancements in on-chip 

technology, such as microfluidic chips or organoids, 
offer promising avenues for enhancing physiological 
data acquisition [71,72], providing detailed insights 
into physiological processes and facilitating 
refinement of RPT modeling and dosing strategies. 

2.1.4. Radiobiological data 
Developing personalized TDTs for RPTs requires 

understanding crucial radiobiological phenomena 
influencing tumor cells and surrounding tissues [73–
75]. Factors include the tumor microenvironment, 
radiosensitivity, repair mechanisms, adaptive 
response, bystander effect, oxygenation, vasculature, 
repopulation, and redistribution. The tumor 
microenvironment significantly impacts tumor 
growth and RPT response, influenced by factors like 
hypoxia, pH, and nutrients. Radiosensitivity, 
indicating the intrinsic susceptibility of cells to 
radiation, must be considered in TDT modeling, 
emphasizing the need for a deeper integration of 
radiobiology into nuclear medicine practices [73–77]. 
Key radiobiological factors, such as DNA repair 
capacity and mechanisms, are pivotal in the modeling 
process, considering the decreasing dose rate pattern 
in RPT. This pattern affects biological processes like 
redistribution, repopulation, and adaptive response, 
necessitating their incorporation into TDT models 
[74]. Additionally, tumor vasculature and oxygen 
status are crucial elements for a comprehensive 
representation of radiobiological complexities in 
personalized TDTs [75]. 

2.1.5. Immunological data 
Radiopharmaceuticals can activate 

immunological pathways crucial for RPT success [78]. 
These pathways modulate the immune response in 
both tumor and normal tissues, affecting clinical 
outcomes [79]. In TDT modeling, considering the 
immunological status of the tumor microenvironment 
provides insights into interactions with tumors and 
normal organs. Critical pathways include the 
modulation of immune cells, inducing immune cell 
infiltration, promoting immunogenic cell death, and 
activating immune checkpoint inhibitors [80][81][82]. 
Considering immune checkpoint inhibitors in TDT 
modeling helps optimize RPT efficacy. Cytokine 
expression in the tumor microenvironment modulates 
the immune response, leading to changes in RPT 
efficacy. Tumor antigens trigger an immune response, 
and their consideration in TDT modeling helps 
optimize RPT efficacy by promoting an immune 
response against tumor cells. Immune suppression, 
limiting RPT success, should be considered in the 
modeling to identify strategies to overcome this 
barrier. 
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2.2. Modeling 
In developing TDTs, advanced mathematical, 

statistical, computational, and AI approaches are 
pivotal for creating precise models and optimizing 
RPTs. Ordinary Differential Equations (ODEs) serve 
as a mathematical approach to model dynamic 
biological and physiological systems, including 
pharmacokinetics and the intricate interactions within 
cell populations, radiation effects on cell dynamics, 
and the immune system's response to radiation 
[60,61]. Partial Differential Equations (PDEs) 
contribute to TDT modeling by capturing the 
spatiotemporal distribution of radiation in tumors 
and surrounding tissues, predicting delivered 
radiation doses, and ensuring treatment effectiveness 
and safety [62,63]. This includes exploring tissue 
dynamics through Darcy models for fluid flow, 
comprehensive convection, diffusion, and reaction 
(CDR) modeling, and histology-driven reaction- 
diffusion PDE modeling to understand the influence 
of physiological factors like hypoxia on dose 
distribution [64–68]. 

AI approaches, such as machine learning and 
deep learning, have become instrumental for 
modeling complex systems by analyzing large 
datasets, detecting patterns, and revealing intricate 
relationships that traditional statistical methods might 
miss [69]. Deep learning algorithms, for instance, play 
a crucial role in analyzing medical images, identifying 
tumor regions, and optimizing treatment planning 
and delivery [70]. Machine learning extends its 
application to predict dose distribution based on PET 
imaging [71,72]. Complementary to mathematical and 
AI-based techniques, computational tools like Monte 
Carlo simulations simulate radiation behavior at the 
atomic level, aiding in predicting the biological effects 
of radiation [73]. These collective approaches form a 
comprehensive strategy for TDT modeling, offering a 
multifaceted perspective on the spatiotemporal 
dynamics in biological systems and optimizing RPT 
outcomes. 

2.3. Application 
Our proposed TDT offers a comprehensive 

approach to predicting and optimizing the outcomes 
of RPTs by considering various factors at multiple 
scales. This model can be used for a range of 
multi-scale and multi-purpose task predictions or 
optimization. One of the key predictions our model 
can make is the physical and biological doses of RPTs. 
By considering the properties of the 
radiopharmaceutical, and human body factors, our 
model could predict the delivered dose to both the 
tumor and normal tissues. These predictions can 
inform treatment planning and help ensure that the 

prescribed dose is appropriate and safe. Another 
prediction our model can make is the clinical outcome 
in terms of tumor response, disease progression, and 
survival. This information can be used to inform 
treatment decisions and optimize treatment regimens. 
Secondary risk is another important consideration in 
RPTs. Our model could predict the likelihood of 
adverse effects, such as radiation-induced normal 
organ complications and secondary malignancies. 
Quality of life is another important consideration in 
RPTs.  

