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Abstract 

Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and 
life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, 
heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of 
interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a 
comprehensive understanding of the pathological mechanisms underlying complications and identification of 
precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated 
in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory 
conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention 
of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and 
explores TGase2 inhibition as a promising therapeutic approach in their treatment. 
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1. Introduction 
Diabetes, a serious metabolic disorder arising 

from chronic hypoglycemia, induces progressive 
vascular damage and dysfunction, leading to both 
microvascular and macrovascular complications [1, 
2]. Microvascular complications include diabetic 
retinopathy (DR), diabetic nephropathy (DN), 
diabetic peripheral neuropathy, and diabetic pul-
monopathy (DP), arising from chronic hyperglycemia 
affecting the retina, renal glomerulus, peripheral 
nerves, and lungs, respectively [3, 4]. Macrovascular 
complications stem from accelerated cardiovascular 
diseases (CVDs), culminating in myocardial infarction 
and strokes [5]. Given that diabetes significantly 
contributes to blindness, kidney failure, heart attacks, 
and limb amputation, the imperative to address 
diabetes and its associated vasculopathy is substantial 
[2, 3].  

While the primary treatment for diabetes focuses 
on normalizing blood glucose levels [6], both 

experimental and clinical studies have demonstrated 
that glucose normalization alone does not suffice in 
preventing diabetic complications. This phenomenon, 
termed hyperglycemic memory (HGM) or the legacy 
effect, underscores the impact of persistent hyper-
glycemic stress [7-10]. Effectively treating diabetes 
necessitates not only the normalization of hyper-
glycemia but also the prevention of hyperglycemic 
memory-induced diabetic complications. Therefore, 
understanding the pathological mechanism(s) 
underlying microvascular and macrovascular diabetic 
complications and identifying therapeutic targets for 
these complications are pivotal for developing 
comprehensive treatment strategies. 

Transglutaminase 2 (tissue transglutaminase; 
TGase2) belongs to the transglutaminase family and 
catalyzes Ca2+-dependent protein crosslinking 
through the transamidation of glutamine residues to 
lysine residues [11]. Ubiquitously expressed, TGase2 
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is a multifunctional enzyme, acting as a transamidase, 
serine/threonine kinase, protein disulfide isomerase, 
and GTPase [11-14]. Additionally, TGase2 demons-
trates non-enzymatic functions through interactions 
with extracellular proteins, such as fibronectin, 
integrins, and syndecans, promoting matrix 
stabilization, which contributes to fibrosis in the 
kidney, liver, heart, and lung [11, 15]. 

Participating in various physiological processes, 
TGase2 influences apoptosis, inflammation, 
epithelial–mesenchymal transition, fibrogenic 
reactions, and mitochondrial dysfunction through 
post-translational modifications of several substrate 
proteins, including collagen, gluten, tau, α-synuclein, 
and β-crystallin [11, 13, 15-17]. Given its multifaceted 
roles, TGase2 is implicated in the pathogenesis of 
diverse diseases, including celiac disease [18], 
neurodegenerative diseases [13, 19], cancers [16, 20], 
fibrosis [17, 21], inflammatory diseases [22], and heart 
failure [23]. 

Recently, TGase2 has emerged as a key enzyme 
in the pathogenesis and therapeutic investigation of 
diabetic vascular complications, including DR, DN, 
DP, and CVD [4, 24-27]. This review focuses on 
TGase2’s multifaceted role in diabetic complications, 
exploring its potential as a therapeutic target and 
discussing the emerging landscape of TGase2 
inhibitors for addressing these intricate vascular 
complications. 

 

Table 1. Regulation of TGase2 transamidase and kinase activities. 

Regulators Transamidase Kinase 
Calcium Activation [11] Inhibition [52, 54] 
GDP/GTP Inhibition [176, 177] No effect [54] 
ATP Inhibition [14, 52] Activation [14, 32, 52] 
Cystamine  Inhibition [14] Activation [14]  
Amine compoundsa  Inhibition [17, 37, 38]  N.D. 
Thiol compoundsb Activation [14] Inhibition [14, 32] 
Nitric oxide Inhibition [39] N.D. 
Mg2+  No effect [14] Activation [14] 
Divalent metal cationsc N.D. Inhibition [32] 
Phosphorylation Inhibition [14] Activation [14] 
Acetylation No effect [14], inhibition [42] Activation [14] 
C277S mutation Complete inhibition [41, 178, 179] No effect [41] 
K444A mutation Complete inhibition [41] Partial inhibition [41] 
K663A mutation No effect [41] Partial inhibition [41] 
aputrescine, monodansylcadaverine (MDC), 5-(biotinamido)pentylamine (BAPA), 
spermine, spermidine, and histamine; bglutathione, dithiothreitol, 
mercaptoethanol, and S-nitroso-N-acetylpenicillamine; cCu2+, Mn2+, Ni2+, and Zn2+; 
N.D.; not determined. 

 

2. Regulation and functions of TGase2 
transamidase and kinase activities 

Among the four distinct enzymatic activities of 
TGase2, the transamidase and kinase activities are 
most likely to be involved in the pathogenesis of 
diabetic complications [24, 28-31]. Consequently, this 
review focuses on the regulation and functions of 
these two enzymatic activities. The intricate interplay 

between these activities is influenced by various 
regulators, including thiol compounds, divalent metal 
cations, and phosphorylation [11, 14, 32] (Table 1). 
Additionally, they share several common proteins as 
substrates, such as nuclear factor-κB (NF-κB), 
retinoblastoma protein (pRb), E-cadherin, and p53 
[11, 30, 33] (Table 2). Thus, to grasp the role of TGase2 
in the pathogenesis of diabetic complications, a 
thorough understanding of the regulatory 
mechanisms governing TGase2 transamidase and 
kinase activities, along with their respective target 
proteins, becomes imperative. 

 

Table 2. Substrate proteins of TGase2 transamidase and kinase: 
functions and regulatory actions. 

Substrate 
proteins 

Transamidase activity Kinase activity 

RhoA Activation: cell differentiation [43], 
stress fiber formation [48]  

N.D. 

NF-κB Activation by IκB polymerization: 
inflammation [44]  

Activation: PTEN 
downregulation and 
anti-apoptosis in cancer [56] 

GAPDH Inhibition: interfering in energy 
metabolism [3, 45, 50]; deamination: 
actin cytoskeleton remodeling [180] 

N.D. 

pRB Protection of pRB degradation: 
anti-apoptosis [33, 46, 48] 

Phosphorylation: disturbing 
E2F1 interactions and 
pro-apoptosis [52] 

E-cadherin Transamidation [33] Phosphorylation: ECM 
breakdown and metastasis [30, 

64] 
p53 
oncoprotein 

Inhibition: tumorigenicity [47] Phosphorylation: 
pro-apoptosis [58] 

IGFBP-3 N.D. Phosphorylation: regulation 
of IGF functions [54] 

Histone 
proteins 

N.D. Phosphorylation: regulation 
of chromatin structure and 
function [53] 

G6PD N.D. Phosphorylation: oxidative 
stress [30] 

Cytochrome 
C 

N.D. Phosphorylation: 
pro-apoptosis [30, 61] 

Calmodulin  N.D. Phosphorylation: Ca2+ 
signaling [30, 62] 

S100A7 Small effect [33] Phosphorylation: Ca2+ 
signaling [30] 

cMMP-3 N.D. Phosphorylation: ECM 
breakdown and metastasis [30, 

63] 

cMMP-3, catalytic domain of human matrix metalloproteinase-3; ECM, 
extracellular matrix; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; G6PD, 
glucose 6-phosphate dehydrogenase; IGF, insulin-like growth factor; IGFBP-3, 
insulin-like growth factor-binding protein-3; NFκ-B, nuclear factor-κB; pRb, 
retinoblastoma protein; PTEN, phosphatase and tensin homolog; S100A7, S100 
calcium-binding protein A7; N.D., not determined. 