Such a model can predict the potential impact of 
treatment on the patient’s quality of life by 
considering factors, such as treatment duration, 
adverse effects, and symptom management. This 
information can be used to inform treatment decisions 
and help ensure that the patient’s overall well-being is 
optimized. In addition to predicting outcomes, TDTs 
can also be used to optimize RPTs. Clinicians and 
researchers can use our model to optimize injection 
profiles by determining the optimal amount of 
injected radioactivity, the number of injections, and 
the time between injections [74,75]. This information 
can be used to tailor treatment regimens to individual 
patients and maximize treatment effectiveness. 
Furthermore, TDTs can be used to optimize specific 
activity, time of injection, and radiopharmaceutical- 
drug interactions. By considering the properties of the 
radiopharmaceutical, the tumor microenvironment, 
and the patient’s medical history and concomitant 
medications, our model can provide insights into the 
optimal treatment regimen for each patient. 

3. TDTs development 
A TDT model comprises three main components: 

a radiopharmacokinetic engine, a radiobiological 
optimizer, and an immunological modulator. In the 
following, we describe this model in detail. 

3.1. Radiopharmacokinetic engine 
The main component of our model is a 

Physiologically Based RadioPharmacoKinetic 
(PBRPK) model, which can be constructed using 
mathematical, computational or AI-based approaches. 
This engine can be developed using physical, 
pharmacological, and physiological factors through 
patient data, including imaging, lab tests, and other 
clinical measurements. The PBRPK has multiple 
compartments, which are based on the total 
physiology of the human body. The PBRPK would 
predict the physical dose and secondary risk and also 
control the pharmacokinetic and injection profile. 

3.2. Radiobiological optimizer 
A radiobiological optimizer will be added to the 

model to personalize and optimize our TDT model 
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based on the radiobiological properties. This module 
captures radiobiological data, such as radiosensitivity, 
repair, and proliferation capacities using lab tests or 
other measurements, and RPT can be personalized 
using this module. Adding this optimizer will 
improve models to predict biological dose and clinical 
outcomes. 

A range of radiobiological effects, such as cell 
death, cell repair, cell cycle effect, signal transduction, 
gene expression, mutagenesis, and genomic 
instability should be considered. While there has been 
a multitude of radiobiological studies conducted in 
the realm of RPTs, a significant amount of information 
remains elusive. For example, radiogenomics is a 
rapidly evolving field that aims to identify genetic 
markers associated with radiosensitivity and response 
to radiation therapy. By analyzing an individual's 
genetic profile, radiogenomics can provide valuable 
information about the likelihood of developing side 
effects or treatment response to radiation therapy. 
Radiogenomics holds promise for enhancing RPTs by 
tailoring treatment plans to individuals' genetic 
profiles. Understanding how genetic factors impact 
radiation response can optimize efficacy, reduce side 
effects, and enhance patient outcomes. However, this 
field is evolving, necessitating further research to 
unravel the intricate interplay between genetics and 
radiation therapy. Continued investigation is essential 
to integrate radiogenomics data effectively into 
clinical practice and decision-making. 

3.3. Immunological modulator 
Since the immune system plays a critical role in 

RPT, our TDT models can be improved using an 
immunological modulator. This module will add 
immunological factors, such as tumor microenviron-
ment, immunological cell death, antigen, and cytokine 
expression on the TDT models to improve and 
personalize the model. These immune factors can be 

obtained using lab tests or other measurements. 
The tumor microenvironment is a complex 

system that involves a variety of immune cells, 
growth factors, and cytokines. Understanding the 
specific characteristics of a patient's tumor 
microenvironment can help predict their response to 
different therapies. Similarly, radiation associated 
immunological cell death; such as apoptosis and 
necrosis, can also be important predictors of response 
to therapy. Incorporating antigens into TDT models is 
also important. Antigens are molecules that are 
recognized by the immune system and can trigger an 
immune response. Identifying the specific antigens 
that are present in a patient's tumor can help predict 
their response to immunotherapy. Cytokine 
expression is another important factor that can be 
incorporated into TDT models. Cytokines are proteins 
that are produced by immune cells and play a critical 
role in immune responses and understanding the 
specific cytokine expression patterns in a patient's 
immune system can help predict their response to 
different therapies. Overall, incorporating an 
immunological modulator into RPT models can 
provide a more personalized and accurate prediction 
of a patient's response to therapy. These immune 
factors can be obtained through lab tests or other 
measurements, providing valuable information that 
can be used to optimize patient care. 

4. TDT roadmap  
We propose a multi-step approach for the 

development of TDT, which can be divided into four 
main steps: (i) model development and parameter 
estimation, (ii) model personalization and 
optimization, (iii) model calibration, improvement, 
and validation, and (iv) model application and 
update. These steps are outlined in more detail below 
and in Figure 5.  

 

 
Figure 5. The detailed roadmap for the development of TDTs. We propose four main step processes, including model development, personalization, validation, and application. 
The specifics of each step are elaborated.  
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4.1. Model development and parameter 
estimation 

The first step in TDT model development is 
patient data acquisition. As mentioned in the above 
section, a range of multimodal and multi-scale data is 
needed to generate the first models. Since our TDT 
engine is a PBPRK model, the main data are those 
which impact radiopharmacokinetic. These compre-
hensive datasets encompass a variety of physical, 
physiological, and pharmacological information, 
obtained through precise methods such as blood tests 
for specific biomarkers, urine tests targeting metabolic 
indicators, and sophisticated imaging modalities like 
PET and CT scans to capture detailed anatomical and 
functional insights. Additionally, wearable 
body-attached sensors monitor vital signs, providing 
continuous data on aspects such as heart rate and 
activity levels. The collection of these data involves a 
strategic and patient-specific approach. For instance, 
blood tests may focus on tumor markers, urine 
analyses may assess metabolic profiles, and imaging 
modalities may include various scans tailored to 
individual requirements. Wearable sensors, on the 
other hand, facilitate continuous monitoring without 
extensive intrusion, ensuring a holistic representation 
of the patient's health status. 

The PBRPK engine, based on the level of 
personalization/optimization, physiological, and 
biological characteristics of the patients, as well as the 
type of radiopharmaceutical, can be made in different 
modes. For example, it can be made as a complex 
whole-body model with a multiple organs, 
compartments, and sub-compartments, or it might be 
a simple model made of some few compartments. For 
example, in Figure 6, we depict different PBRPK 
models for Lu-177-PSMA therapies. In this case, the 
pharmacokinetics of the radiopharmaceutical can be 
modeled by means of compartment and 
sub-compartment models of varying complexity [76].  

Parameter estimation of the developed PBPRK 
models is a key step in TDT modeling; it is an inverse 
problem that can be solved using conventional 
mathematical methods as well as new AI approaches. 
For example, conventional methods, such as linear 
and non-linear least-square fitting [77], genetic 
algorithms [78], simulated annealing [79], Bayesian 
[80], and Cluster Gauss-Newton (CGN) methods [81] 
can be employed. Furthermore, some AI approaches, 
such as novel biology-informed neural networks 
(BINNs), can be used to estimate the parameters [82] 
BINNs have the potential for complete interpretability 
and the incorporation of explainability algorithms 
[82]. Recent studies have demonstrated the potential 
of BINNs for stratifying prostate cancer patients 

according to [83] their treatment-resistance states and 
assessing the molecular causes of treatment resistance 
for therapeutic targeting. The goal of BINNs, based on 
physiologically informed neural networks (PINNs), is 
to develop a trustworthy and reliable algorithm for 
parameter inference and prediction of hidden 
dynamics, a basic topic in systems biology. Inspired 
by systems biology and incorporating ordinary 
differential equations into the neural networks, 
system biology-informed neural networks (SBINNs) 
may also be deployed. Daneker et al. [84] 
peer-reviewed reference neural networks informed by 
systems biology for parameter estimation, checking 
the possibility of locally identifying parameters and 
ultimately using SBINNs for parameter identification. 
While models, such as logistic regression have 
excellent interpretability, they may have lower 
predictive performance compared to deep learning 
models. Additionally, if the network is not properly 
regularized (as in BINNs and SBINNs), data may be 
overfitted, and much larger datasets may be needed 
for generalizable deep learning.  

To ensure that the developed models based on 
their estimated parameters have the highest accuracy 
and reliability, parameter evaluation and sensitivity 
analysis should be applied. In this process, the 
effectiveness of the parameters should be examined 
based on the relationship between the model’s input 
and output values. Sensitivity analysis is a crucial step 
to examine how changes in input parameters affect 
the output of the model [85]. This helps to determine 
which parameters have the most significant impact on 
the model’s output and which are less important. 
Performing a sensitivity analysis can assist in 
identifying the parameters with the greatest impact 
on the model and refining it for improved accuracy 
and predictive power. Novel methods, such as the use 
of Fisher-Information-Matrix [86] and Bootstrapping 
frameworks [87], can be used as sensitivity analysis 
approaches.  

4.2. Model personalization and optimization 
Improving personalization and optimization is a 

crucial and significant stage in the development of 
TDT models. During these stages, the accuracy and 
effectiveness of the models will be significantly 
improved. In order to implement these approaches, 
models need to be enhanced using multi-scale data 
that include both radiobiological and immunological 
data. These data types are essential when the goal is to 
deliver high doses of radiation to tumor tissue while 
minimizing exposure to surrounding healthy tissues. 

Radiobiological data can be incorporated into 
RPT planning by considering factors, such as repair, 
repopulation, bystander effect, adaptive response, 
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and radiosensitivity. By incorporating radiobiological 
data into models, we can develop more accurate and 
personalized treatment plans that are tailored to the 
individual needs of each patient. Similarly, immuno-
logical data can provide important information about 
how the immune system responds to cancer cells and 
to RPTs. By analyzing immune system activity, 
researchers can identify patients who are likely to 
respond well to RPTs, as well as those who may 
require additional treatments, such as 
immunotherapy. 