 

2.1. TGase2 transamidase activity 

2.1.1. Regulation of TGase2 transamidase activity 
TGase2 comprises four distinct domains: an 

N-terminal β-sandwich domain, a catalytic core 
domain, and two C-terminal β-barrel domains [34, 35] 
(Figure 1A). While the N-terminal β-sandwich 
domain lacks catalytic activity, it is recognized for its 
binding affinity to fibronectin and integrin [35]. The 
catalytic core domain, housing a catalytic triad 
(Cys277, His335, and Asp358), possesses five 
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calcium-binding sites [36], and β-barrel 1 features a 
GTP/GDP-binding site (Figure 1B). Three- 
dimensional structural analysis has revealed the 
reciprocal regulation of transamidase activity by Ca2+, 
nucleotides, and various regulators [11]. TGase2 
bound with GDP adopts a closed conformation, 
negatively regulating its transamidase activity. In 
contrast, the transamidase activity is induced through 
Ca2+ binding, resulting in an open conformation in 
which the transamidase active site is exposed to 
substrates.  

In addition to Ca2+ and nucleotides, the 
transamidase activity of TGase2 is subject to 
regulation by amine compounds, nitric oxide, and 
thiol compounds (Table 1) [11, 14]. Amine 
compounds, such as putrescine, monodansylcada-
verine (MDC), 5-(biotinamido)pentylamine (BAPA), 
spermidine, and histamine, act as amine donors to 
inhibit transamidase activity by competing with 
natural substrates [17, 37, 38]. Nitric oxide also 
inhibits the transamidase activity through 
S-nitrosylation of the cysteine residue in the active site 
[39]. Thiol compounds, including glutathione (GSH), 
cystamine, and cysteamine, potentially regulate 
transamidase activity by affecting the redox state of 
TGase2 cysteine residues, particularly the catalytic 
core residue (Cys277) and three cysteine residues 
(Cys230, Cys370, and Cys371) [14, 25, 40].  

Several amino acids in TGase2 play a role in 
regulating transamidase activity [41] (Figure 1B). 
Catalytic Cys277 is essential for transamidase activity, 
and this function is further influenced by disulfide 
bond formation among three cysteine residues 
(Cys230, Cys370, and Cys371) [40, 41]. A site-directed 
mutagenesis study identified Lys444 in the catalytic 
domain as significant for transamidase activity [41]. 
Interestingly, the phosphorylation levels of TGase2 
also regulate its transamidase activity [14]. Dephos-
phorylation of TGase2 with alkaline phosphatase 
enhances transamidase activity, whereas phospho-
rylation using the catalytic subunit of protein kinase A 
(PKA) inhibits this enzyme [14]. However, the role of 
acetylation in the regulation of transamidase activity 
remains controversial [14, 42]. 

2.1.2. Functions of TGase2 transamidase activity 
TGase2 transamidase plays a pivotal role in the 

regulation of various proteins, including RhoA [43], 
NF-κB [44], glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) [45], pRb [46], and the oncoprotein 
p53 [47] (Table 2). Retinoic acid-induced activation of 
the transamidase leads to increased transamidation of 
RhoA at Gln63, a process inhibited by MDC [43, 48]. 
Transamidated RhoA, acting as a constitutively active 
G-protein, enhances its binding to RhoA-associated 
kinase-2, fostering the formation of stress fibers and 
focal adhesion complexes. This suggests the 

 

 
Figure 1. Human transglutaminase 2 (TGase2) open and closed structures and amino acid regulation map. A. TGase2 exhibits open and closed structural 
formations. The closed TGase2 structure was prepared with Pymol 3.0 using the PBD file 4PYG. B. A comprehensive amino acid map illustrating the regulatory mechanisms of 
TGase2 activity. β1; β-barrel 1 domain; β2, β-barrel 2 domain; Core, core catalytic domain; N, N-terminal β-sandwich domain; FN, fibronectin; PKA, protein kinase A; PLCδ1, 
phospholipase C δ1.  
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involvement of transamidase activity in cell 
differentiation, including that of human leukemia 
cells and neurons [43, 48, 49]. The transamidase also 
activates NF-κB by inducing the polymerization of 
I-κB, resulting in subsequent NF-κB dissociation and 
translocation into the nucleus. This activation is 
capable of upregulating inflammatory genes such as 
inducible NO synthase and tumor necrosis factor α 
[44]. 

Furthermore, the transamidase inhibits GAPDH, 
a glycolytic enzyme, through crosslinking lysine 
residues in the C-terminal region of GAPDH with 
polyglutamine repeats. This interference leads to 
disruptions in energy metabolism [45, 50]. Inhibition 
of GAPDH activity elevates the levels of glycolysis 
intermediates or their metabolites, resulting in the 
activation of pathological vascular complications, 
including diabetic complications [3]. Modification of 
pRb by the transamidase protects from apoptosis by 
inhibiting caspase-induced degradation of polymer-
ized pRb [46, 51]. Integrative proteomic profiling of 
the transamidase activity using protein arrays has 
identified several potential substrates, including 
osteopontin and globular actin [33], suggesting 
potential roles of the transamidase in cytoskeleton 
and bone remodeling. The TGase2 transamidase 
activity is also implicated in tumorigenicity [47] and 
pulmonary fibrosis [21]. 

2.2. TGase2 kinase activity 

2.2.1. Regulation of TGase2 kinase activity 
The regulatory mechanism of TGase2 kinase 

activity is less understood compared to the 
transamidase activity, primarily due to limitations in 
suitable assays for determining in situ and in vivo 
kinase activity [30]. Determination of kinase activity 
has traditionally involved detecting ATP incorpo-
ration into substrate proteins using radioactive 
isotopes [52, 53] or antibodies against phosphoamino 
acids [52]. However, these methods have drawbacks, 
such as the use of hazardous radioactive probes or 
relatively low affinities for phosphorylated substrates 
[30]. To overcome these limits, a well-type 
array-based kinase activity assay has been introduced 
using Pro-Q Diamond phosphoprotein stain [30]. 