4.3. Model calibration, improvement, and 
validation 

Calibration, improvement, and validation are all 
important steps in developing and evaluating 
predictive models. When the first TDT models using 
PBRPK, optimizer, and modulator are developed, 
they should be calibrated in terms of adjusting the 
model’s parameters to optimize its performance on a 
specific treatment planning and scale. Calibration is 
important because it ensures that the model is tuned 
to the specific problem at hand and that its predictions 
are as accurate as possible. The model improvement 
involves making changes to the model in order to 
improve its performance or address any limitations or 
weaknesses. This can involve adding new features or 
variables, changing the model’s structure or 
architecture, or incorporating new data or knowledge. 
Model improvement is an ongoing process, as 
researchers are constantly developing new techniques 
and approaches to improve the performance of 
predictive models. Model validation involves 
evaluating the model’s performance on new data or in 
a real-world setting. The goal of validation is to 
ensure that the model is accurate, reliable, and 
effective and that it can be used to make predictions 

with confidence. TDT models undergo evaluation 
through various pre-treatment planning tests to 
identify uncertainties and limitations in these 
processes. Determining uncertainties and limitations 
is crucial in refining the model. Improvement 
opportunities arise at this stage, where incorporating 
new data and conducting analytical tests can enhance 
the model's performance. 

4.4. Model Application and Update 
When the modeling process is completed, it can 

be used for various clinical applications, including 
treatment planning, Predictive dosimetry, outcome 
prediction, risk prediction, and running clinical trials. 
It should be noted that, as the RPTs are delivered 
through different cycles, the developed TDT models 
can be applied for the first cycles of therapy, and then 
they can be updated using these data and improved 
for the other cycles of therapy, and this process can be 
repeated. These kinds of dynamic TDTs (DTDTs) will 
improve RPT personalization and optimization. 
Models also can be updated using new patient data. 

4.5. Example of TDTs for personalizing 
Lu-177-PSMA therapies 

In the following section, we show how our TDT 
models could be developed and utilized for patients 
who receive Lu-177-PSMA as a part of their treatment. 
We summarize the process in Figure 7.  

Data collection  
Consider the scenario where a group of patients 

has been diagnosed with metastatic castration- 
resistant prostate cancer (MCRPC), prompting 
physicians to prescribe Lu-177-PSMA for disease 
management. As the effectiveness of Lu-177-PSMA 
hinges on sufficient PSMA receptor expression in 

 
Figure 6. The main core of our TDT model in terms of PBRPK compartment and sub-compartment models. In our TDT modeling approach, based on the patient 
biology/physiology, radiopharmaceutical type, and clinical needs, different models, from simple to complex PBRPK models, can be developed. At the sub-compartment level, for 
example, for Lu-177- PSMA therapies, we can have different numbers of sub-compartments which are connected through microparameters, including k1, k2, kon, koff, ke, krec, and 
kdeg, which show internalization process of this kind of radiopharmaceutical into a specific tissue including a tumor. 
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lesions, obtaining PET imaging or SPECT data (e.g., 
Tc-99m-PSMA SPECT/scintigraphy) becomes 
indispensable for the initial assessment of 
Lu-177-PSMA treatment planning. In addition to 
these imaging modalities, other scans like bone scans, 
CT, and MRI can offer valuable insights into patient 
characteristics and overall metastatic status, including 
PSMA-negative lymph nodes and bone metastasis. 
However, for our model development purposes, a 
dynamic PSMA-PET/CT scan stands out as it can 
provide an extensive array of data, encompassing 
crucial pharmacokinetic parameters. Moreover, 
considering the availability of PET radiotracers, 
physicians may choose to order Cu-64-PSMA for PET 
imaging. This particular radiopharmaceutical, with its 
extended half-life, has the potential to furnish more 
comprehensive information regarding the 
pharmacokinetics of PSMA, contributing to a more 
detailed understanding of the treatment dynamics. 
Furthermore, extended fields of view PET scanners, 
including total body scanners, hold particular 
significance for dynamic imaging applications.  

Using the above-mentioned multimodality 
images, one will be able to gather data that could be 
used as preliminary model’s inputs. Examples include 
pharmacokinetic parameters, pattern of time-activity 
curves (TACs), biodistribution patterns, standardized 
uptake values (SUVs), anatomical localization, 3D 
localization, quantification of uptake, anatomical 
information, tumor size and density, perfusion and 
diffusion metrics and bone metastasis detection. In 
addition to the diagnostic images, a wealth of 
valuable data can be derived from patient documents 

and a diverse array of examination modalities. Critical 
information essential for constructing a thorough 
patient profile includes assessing prostate-specific 
antigen (PSA) levels and conducting comprehensive 
kidney and liver function tests. These tests cover 
parameters such as creatinine, estimated glomerular 
filtration rate (eGFR), complete blood cell count, as 
well as liver-specific markers including aspartate 
aminotransferase (AST/GOT), alanine aminotrans-
ferase (ALT/GPT), total bilirubin, albumin, alkaline 
phosphatase (AP/ALP), lactate dehydrogenase 
(LD/LDH), and C-reactive protein (CRP). 
Furthermore, insights into the condition of 
vasculatures play a pivotal role in this holistic 
evaluation. This extensive dataset ensures more 
profound understanding of the patient's physiological 
profile, fostering a more nuanced and personalized 
approach in the development of therapeutic 
strategies.  