Investigations into the regulation mechanism of 
TGase2 kinase have utilized on-chip kinase activity 
assays [14, 32]. The kinase is regulated by thiol 
compounds, divalent metal cations, phosphorylation, 
and acetylation [14, 32] (Table 1). The kinase activity 
assay, employing a cysteine-modified insulin-like 
growth factor-binding protein-3 (IGFBP-3)-derived 
peptide, revealed that thiol compounds, such as 
5,5′-dithio-bis-(2-nitrobenzoic acid), S-nitroso-N- 

acetylpenicillamine, dithiothreitol, GSH, and 
mercaptoethanol, inhibit the kinase (Table 1). Thus, 
the modification of TGase2 cysteine residues may 
play a critical role in regulating the TGase2 kinase 
[32]. Notably, cystamine, a disulfide compound with 
amine moieties at both ends, enhances the kinase 
activity [14], even though this disulfide compound 
inhibits TGase2-induced phosphorylation of IGFBP-3 
[54]. Divalent metal cations also play a role in the 
regulation of TGase2 kinase, as on-chip activity assays 
demonstrate kinase inhibition by Cu2+, Mn2+, Ni2+, 
and Zn2+, but not by Ca2+ [32]. Furthermore, 
phosphorylation and acetylation of TGase2 enhance 
the kinase activity, with acetylation of TGase2 not 
affecting transamidase activity [14]. 

2.2.2. Functions of TGase2 kinase activity 
TGase2 can phosphorylate serine and threonine, 

but not tyrosine, residues of substrate proteins [55]. 
The intrinsic kinase activity of TGase2 was revealed 
by Mishra and Murphy [54], who demonstrated the 
phosphorylation of IGFBP-3 by TGase2 on breast 
cancer cell membranes. TGase2 undergoes phospho-
rylation at Ser216 by PKA, resulting in activation of 
NF-κB and protein kinase B, downregulation of 
phosphatase and tensin homolog (PTEN) [56], 
phosphorylation of pRb [52], and enhanced TGase2 
binding to 14-3-3 [57] (Table 2). TGase2 kinase further 
phosphorylates p53 [58] and histone proteins [53], 
indicating its role in apoptosis regulation and 
chromatin structure and function, respectively. p53 is 
a key tumor suppressor protein that has multiple 
biological functions, including DNA damage repair, 
cell cycle arrest, apoptosis, and senescence [59]. 
Additionally, the kinase phosphorylates β-catenin at 
Tyr654 through a c-Src-dependent mechanism, 
leading to the proliferation of ovarian cancer cells. 
However, the precise mechanism by which TGase2 
activates c-Src remains unclear [31]. 

An on-chip kinase activity assay using Pro-Q 
Diamond stain, suitable for screening the kinase 
substrates, was employed to investigate potential 
substrates of TGase2 kinase [30]. This high- 
throughput activity assay revealed several kinase 
substrate proteins based on substrate affinity (Km), 
including glucose 6-phosphate dehydrogenase, 
cytochrome C, calmodulin, and S100 calcium-binding 
protein A7 in the cytosol. This suggests potential roles 
of TGase2 kinase in regulating oxidative stress [60], 
apoptosis [61], and intracellular Ca2+ signaling events 
[62]. TGase2 kinase also phosphorylates E-cadherin in 
the plasma membrane and matrix metalloproteinase-3 
(MMP-3) in the extracellular matrix, indicating its 
potential involvement in the breakdown of 
extracellular matrix and cancer metastasis [63, 64]. 
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3. TGase2 as a therapeutic target for 
diabetic complications 

Oxidative stress plays a pivotal role in the 
pathogenesis of diabetic complications, leading to 
progressive vascular damage and dysfunction [1, 65, 
66]. These vascular complications are associated with 
various pathological pathways, including increased 
polyol pathway flux, elevated hexosamine 
biosynthesis, activation of protein kinase C, and 
augmented formation of advanced glycation end 
products [3, 8]. These pathways are triggered by 
hyperglycemia-induced inhibition of GAPDH 
through poly ADP-ribosylation [67]. Recent reports 
emphasize that hyperglycemia-induced generation of 
intracellular reactive oxygen species (ROS) plays a 
crucial role in activating TGase2, contributing to 
diabetic microvascular and macrovascular complica-
tions [3, 24, 27]. Importantly, a vicious cycle exists 
between hyperglycemia-induced ROS generation and 
TGase2 activation, which significantly contributes to 
HGM-induced endothelial dysfunction [28, 65]. 

This section delves into the pivotal role of 
TGase2 in diabetic complications, specifically DR, 
DN, DP, and CVD. Furthermore, we explore the role 
of TGase2 in HGM, a significant phenomenon in the 
development and progression of diabetic 
complications in both type 1 and type 2 diabetes [28, 
65]. It is important to note that this review excludes 
discussions on diabetic neuropathy, impaired wound 
healing, and stroke due to the unclear role of TGase2 

in the pathogenesis of these complications. 

3.1. Diabetic retinopathy 
DR is the most common diabetic microvascular 

complication and remains the leading cause of 
blindness in working-age populations [68, 69]. This 
metabolic disease progresses from early 
non-proliferative DR to late proliferative DR [70, 71]. 
DR is influenced by various risk factors such as poor 
glucose control, diabetes duration, hypertension, and 
plasma glucose fluctuations [72]. Non-proliferative 
DR represents the early stages, characterized by 
thickening of the basement membrane, pericyte loss, 
formation of acellular capillaries, microaneurysms, 
and microvascular leakage [5, 70]. Proliferative DR, on 
the other hand, features pathological neovascu-
larization and eventual diabetic macular edema, 
contributing to vision loss [73, 74]. 

A predominant cause of microvascular leakage 
in the diabetic retina is hyperglycemia-induced 
overexpression of vascular endothelial growth factor 
(VEGF) [24, 75, 76] (Figure 2). Elevated VEGF levels in 
the retina activate TGase2 through sequential 
elevation of intracellular Ca2+ and ROS, leading to 
microvascular leakage through stress fiber formation 
and disassembly of adherens junctions [24, 76]. Thus, 
ROS-mediated activation of TGase2 plays a key role in 
VEGF-induced retinal vascular leakage, positioning 
TGase2 as a potential therapeutic target for DR 
treatment in several reports [3, 25, 28, 71, 77]. 

 

 
Figure 2. The role of transglutaminase 2 (TGase2) in the pathogenesis of diabetic retinopathy, pulmonopathy, and nephropathy. Reactive oxygen species 
(ROS)-mediated activation of TGase2 contributes to hyperglycemia-induced microvascular leakage and neovascularization in the retina, cancer metastasis and fibrosis in the lung, 
and glomerular dysfunction in the kidney. GABAA, γ-aminobutyric acid type A; K9-C-peptide, human C-peptide conjugated with nine repeats of lysine-containing elastin-like 
polypeptide; VEGF, vascular endothelial growth factor. 
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Proinsulin C-peptide, administered systemically 
or intravitreally, alleviates VEGF-induced retinal 
microvascular leakage by inhibiting ROS-mediated 
activation of TGase2, subsequently preventing stress 
fiber formation and vascular endothelial (VE)- 
cadherin disassembly in diabetic mice [24, 71, 76]. 
Cysteamine, an aminothiol derived from coenzyme A 
degradation, attenuates vascular leakage by inhibiting 
VEGF-induced activation of TGase2 and VE-cadherin 
disruption in diabetic retinas [25]. The benzodia-
zepine anesthetic midazolam reduces hyperglycemia- 
induced vascular leakage by inhibiting VEGF-induced 
elevation of intracellular Ca2+ and subsequent ROS 
generation and TGase2 activation through the GABAA 
receptor in the retinas of diabetic mice [77]. While 
TGase2 plays a crucial role in VEGF-induced retinal 
vascular dysfunction, it is not associated with 
diabetes-induced retinal neurodegeneration [71]. 
Thus, TGase2 has emerged as a significant enzyme in 
the pathogenesis of retinal vascular dysfunction in 
diabetic retinas and represents a promising 
therapeutic target for DR.  

3.2. Diabetic pulmonopathy 
DP is a newly recognized microvascular 

complication of diabetes [3, 78]. While diabetes is 
well-established as a systemic disease with chronic 
oxidative stress and inflammation affecting various 
organs, such as the eyes, kidneys, nerves, skin, and 
the vascular system [79, 80], the pulmonary 
complications have been comparatively overlooked. 
This disregard is attributed to the lung’s significant 
physiological reserve and the presence of subclinical 
pulmonary abnormalities in diabetic patients [78, 80, 
81]. Nevertheless, recent clinical and experimental 
investigations highlight the lung as a potential target 
organ affected by diabetes [78, 82, 83]. The intricate 
alveolar-capillary network and the abundance of 
collagen and elastin in the lung render it susceptible 
to diabetic microvascular damage [78, 80, 84]. Type 1 
and type 2 diabetes patients exhibit respiratory 
abnormalities, including reduced diffusing capacity, 
lung volume, control of ventilation, and elastic recoil 
[81, 85]. Clinical studies also suggest associations 
between diabetes and conditions such as asthma, 
idiopathic fibrosis, chronic obstructive pulmonary 
disease, and hypertension in the lungs of diabetic 
patients [80, 82, 83, 86].  

Idiopathic pulmonary fibrosis, characterized by 
chronic, progressive fibrotic lung disease with high 
mortality and limited therapeutic options [84, 85], 
shows abnormal extracellular matrix accumulation in 
the lung destroying alveolar architecture, which 
results in pulmonary dysfunction and respiratory 
failure [87]. Emerging research indicates a potential 

link between idiopathic pulmonary fibrosis and 
diabetes [80, 82-85], with epidemiological research 
identifying diabetes as an independent risk factor for 
idiopathic pulmonary fibrosis [88]. 

 The underlying mechanisms of DP have been 
investigated in rodent models of type 1 diabetes [28, 
78, 79]. In diabetic rats, hyperglycemia induces 
fibrotic changes in the lung by activating TGF-β- 
mediated epithelial–mesenchymal transition [79]. 
Notably, recent findings by Ha and colleagues [4] 
highlight that chronic hyperglycemia promotes 
vascular leakage in the lungs through VEGF-induced 
ROS generation and subsequent TGase2 activation, 
leading to melanoma cell metastasis in diabetic mice 
(Figure 2). The hyperglycemia-induced vascular 
leakage and melanoma cell metastasis were mitigated 
by inhibiting TGase2 through systemic supple-
mentation of proinsulin C-peptide [4], insulin [26], or 
midazolam [89]. 

TGase2 is also implicated in hyperglycemia- 
induced inflammation and apoptosis, contributing to 
pulmonary fibrosis in the diabetic lung. This 
pathological process was ameliorated through 
long-term systemic supplementation of human 
C-peptide, achieved by subcutaneous implantation of 
a thermosensitive biopolymer-conjugated C-peptide 
(K9-C-peptide) depot [28, 78]. The involvement of 
TGase2 in pulmonary fibrosis was further confirmed 
in a mouse model of bleomycin-induced pulmonary 
fibrosis [21]. Consequently, TGase2 is a promising 
therapeutic target for addressing multiple facets of 
DP, including microvascular leakage, inflammation, 
metastasis, and idiopathic fibrosis. 

3.3. Diabetic nephropathy 
DN, a significant microvascular complication 

affecting approximately 40% of diabetic patients, is 
the primary cause of chronic kidney disease leading to 
end-stage renal disease in developed countries [90, 
91]. Clinically, DN manifests as albuminuria, a 
progressive decrease in glomerular filtration rate, and 
elevated blood pressure [92]. Pathologically, this 
chronic kidney disease is characterized by glomeru-
losclerosis, tubulointerstitial fibrosis, thickening of 
glomerular and tubular membranes, and vascular 
dysfunction [93, 94]. While the prevalence of diabetic 
kidney disease has surged over the past decades, 
currently available treatments are limited to those 
preventing or delaying disease progression [90]. 

Microalbuminuria, widely acknowledged as the 
initial clinical sign of DN, is induced by the disruption 
of the glomerular filtration barrier due to glomerular 
basement membrane thickening, foot process 
effacement of podocytes, and microvascular 
dysfunction [93]. Notably, microvascular dysfunction, 



Theranostics 2024, Vol. 14, Issue 6 
 

 
https://www.thno.org 

2335 

arising from VEGF overexpression and subsequent 
vascular integrity disruption, plays a pivotal role in 
the pathogenesis of diabetic microvascular compli-
cations in the retina and lungs [4, 76, 95]. In the 
kidney, glomerular endothelial dysfunction has been 
implicated in the pathogenesis of diabetic kidney 
disease [95, 96]. However, the underlying mechanism 
by which hyperglycemia induces alterations in 
glomerular endothelial permeability and subsequent 
microalbuminuria remains unclear. Recent studies 
have highlighted the role of TGase2 in glomerular 
endothelial dysfunction and renal fibrosis in diabetic 
animal models [27, 93, 97] (Figure 2). 

In the renal cortex of type 1 diabetic mice, 
hyperglycemia activates the transamidase activity of 
TGase2 and induces apoptosis, both of which are 
suppressed by systemic supplementation of human 
C-peptide [27]. TGase2’s involvement has been 
reported in mouse models of renal fibrosis induced by 
unilateral ureteral obstruction or streptozotocin [93, 
98]. TGase2 contributes to interstitial renal fibrosis 
through TGF-β activation and cell infiltration in 
unilateral ureteral obstruction mouse models [98]. 
Additionally, TGase2 plays a role in hyperglycemia- 
induced pathological alterations of glomerular 
ultrastructure and renal fibrosis, with midazolam 
attenuating glomerular endothelial dysfunction in the 
kidneys of diabetic mice [93]. Despite the formidable 
challenge of elucidating the pathological mechanisms 
of DN, TGase2 is a potential therapeutic target for its 
treatment. 

3.4. Cardiovascular disease 
CVD, the most prevalent diabetic complication, 

is the leading cause of death in patients with either 
type 1 or type 2 diabetes [3, 99, 100]. CVD 
encompasses a group of disorders affecting the heart 
and blood vessels, including premature athero-
sclerosis leading to myocardial infarction, stroke, and 
compromised cardiac function [5, 101]. Its high 
prevalence in type 1 diabetes patients significantly 
impairs life expectancy [100, 102], with chronic kidney 
disease and cardiac autonomic neuropathy being 
associated with its progression in these patients [100, 
103]. In type 2 diabetes, kidney disease remains a 
major risk factor for CVD, accompanied by other CVD 
risk factors, including dyslipidemia, poor glycemic 
control, and persistent high blood pressure [5, 101]. 