Additionally, capturing radiobiological and 
immunological data is essential to grasp the primary 
characteristics of patients. This information aims to 
enhance the modulation and optimization of our 
models. For radiobiological optimization, we can 
extract blood samples from patients and assess 
radiosensitivity through genomic analyses such as 
single nucleotide variations (SNV), copy number 
variations (CNV), and other pertinent genes in the 
Radiosensitivity Index (RSI). This index, previously 
described in literature and is derived from 10 genes 
(AR, c-JUN [JUN], STAT1, PKC [PRKCB], Rel A 
[RELA], cABL [ABL1], SUMO1, CDK1, HDAC1, and 
IRF1). We can then modify our injection prescription 

 

 
Figure 7. Workflow for designing TDTs for radiopharmaceutical therapies. This case is an example for Lu-177-PSMA therapies. 
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based on these findings. On the other hand, given that 
Radiotherapy-Induced Immune System alterations 
(RPT) are anticipated, and considering our intention 
to optimize and personalize the injection dose, it is 
imperative to gather valuable information on the 
immune system. This information includes blood 
count levels, genetic polymorphisms, and the levels of 
crucial interleukins (e.g., IL-10 and IL-6), NKG2D, 
KIRs, MHC class I, PD-1, NKG2A, killer 
immunoglobulin-like receptors (KIRs), as well as 
chemokine (C-C Motif) ligand 2 (CCL2) and 
colony-stimulating factor 1 (CSF1). 

Model development and parameter estimation  
In the context of model development and 

parameter estimation, collected data can be leveraged 
to construct patient-specific PBPK models. These 
models encapsulate the unique PSMA pharmaco-
kinetics and the functional attributes of a patient's 
body, derived from dynamic PSMA PET/CT, 
complemented by other imaging modalities such as 
contrast-enhanced CT/MRI and relevant lab tests. 
PBPK models already integrate, in a knowledge- 
driven manner [88], the body weight, height, 
hematocrit level, and tubular extraction rate (TER; 
used to calculate GFR) influencing compartmental 
volumes of distribution, blood flow and kidney 
filtration rate. One may also input tumor and OAR 
volumes into the models as derived from patient 
images using an automated segmentation tools [89]. 
The model parameters can then be personalized for 
individual patients. The process of parameter 
estimation can be executed through both conventional 
and AI methodologies, utilizing techniques like 
least-square fitting and genetic algorithms. 
Furthermore, other conventional methods like CGN 
estimation which is a computationally efficient and 
robust approach can be applied [81]. New methods 
like NNs, neural ODEs and PINNs can more effective 
and accurate for parameter estimation. For example, 
Neural ODEs, are useful for dynamic data and can 
enhance the accuracy and efficiency of pharmaco-
kinetics parameter estimation [90]. PINNs also which 
represent another AI paradigm effective for ill-posed 
and inverse problems, showing superior capabilities 
in approximating and generalizing solutions for 
high-dimensional partial differential equations [69]. 

Model selection, personalization, and application  
The approach involves constructing a variety of 

PBPK models featuring different compartments and 
sub-compartments. The selection of the most 
personalized model is based on the individual 
patient's data, parameters, and fitting results. For 
instance, model refinement may include simplifying 

structures to encompass only PSMA-positive organs, 
grouping all PSMA-negative organs into a single 
entity with a reduced set of parameters. Conversely, 
adjustments to the models may be necessary when 
dealing with large tumors, addressing the potential 
tumor sink effect, a phenomenon well-documented in 
clinical observations and supported by modeling 
simulations. 

5. Discussion  
In recent years, cancer research has shifted 

towards studying and treating cancer as a systemic 
disease, which requires multi-scale modeling of 
cancer diagnosis and therapy [91]. Hitherto, research 
efforts have mainly been focused on the genetic and 
molecular characteristics of cancer; instead, tumors 
are complex structures that depend on dynamic 
interactions between cells and their microenviron-
ments. Cancer systems biology aims to understand 
the emergent behavior of the malignant system as a 
whole rather than focusing on individual parts. To 
analyze and integrate large amounts of data, 
mathematical and computational modeling are used 
in addition to standard biological and medical 
research [92]. 