Several reports propose the involvement of 
TGase2 in the pathogenesis of CVDs, including 
atherosclerosis, myocardial fibrosis, and associated 
heart diseases [23, 104-106]. However, studies 
specifically addressing the role of TGase2 in 
diabetes-associated CVDs are limited. Investigations 
into hyperglycemia-induced progression to CVD in 

the aorta of type 1 diabetic mice [27, 65] indicate that 
hyperglycemia stimulates transamidating activity and 
endothelial cell apoptosis in the aortic endothelium, 
processes inhibited by systemic supplementation of 
human C-peptide [27]. Administering human 
C-peptide through osmotic pumps protects endo-
thelial cells from hyperglycemia-induced apoptosis 
by blocking ROS-mediated activation of TGase2. This 
ROS generation and TGase2 activation form a vicious 
cycle implicated in hyperglycemia-induced vascular 
dysfunction, including the expression of 
inflammatory adhesion molecules and apoptosis [65]. 
Nevertheless, further research is essential to 
comprehensively understand the role of TGase2 in the 
pathogenesis of diabetes-associated CVD. 

3.5. Hyperglycemic memory 

HGM, signifying the persistence of hypergly-
cemic stress post-glucose normalization, is a crucial 
factor in the pathogenesis and progression of both 
diabetic microvascular and macrovascular diseases in 
type 1 and type 2 diabetes [3, 10, 28]. Engerman and 
Kern’s seminal work [7] reveals that intensive 
glycemic control fails to arrest the progression of DR 
in diabetic dogs initially subjected to poor glycemic 
control, characterized by capillary aneurysm, acellular 
capillaries, and pericyte loss. Large-scale clinical 
studies, such as the Diabetes Control and 
Complications Trial (DCCT)–Epidemiology of 
Diabetes Interventions and Complications (EDIC) 
study in type 1 diabetes patients [10, 107] and the UK 
Prospective Diabetes Study (UKPDS) in type 2 
diabetes patients [108, 109], demonstrate that initial 
tight glycemic control diminishes the incidence of 
diabetic complications. Conversely, initial poor 
glycemic control can lead to the long-term 
development of diabetic complications [110]. 

To unravel the underlying mechanism of 
persistent hyperglycemic stress and understand the 
pathophysiology of diabetic complications, diabetic 
animal models have been employed [9, 65, 111, 112]. 
Persistent oxidative stress plays a central role in the 
long-lasting vascular complications induced by HGM 
[8, 65, 110, 113]. Hyperglycemia induces sustained 
upregulation of pro-oxidant enzymes, namely protein 
kinase C β and p47phox, a NADPH oxidase subunit, 
post-glucose normalization in the retina of diabetic 
rats [112]. The prolonged activation of p66Shc by 
protein kinase C βII maintains ROS generation after 
normoglycemia, resulting in vascular apoptosis in the 
mouse aorta [110]. p66Shc, a 66 kDa Src 
homology/collagen adaptor protein, is a key 
regulator of mitochondrial function, oxidative stress, 
and apoptosis [114]. 
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Figure 3. The role of a transglutaminase 2 (TGase2)-reactive oxygen species (ROS) vicious cycle in hyperglycemic memory-induced vascular dysfunction 
in the aorta, retina, lung, and glomerulus.    

 
In the aorta of diabetic mice, Ha and colleagues 

[65] elucidated that hyperglycemia induces sustained 
ROS generation and TGase2 activation post-return to 
normoglycemia, initiating a detrimental cycle. This 
ROS-TGase2 cycle, regulated by the mitochondrial 
adaptor p66Shc and p53, is implicated in the sustained 
expression of inflammatory adhesion molecules and 
apoptosis in the aortic endothelium [65, 111]. 
Furthermore, this vicious cycle is associated with 
HGM-induced complications in the retina, including 
vascular leakage and neurodegeneration, as well as in 
the lungs, where it leads to vascular leakage and 
fibrosis. Additionally, it contributes to other 
complications such as glomerular adherens junction 
disruption and vascular leakage in diabetic mice [28]. 
Thus, TGase2, activated by persistent oxidative stress 
and associated with p66Shc and p53, assumes a pivotal 
role in HGM-induced vascular complications in the 
aorta, retina, lung, and kidney (Figure 3). 

4. Inhibition of TGase2 as a potential 
therapeutic strategy for diabetic 
complications 

TGase2 plays a pivotal role in the pathogenesis 
of diabetic complications, such as DR, DN, DP, CVD, 
and HGM. These microvascular and macrovascular 
complications, stemming from chronic hyperglycemia 
and hyperglycemia memory, can be addressed 
through the direct or indirect inhibition of TGase2. 

Direct inhibition encompasses the use of competitive, 
reversible, and irreversible inhibitors that affect 
substrate binding to the active site of TGase2. Indirect 
inhibition by G-protein-coupled receptor agonists, 
such as C-peptide, C-peptide conjugates, and 
midazolam, regulate TGase2 by binding to its 
receptors. 

4.1. Direct inhibition 

4.1.1. Competitive inhibitors: monoamines 
Competitive inhibitors, which consist of biogenic 

monoamines and polyamines, regulate TGase2 
activity by competing with its natural substrates 
rather than preventing the enzyme activity through 
covalent modification or allosteric regulation during 
the transamidation reaction, leading to the formation 
of isopeptide bonds between the natural glutamine 
substrates and the inhibitors [37]. Amine inhibitors 
have been intensively used in cellular and organismal 
studies due to their commercial availability, stability, 
and relative non-toxicity [37, 97]. Uteroglobin, a 
protein substrate of TGase2, has also been employed 
as a competitive TGase2 inhibitor in murine 
experimental crescentic glomerulonephritis [115]. 

Monoamine inhibitors, including catecholamines 
and amino acid derivatives, are characterized by a 
primary amine linked to alkyl chains [37, 97, 116]. 
Among the biogenic monoamines, cysteamine, MDC, 
and dopamine have demonstrated efficacy against 
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diabetic complications (Table 3). Cysteamine, also 
known as β-mercaptoethylamine, an aminothiol with 
a primary amine group and a sulfhydryl group, is 
endogenously derived from coenzyme A degradation 
and metabolized into taurine [25, 117]. Cysteamine 
exhibits therapeutic potential for DR and vascular 
leakage-associated diseases [25]. Additionally, the 
aminothiol is beneficial in conditions such as 
cystinosis [117], nonalcoholic fatty liver disease [118], 
neurodegenerative diseases like Alzheimer’s, 
Huntington’s, and Parkinson’s diseases [119, 120], and 
postinflammatory hyperpigmentation [121]. There is a 
recent report from three clinical trial programs [122], 
suggesting long-term clinical benefits of 
delayed-release cysteamine bitartrate capsules in 
patients with nephropathic cystinosis. 

 

Table 3. TGase2 inhibitors for the treatment of diabetic 
complications. 