In this work, a roadmap is proposed to develop 
theranostic digital twins aiming at personalizing 
radiopharmaceutical therapies. Our goal is to enhance 
patient outcomes. Using the theranostics principle, we 
can first identify tumor cells expressing specific 
proteins via diagnostic agents (radiolabeled 
molecules) and then target those cells using similar 
molecules labeled with therapeutic radionuclides. As 
currently implemented, RPTs largely rely on a 
standardized approach that does not account for 
inter-patient variations in pharmacokinetics. Our 
vision for TDTs is to personalize RPT prescriptions in 
order to maximize radiation doses to tumors while 
minimizing toxicity to organs at risk (OARs). 

TDTs will allow us to personalize dose 
assessments and predict absorbed doses before 
patients receive their therapy cycles. These digital 
twins will incorporate multiple sources of patient 
data, including clinical history, imaging, and clinical 
data, to develop predictive models. TDTs will model 
both pharmacokinetics (how the body processes the 
drug) and pharmacodynamics (how the drug affects 
the body). In RPTs, pharmacodynamics involves 
radiobiology and immunology, making it distinct 
from chemotherapy, while the unique pharmaco-
kinetics of RPTs differentiates it from external beam 
radiotherapy (EBRT), presenting unique challenges 
that TDTs can help address.  

In the realm of developing and refining TDTs, 
the use of statistical models allows for the assessment 
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of relations of interest using data from many patients. 
The initial step involves harnessing comprehensive 
population data, which encompasses a broad 
spectrum of information concerning anatomical 
structures, physiological responses, immunological, 
pharmacological, biochemical, and genetic diversity 
among individuals. This data serves as the 
cornerstone for constructing a baseline digital 
representation using mathematical models, which 
capture distribution and trends within the population. 
Subsequently, the process transitions into 
personalization, wherein individual-specific data, 
including lab tests, medical history, genetics, and 
previous diagnostic/therapeutics data, is integrated. 
In this personalized phase, statistical models are 
applied to analyze and fine-tune the TDT, ensuring a 
more precise alignment with the unique attributes of 
each individual. Additionally, thorough validation 
and calibration of predictions made using data from 
patient cohorts are emphasized to ensure the 
reliability and accuracy of the TDT's predictions in 
real-world clinical settings. By embracing this 
integrated approach, TDTs are developed to not only 
reflect the characteristics of the general population but 
also cater to the personalized intricacies of individual 
human bodies. Developing highly accurate 
pharmacokinetic models, specifically PBRPK models, 
is essential in the process of TDT modeling. Recently, 
PBRPK models have found much interest in RPTs, 
and have been used in predictive dosimetry and 
treatment planning. However, most of these models 
have relied on population-based parameters, leading 
to a lack of personalization. Instead we propose the 
use of advanced approaches, including AI or other 
inverse problem solution approaches for parameter 
estimation and personalization. 

We expect that the approaches outlined in this 
roadmap will help improve and personalize TDT 
models using radiobiological and immunological 
modules. The radiobiology of RPT has some 
additional complexities when compared with EBRT; a 
range of physical parameters, such as particle range, 
energy, LET and half-life, determine the fate of 
radiobiological events. In addition, a major critical 
factor in RPT is dose rate, which has an exponentially 
decreasing behavior and significantly impacts 
radiobiological phenomena such as repair, repopu-
lation, and redistribution. Furthermore, the radiation 
sensitivity of both normal and tumor tissues is a vital 
factor that should be considered in the model in terms 
of radiogenomics. Incorporating immunological 
factors into RPT planning can further improve the 
accuracy and effectiveness of treatment, ultimately 
leading to better outcomes for patients. For example, 
relevant immunological factors associated with the 

tumor microenvironment should be included in the 
TDTs for optimal personalization and optimization. 
Moreover, given that RPT can induce immune effects, 
such as changes in the expression and activity of 
T-cells, cytokines, dendritic cells, innate myeloid cells, 
natural killer cells, and myeloid-derived suppressor 
cells, it is essential to consider the role of immunology 
in the TDT modeling process.  

One important task for TDT modeling is RPT 
induced normal organ complications. The 
dose-limiting organ varies between therapies and is in 
itself a complex interplay of various physiological, 
radiobiological and pharmacodynamic factors. For 
some therapies, such as PRRT, the kidney is the dose 
limiting organ, where the renal tubules exhibit high 
uptake resulting in prolonged exposure to radiation 
with high dose rates [93]. For other therapies, such as 
radioiodine therapy, bone marrow is the 
dose-limiting organ and, e.g. in prostate cancer RLT, it 
is the salivary and lacrimal glands [94]. Although the 
dose limiting organ for radioiodine therapy is the 
marrow, radiation induced sialadenitis can also occur 
and can be quality-of-life limiting. Understanding the 
potential for side effects and limiting doses to these 
organs will help optimize the treatment and improve 
patient outcomes.  