Group Inhibitor Potential target diseases or functions 
Monoamines Cysteamine Diabetic retinopathy [25], cystinosis [117], 

neurodegenerative diseases [119, 120]  
Monodansylcadaverine Diabetic retinopathy [24, 77], pulmonary 

disease [4], nephropathy [93] 
Dopamine Diabetic retinopathy [113, 124, 125] 
5-(biotinamido)pentylamine TGase pseudosubstrate [24, 27, 28, 33, 126, 127, 

129] 
Polyamines Cystamine Diabetic retinopathy [24, 71], 

pulmonopathy [4, 78], nephropathy [89, 93], 
aortic dysfunction [65] 

Putrescine β-cell function [135], TGase substrate [133] 
Spermidine β-cell function [135], TGase substrate [133] 
Spermine β-cell function [135], TGase substrate [133] 

Irreversible 
inhibitors 

Dihydroisoxazole 
derivatives 

Anti-inflammation [141], antioxidant [144], 
glioblastoma [142, 143] 

Michael acceptors β-cell function [181], Celiac disease [137], 
neurodegenerative diseases [116]  

Gluten peptide analogs Celiac disease [150] 
Acetylsalicylic acid Acetylation of lysine residues [14, 42] 

Reversible 
inhibitors 

LDN27219 Vascular dysfunction [154] 
TGase2 siRNA Diabetic retinopathy [24], pulmonary 

disease [4], nephropathy [93] 

LDN27219, thieno[2,3-d]pyrimidin-4-one acylhydrazides. 

 
MDC has been used to investigate the role of 

TGase2 in the pathogenesis of diabetic complications 
[4, 24, 93]. MDC inhibits VEGF-induced stress fiber 
formation, adherens junction disassembly, and 
subsequent endothelial permeability in human retinal 
endothelial cells, attenuating hyperglycemia-induced 
microvascular leakage in the retinas of diabetic mice 
[24, 77]. Moreover, MDC suppresses VEGF or high 
glucose-induced VE-cadherin disassembly and 
endothelial permeability in human pulmonary 
microvascular endothelial cells [4] or human 
glomerular microvascular endothelial cells [93], 
indicating its benefit against DR, DP, and DN. 

Dopamine, a neurotransmitter in the nervous 
system, has beneficial effects against DR [113]. In the 
retina, dopamine, the most abundant catecholamine, 
is released from dopaminergic neurons identified as 

dopaminergic amacrine cells and interplexiform cells 
[123]. In type 1 diabetic mice, dopamine deficiency is 
associated with early visual dysfunction, which is 
improved by intraperitoneal treatment with 
dopamine receptor agonists or the dopamine 
precursor levodopa [124, 125]. Furthermore, in the 
retinas of type 1 diabetic mice, HGM-induced 
persistent stresses, including oxidative stress, 
mitochondrial membrane potential collapse and 
fission, and adherens junction disassembly leading to 
vascular leakage, are attenuated by intravitreal 
injection of levodopa [113].  

Moreover, BAPA holds therapeutic promise for 
diabetic complications. This is attributed to its 
extensive utilization as a pseudosubstrate in in vitro 
[4, 33, 126, 127], in situ [27, 28, 128, 129], and in vivo [4, 
24, 28] TGase activity assays. 

4.1.2. Competitive inhibitors: polyamines 
There exist various biogenic polyamine 

inhibitors of TGase2, including cystamine, putrescine, 
spermine, and spermidine, that compete with 
substrate proteins in the transamidation reaction 
(Table 3). Cystamine is a frequently utilized 
polyamine for investigating TGase2’s function in the 
pathogenesis of diabetic vascular dysfunctions in 
multiple tissues, including the aorta [65], eye [24, 71], 
lung [4, 78], and kidney [89, 93]. Distinguished by its 
intricate regulatory mechanisms compared to other 
competitive inhibitors [37, 97], cystamine is reduced 
into cysteamine due to the high molar ratio of GSH to 
GSSG (100:1) in resting cells [130]. Cysteamine, the 
reduced form of cystamine, functions as a competitive 
amine inhibitor. It can irreversibly bind to the 
catalytic cysteine residues of TGase2, forming 
disulfide bonds [37]. Additionally, cystamine elevates 
intracellular GSH levels [131], influencing oxidative 
stress-associated pathophysiological responses [97]. 
Furthermore, cystamine increases brain and serum 
levels of the neuronal survival factor brain-derived 
neurotrophic factor and has therapeutic potential for 
neurodegenerative diseases and schizophrenia [132]. 

Polyamines derived from ornithine, such as 
putrescine, spermidine, and spermine, serve as 
TGase2 substrates [133]. Ornithine is converted into 
putrescine by ornithine decarboxylase, followed by 
sequential conversion into spermidine and spermine 
by spermidine synthase and spermine synthase, 
respectively [134]. These ornithine-derived 
polyamines play a crucial role in normal β-cell 
functions, influencing intracellular Ca2+ levels and 
inflammation. Consequently, alterations in polyamine 
levels are implicated in the pathogenesis of diabetes 
[135]. Due to their positive charge at physiological 
pH, these polyamines strongly interact with 
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negatively charged molecules like DNA and RNA, 
participating in DNA replication, gene expression, 
and mRNA translation [135]. Elevated serum levels of 
putrescine and spermine in type 2 diabetic patients 
suggest the potential involvement of polyamine 
metabolism in the pathogenesis of type 2 diabetes 
[136]. However, the precise association between the 
roles of putrescine, spermidine, and spermine in 
normal β-cell functions and the pathogenesis of type 2 
diabetes remains unclear, particularly regarding their 
impact on TGase2 inhibition. 

4.1.3. Irreversible TGase2 inhibitors 
Several irreversible TGase2 inhibitors have been 

reported by various research groups, including 
chloromethyl ketones, dihydroisoxazole derivatives, 
Michael acceptors, and gluten peptide analogs [37, 
116, 137] (Table 3). Irreversible TGase2 inhibitors, 
commonly termed suicide inhibitors, exert their effect 
by covalently modifying the enzyme, primarily at the 
active site, thus hindering substrate binding to the 
active site [37]. 

Iodoacetamide, an early irreversible inhibitor, 
was employed to inhibit guinea pig TGase2 by 
forming a thioester bond with the cysteine residue of 
the enzyme’s active site [138]. A series of 
chloromethyl ketones, synthesized based on a 
peptidic (carbobenzyloxy-phenylalanine) scaffold, 
underwent testing for reactivity toward glutathione 
[139]. Dihydroisoxazole derivatives, derived from the 
natural product acivicin, represent a well-studied 
class of TGase2 irreversible inhibitors. Exhibiting 
various biological activities [140], including anti- 
inflammatory [141], anticancer [142-144], and 
antioxidant effects [145], dihydroisoxazoles hold 
potential for treating diabetic complications. NTU 
compounds, such as NTU281 (N-benzyloxycarbonyl- 
L-phenylalanyl-6-dimethylsulfonium-5-oxo-L-norleu
cine) and NTU283 (1,dimethyl-2[(oxopropyl)thio] 
imidazolium), bind irreversibly to the TGase2 
catalytic cysteine residues [97, 146]. NTU281 showed 
beneficial effects against hyperglycemia-induced 
glomerular dysfunction in diabetic rats [147, 148]. 

Michael acceptors, as reported by Keillor and 
colleagues [116], belong to a family of irreversible 
TGase2 inhibitors with the carbobenzyloxy- 
phenylalanine scaffold and acrylamide warhead. 
Zedira also documented several peptidomimetic 
TGase2 inhibitors featuring an α,β-unsaturated ester, 
designed for treating celiac disease and 
TGase2-associated ailments [137]. Gluten is a complex 
protein mixture with immunogenic peptide sequences 
triggering autoimmune responses in patients with 
celiac disease [149]. Gluten peptides have been 
utilized as peptidomimetic irreversible inhibitors due 

to its high affinity toward TGase2. The glutamine in 
these peptides has been substituted with acivicin or 
6-diazo-5-oxo-norleucine (DON) to enhance the 
inhibitory potency [150, 151], while the DON peptide 
was shown to be more potent in inhibiting TGase2 
than the acivicin analogue [150]. Acetylsalicylic acid, 
commonly known as aspirin, impacts the 
transamidation or kinase activity of TGase2 through 
lysine residue acetylation [14, 42]. However, its effect 
on diabetic complications remains poorly understood. 

4-1-4. Reversible inhibitors 
Reversible TGase2 inhibitors curtail enzyme 

activity by impeding substrate access to the active site 
without instigating covalent modifications [37]. 
Allosteric regulation of TGase2 is achieved through 
GTP analogs and thieno[2,3-d]pyrimidin-4-one acyl-
hydrazides (LDN27219) [37, 116]. Nonhydrolyzable 
GTP analogs, such as GTPγS and GMP-PCP, 
reversibly inhibit TGase2 [129, 152]. LDN27219, 
categorized as a reversible inhibitor, exhibits slow 
binding to the GTP site of TGase2, inducing a closed 
conformation and inhibiting transamidase activity 
[153]. In arteries, LDN 27219 shows promise in 
lowering blood pressure and enhancing endothelium- 
dependent vasorelaxation, suggesting its potential in 
addressing vascular dysfunction [154] (Table 3). 

TGase2-specific siRNA has emerged as a 
potential therapeutic avenue for diabetic complica-
tions. Intravitreal injection of TGase2 siRNA 
attenuates hyperglycemia-induced retinal vascular 
leakage in type 1 diabetic mice [24]. Moreover, TGase2 
siRNA inhibits VEGF and high glucose-induced 
oxidative stress, VE-cadherin disassembly, and 
endothelial permeability in human retinal endothelial 
cells, human pulmonary microvascular endothelial 
cells, and human glomerular microvascular 
endothelial cells [4, 24, 93], underscoring its potential 
role in treating DR, DP, and DN (Table 3). 

Various other reversible TGase2 inhibitors have 
been reported, including trans-cinnamoyl derivatives, 
cinnamoyl benzotriazolyl amides and azachalcones 
[155], ZM39923 and ZM449829 [156], acyli-
deneoxoindoles [157], and quinoxaline derivatives 
[158]. However, the precise roles of these inhibitors in 
diabetic complications remain unclear. Further 
investigations are warranted to elucidate their impact 
on mitigating the effects of diabetes-related 
pathologies. 

4.2. Indirect inhibition 

4.2.1. Proinsulin C-peptide 
Human proinsulin C-peptide, a 31-amino acid 

peptide, is released from pancreatic β-cells into the 
portal circulation in equimolar concentrations with 
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insulin [159]. Discovered in 1967, C-peptide serves as 
an indicator of β-cell function. Since the early 1990s, 
C-peptide has been recognized for its potential 
benefits in treating diabetic microvascular and 
macrovascular complications [3, 160] (Table 4). 

 

Table 4. Therapeutic agents for diabetic complications.  

Inhibitor Diabetic 
complication 

Study models Delivery system 

Human 
C-peptide 

Retinopathy HRECs [24], type 1 
diabetic mice [24, 71] 

Intravitreal injection [24], 
Osmotic pumps [71] 

Pulmonopathy HPMECs [4], type 1 
diabetic mice [4, 78] 

Osmotic pumps [4, 78] 

Nephropathy Type 1 diabetic mice 
[27], type 1 diabetic 
patients [182] 

Osmotic pumps [27], 
subcutaneous injection 
[182] 

Cardiovascular 
disease 

HAECs [65], type 1 
diabetic mice [27, 65]  

Osmotic pumps [27, 65],  

Peripheral 
neuropathy 

Type 1 diabetic 
patients [182, 183] 

Subcutaneous injection 
[182, 183] 

PEG-C-peptide Peripheral 
neuropathy 

Type 1 diabetic mice 
[184], type 1 diabetic 
patients [165, 185]  

Subcutaneous injection 
[165, 184, 185]  

K9-C-peptide Retinopathy HRECs [28], type 1 
diabetic mice [28, 74] 

Intravitreal injection [74], 
subcutaneous injection 
[28]  

Pulmonopathy Type 1 diabetic mice 
[28] 

Subcutaneous injection 
[28] 

Nephropathy Type 1 diabetic mice 
[28] 

Subcutaneous injection 
[28] 

Cardiovascular 
disease 

Type 1 diabetic mice 
[167]  

Subcutaneous injection 
[167]  

Midazolam Retinopathy HRECs [77], type 1 
diabetic mice [77] 

Intravitreal injection [77] 

Pulmonopathy HPMECs [89], type 1 
diabetic mice [89] 

Subcutaneous injection 
[89] 

Nephropathy HGMECs [93], type 1 
diabetic mice [93] 

Subcutaneous injection 
[93] 

HAECs, human aortic endothelial cells; HGMECs, human glomerular 
microvascular endothelial cells; HPMECs, human pulmonary microvascular 
endothelial cells; HRECs, human retinal endothelial cells; K9-C-peptide, human 
C-peptide conjugated with nine repeats of lysine-containing elastin-like 
polypeptide; PEG-C-peptide, PEGylated human C-peptide. 

 
C-peptide exhibits a reduction in ROS generation 

by attenuating NADPH oxidase activation in human 
aortic endothelial cells [161], potentially mediated 
through binding to G protein-coupled receptor 146 
[162]. In various human endothelial cells (retina, lung, 
aorta, and umbilical vein), C-peptide inhibits 
ROS-mediated TGase2 activation, preventing high 
glucose- or VEGF-induced VE-cadherin disassembly 
and endothelial permeability [4, 24, 27, 65]. C-peptide 
replacement ameliorates hyperglycemia-induced 
vascular dysfunction in the aorta [27, 65], heart [27], 
renal cortex [27], retina [24], and lung [4, 78], 
highlighting its beneficial impact on diabetic 
microvascular and macrovascular complications. 
Additionally, systemic C-peptide supplementation is 
effective in preventing impaired wound healing by 
stimulating angiogenesis and inhibiting inflammation 
[163]. Furthermore, C-peptide improves renal 
dysfunction, such as hyperfiltration and albumin 
excretion, and alleviates autonomic and sensory nerve 
dysfunction in patients and animal models with type 
1 diabetes [159, 164]. 

A drawback of C-peptide in clinical applications 
is its short circulating half-time (approximately 30 
min). However, two approaches–PEGylation and 
conjugation with a thermosensitive biopolymer–have 
addressed this limitation. Wahren and colleagues 
[165] reported a PEGylated C-peptide, extending the 
half-life of C-peptide into 6-7 days, and applied this 
C-peptide to a clinical trial involving 250 patients with 
type 1 diabetes and peripheral neuropathy. Results 
indicate that subcutaneous administration of this 
PEGylated C-peptide for 52 weeks improves the 
vibration perception threshold but does not improve 
sural nerve conduction velocity, suggesting that 
C-peptide may not fully restore hyperglycemia- 
induced neuronal damage. Ha and colleagues [166] 
designed a controlled releasable human C-peptide, 
K9-C-peptide, by recombinantly conjugating human 
C-peptide with a lysine-containing elastin-like poly-
peptide. Subcutaneous injection of K9-C-peptide 
gradually releases human C-peptide from a hydrogel 
depot into circulation for 19 days, ameliorating aortic 
dysfunction in diabetic mice [167]. K9-C-peptide 
simultaneously attenuates hyperglycemia-induced 
retinal, pulmonary, and glomerular dysfunctions in 
type 1 diabetic mice [28]. Moreover, intravitreal 
injection of K9-C-peptide maintains physiological 
C-peptide levels in the intraocular space for at least 56 
days, normalizing diabetic retinal neovascularization 
[74]. 