Parameter estimation is a crucial aspect of 
mathematical modeling, particularly in systems 
biology, where models of biological reactions often 
involve many unknown parameters that must be 
inferred from a limited number of experimental 
measurements [95]. Conventional approaches like 
least-square fitting, genetic algorithms, and Bayesian 
methods can be used, but identifying parameters can 
be challenging due to insufficient data and 
non-identifiability issues. Structural identifiability 
analysis, which focuses on identifying the model’s 
parameters, can help overcome these challenges [96]. 
Additionally, SBINNs can be employed for parameter 
and hidden dynamics identification by incorporating 
systems of ODEs into the neural networks [97]. 
SBINNs can add further constraints to the 
optimization of techniques, making it robust to noisy 
measurements and scattered observations, thus 
enabling the estimation of unknown parameters 
based on minimal data. The training process of 
SBINN should be performed using a loss function that 
consists of two supervised losses: (i) the discrepancy 
between the network and measurements and (ii) 
unsupervised loss (based on ODEs). After parameter 
estimation by SBINNs, we will consider identifiability 
(structural and practical) steps to ensure the reliability 
of the results. 

One of the main benefits of TDT is developing a 
comprehensive scoring system which takes into 
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account multiple factors, including treatment 
outcomes, normal tissue side effects, quality of life, 
and cost-effectiveness. This TDT scoring system will 
enable us to identify the most optimal therapy for 
each patient and to personalize their treatment plan 
accordingly. By utilizing this scoring system, we can 
minimize the risk of side effects on normal organs and 
maximize the potential benefits of RPT for each 
patient. Ultimately, this approach can lead to 
improved treatment outcomes and quality of life for 
patients undergoing RPT. The use of our TDT models 
and this scoring system might enable us to perform 
virtual clinical trials in order to test and understand 
RPTs better. 

Generative AI models hold promise in 
generating data for both population and 
individual-based TDTs. For population models, they 
can simulate various human body scenarios, both 
normal and abnormal, providing a comprehensive 
understanding of human physiology. At the 
individual level, they can generate new data that 
individual patients may not possess, such as creating 
pathology maps or simulating pharmacokinetic data 
from simple anatomical information. Generative AI 
models can significantly aid in the development of 
TDTs, particularly in compensating for data scarcity 
and enabling the simulation of various human 
conditions, both normal and pathological [98–100]. 
These models excel in creating, manipulating, and 
diversifying data, thereby enhancing data acquisition, 
communication, management, digital modeling, and 
analysis. By synthesizing these methodologies, the 
development of TDTs for 177Lu-PSMA therapy has 
the potential to revolutionize personalized cancer 
treatment strategies, advancing both efficacy and 
patient outcomes. Drawing inspiration from prior 
work such as scGen and PathologyGANs [100], novel 
approaches can be devised to tailor Generative AI 
techniques for TDTs in the context of treatments like 
Lu-177-PSMA therapy. For instance, generative 
models such as Variational Autoencoder (VAE) or 
Generative Adversarial Network (GAN) models 
present promising avenues for simulating essential 
data in TDT modeling for Lu-177-PSMA therapy. As a 
prospective example, these advanced techniques can 
accurately emulate crucial factors like cellular uptake 
and receptor densities, utilizing simulated PET scans 
and histological images derived from simple 
anatomical inputs. This not only streamlines 
treatment planning but also enables precise 
customization for individual patients, ultimately 
maximizing the effectiveness and personalization of 
the therapy. 

One important aspect of precision RPTs that 
should also be considered in our modeling is 

microdosimetry. Microdosimetry plays a crucial role 
in evaluating the impact of radiopharmaceuticals, 
especially with alpha emitters, such as Actinium 225, 
on the subcellular and DNA levels [101]. The decay 
scheme of these alpha emitters is instrumental in 
performing microdosimetry, allowing for the 
estimation of damage produced, such as the 
calculation of double breaks in DNA [102]. 
Additionally, in microdosimetry, it is vital to account 
for the position of the radioactive source 
(radiopharmaceutical) within different parts of the 
cell, including the cell membrane, cytoplasm, and 
nucleus, as well as considering the position of the 
target. Furthermore, parameters like the percentage of 
cellular uptake of the radiopharmaceutical are 
integral to microdosimetry and warrant inclusion in 
our modeling efforts. Therefore, a comprehensive 
consideration of these factors enhances the precision 
and personalization of dose prescriptions in our RPT 
plans.  

Longitudinal data, acquired both before and 
during RPTs, will play a pivotal role in the continuous 
improvement and refinement of TDTs. The 
advantages of longitudinal data will lie in its ability to 
capture changes over time, offering insights into the 
dynamic nature of a patient's condition and treatment 
response. This information is essential for updating 
TDTs to enhance their predictive accuracy and 
effectiveness. Longitudinal data can be obtained 
through various means, including biosensors, 
wearable devices, such as detectors, imaging 
techniques, and other innovative technologies. While 
these data sources provide valuable information, their 
collection and analysis present challenges. The 
process is often costly, time-consuming, and may 
induce patient discomfort due to the need for regular 
monitoring. Striking a balance between obtaining 
comprehensive longitudinal data and minimizing 
patient burden remains a critical challenge. As 
technology advances and methodologies evolve, 
optimizing data collection methods and addressing 
associated limitations will be instrumental in 
leveraging the full potential of longitudinal data for 
refining TDTs and improving patient outcomes in the 
realm of RPTs. 

However, we should emphasize that developing 
TDTs might have challenging issues in terms of 
acquiring patient data, developing models, estimating 
parameters, and addressing ethical considerations. 
Since cancer is a complex disease and also RPT 
mechanisms are not fully investigated, the interaction 
of radiopharmaceuticals with this system, their 
pharmacokinetic and pharmacodynamic, should be 
studied and analyzed through advanced modalities. 
Despite the challenges, TDTs offer a promising 
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research framework for studying RPTs in an in-silico 
ecosystem. To effectively integrate TDTs into clinical 
practice, a thorough and collaborative approach 
involving researchers, medical physicists, 
technologists, and clinicians is essential. This 
approach must adapt to the inherent complexity of 
various clinical settings, patient conditions, and the 
required level of optimization and personalization.  

The process begins with comprehensive data 
collection, drawn from diverse sources such as clinical 
trials, lab-based biomarker analyses, and generative 
AI approaches. These data are then carefully 
organized into TDT banks within specific timelines, 
facilitating comprehensive model development. 
Modelers utilize this data to establish initial models, 
which are further refined through iterative 
personalization using patient-specific information. 
However, the degree of personalization may vary 
based on patient circumstances; for example, in cases 
of complex conditions, the focus may shift from 
personalization to addressing immediate treatment 
needs. Additionally, while prioritizing user-friendly 
software for smooth integration into clinical 
workflows is crucial, the final decision-making 
process ultimately lies with clinicians, physicists, and 
patients. This underscores the importance of 
collaborative decision-making tailored to individual 
patient needs and clinical requirements, ensuring the 
effectiveness and appropriateness of treatment 
strategies guided by TDTs across diverse clinical 
settings. 

Capturing the complexity of the human body 
necessitates the use of various data types, often 
multi-dimensional in nature. These data types include 
clinical data, patient-derived information, biometrics, 
medical history, multi-omic data, and medical images. 
The foundational aspect of constructing digital twins 
lies in the collection of high-volume, high-quality 
data. However, the process of gathering and storing 
this information can be intricate and challenging. 
Challenges further arise due to differences in data 
type, veracity, volume, and availability, all of which 
should be carefully considered when building digital 
twins with multi-dimensional datasets. To ensure 
accuracy and consistency, standardizing data 
collection protocols is critical. Digital twins, in 
particular, require continuous, real-time, and ongoing 
multi-dimensional dynamic data collection to 
accurately reflect the current state of patients and 
adapt to changes over time. 

For efficient analysis and modeling, establishing 
databases to store and organize this vast array of data, 
along with robust connection systems between 
patients and digital twins, is imperative. Data 
diversity is essential for creating generalizable and 

fair models during development. Furthermore, 
patient privacy and security are paramount 
considerations in the realm of digital twins, 
demanding safeguards against unauthorized access 
and breaches. Additionally, the dynamic nature of 
patient movement during treatment introduces a 
challenge in data acquisition, necessitating a 
harmonization of data sources to maintain the 
integrity of information. Addressing these intricacies 
will be crucial steps to advance the field of digital 
twins in healthcare. 

We also should mention that the determination 
of an appropriate sample size for the development of 
TDTs holds paramount importance and is intrinsically 
linked to the intricate nature of our modeling 
approach. The scale of our model development, 
influenced by factors such as the incorporation of 
diverse imaging and testing modalities, the degree of 
personalization and optimization sought, and the 
specific algorithms or models employed for 
parameter estimation, necessitates a nuanced 
discussion on sample size considerations. In an ideal 
scenario, where comprehensive multi-center, 
multi-modality, and multiscale data are readily 
available, a larger sample size could significantly 
enhance the robustness and generalizability of our 
TDTs. However, acknowledging the real-world 
constraints and variability, we aim to convey that, in 
certain instances, meaningful TDTs can still be 
constructed even with a more limited number of 
patients, emphasizing the adaptability and potential 
of our approach across varying data availabilities and 
model complexities 

6. Conclusion 
Present-day RPTs are generally performed using 

a “one size fits all” approach. The emerging 
framework and technology of digital twins, as we 
elaborate in this work, presents a new framework for 
the personalization and optimization of RPTs. Our 
proposed roadmap for developing TDTs is an 
achievable strategy that can be used to improve the 
delivery of RPTs. TDTs can be developed using 
patient data and can be personalized through accurate 
parameter estimation and model validation. By 
developing personalized TDTs, we can ensure that 
each patient receives optimal treatment that is tailored 
to their individual needs. This approach has the 
potential to improve treatment outcomes, reduce side 
effects, and enhance the quality of life for patients 
undergoing RPTs. Overall, the integration of TDTs 
offers potential for advancements in certain aspects of 
the field of RPTs and may enhance patient care. 
Meanwhile, there is a need to carefully assess and 
validate reliability of predictive results. It is also 
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crucial to assess the feasibility of implementing and 
integrating TDTs in clinical practice, considering the 
need to maintain efficient and streamlined protocols 
within hospital settings. 
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