4.2.2. Midazolam 

Midazolam, a short-acting benzodiazepine 
medication widely employed for anesthesia, proce-
dural sedation, and anxiolysis [168], demonstrates 
notable benefits against diabetic complications, 
including DR [77], DP [89], and DN [93]. This is 
achieved by inhibiting VEGF-induced elevation of 
intracellular Ca2+, subsequent ROS generation, and 
TGase2 activation in a GAVAA receptor-dependent 
manner (Table 4). 

In the retina of type 1 diabetic mice, intravitreal 
injection of midazolam mitigates hyperglycemia- 
induced vascular leakage by inhibiting ROS-mediated 
TGase2 activation. These inhibitory effects are 
reversed with flumazenil, a GAVAA receptor 
antagonist [77]. Subcutaneous injection of midazolam 
attenuates hyperglycemia-induced microvascular 
leakage and cancer metastasis by inhibiting TGase2- 
mediated VE-cadherin disassembly in the lungs of 
type 1 diabetic mice [89]. Moreover, subcutaneous 
injection of midazolam in type 1 diabetic mice 
improves hyperglycemia-induced glomerular 
dysfunction, such as pathological alterations in 
glomerular ultrastructure and renal fibrosis. 
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While midazolam holds promise as a potential 
therapy for diabetic complications, the optimization 
of dosage and delivery routes is imperative to 
minimize potential side effects, including allergenic 
effects and dose-related respiratory depression. 
Careful consideration of these factors is essential for 
harnessing the full therapeutic potential of 
midazolam in mitigating the diverse complications 
associated with diabetes. 

4.2.3. Other ligands 
A couple of ligands, including pigment 

epithelium-derived factor (PEDF), norrin, and 
somatostatin, have potential for therapeutic interven-
tion of diabetic vascular complications, although their 
action mechanisms involving TGase2 remains 
unclear. PEDF is a member of the serine protease 
inhibitor superfamily with multiple biological 
functions and is known as an anti-angiogenic and 
neurotropic factor [169]. PEDF binds to its multiple 
receptors, including laminin receptor, F1-ATP 
synthase, and low-density lipoprotein receptor- 
related protein 6, and exerts protective effects against 
diabetic microvascular complications by inhibiting 
oxidative stress and inflammation in the retina and 
kidney. [74, 170]. 

Norrin, a secreted 131-amino acid protein, 
utilizes the Wnt signaling pathway by binding to the 
frizzled class receptor 4 and the low-density 
lipoprotein receptor–related protein 5/6 co-receptor 
[171]. Norrin attenuated hyperglycemia-induced 
vascular leakage by restoring disrupted blood-retinal 
barrier properties in diabetic retinas [171, 172]. 
Somatostatin, which is a neuroprotective peptide, also 
ameliorated hyperglycemia-induced inflammation 
and neurodegeneration in the retina of diabetic rodent 
models [173, 174]. However, further investigations to 
elucidate the underlying mechanisms of their 
beneficial effects can warrant clinical application for 
diabetic complications. 

5. Conclusion and future perspectives 
 TGase2 stands as a multifunctional enzyme with 

transamidase, serine/threonine kinase, disulfide 
isomerase, and GTPase activities. Its non-enzymatic 
functions involve interacting with extracellular 
proteins, enhancing its role across various diseases, 
encompassing neurodegenerative disorders, pul-
monary and kidney fibrosis, tumor initiation and 
progression, inflammatory conditions, and diabetic 
complications. This comprehensive review under-
scores TGase2’s pivotal involvement in the 
pathogenesis of diabetic complications, including DR, 
DP, DN, CVD, and HGM. The proposed therapeutic 
strategies involve TGase2 inhibition, offering a 

promising avenue for managing diabetic complica-
tions. 

Two primary approaches exist for TGase2 
inhibition: direct and indirect. The direct inhibition 
strategy encompasses three groups–competitive, 
reversible, and irreversible inhibitors–each strategi-
cally impeding substrate binding to the TGase2 active 
site. Additionally, indirect TGase2 inhibition involves 
ligands binding to specific receptors, orchestrating 
TGase2 modulation through intricate intracellular 
signaling pathways. While both approaches hold 
considerable promise for treating diabetic 
complications, their clinical viability hinges on 
meticulous assessments of safety, efficacy, and 
possible adverse effects. 

Direct TGase2 inhibitors exhibit distinct 
potential, with cystamine and its reduced form, 
cysteamine, emerging as particularly promising 
candidates. These amine inhibitors showcase 
compelling protective effects in preclinical studies, 
specifically ameliorating diabetic vascular dysfunc-
tions in various organs, including the aorta, eye, lung, 
and kidney. Notably, these inhibitors have undergone 
clinical trials, demonstrating safety in conditions such 
as cystinosis and neurodegenerative disorders [120, 
175].  

Indirect TGase2 inhibition via ligands presents 
an attractive, comparatively safe avenue for treating 
diabetic complications. The proinsulin C-peptide 
stands out as an encouraging candidate, demons-
trating beneficial effects against diabetic micro-
vascular and macrovascular dysfunctions in both type 
1 diabetic patients and animal models. The inherent 
endogeneity of human C-peptide secreted from 
pancreatic β-cells suggests minimal side effects. 
Further potential enhancements through PEGylation 
or conjugation with a thermosensitive polymer open 
avenues for extending its therapeutic half-life. 
Although human C-peptide may not fully address 
diabetic peripheral neuropathy, rigorous clinical trials 
are imperative to evaluate its efficacy in mitigating 
diabetic vascular complications. Similarly, midazo-
lam, a short-acting benzodiazepine, shows promise, 
especially in treating DR through localized delivery. 
However, optimizing dosage and delivery routes and 
ensuring safety warrant exploration through clinical 
studies.  

Clinical utilization of TGase2 inhibitors for 
diabetic complications necessitates an intricate 
understanding of TGase2’s four enzymatic activities 
in the pathogenesis of hyperglycemia-induced 
vascular and neuronal dysfunctions. TGase2 
transamidase activity orchestrates complex interact-
ions with key proteins, including RhoA, NFκB, 
GAPDH, and E-cadherin, resulting in actin 
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cytoskeleton rearrangement, inflammation, and 
disrupted energy metabolism, which are crucial 
factors in hyperglycemia-induced vascular dysfunc-
tions. The TGase2 kinase activity, with its extensive 
substrate phosphorylation repertoire including NFκB, 
pRB, E-cadherin, and p53 oncoprotein, demands 
further study to elucidate its specific functions in 
diabetic complications. A nuanced understanding of 
the reciprocal regulation of vascular dysfunction- 
associated proteins by TGase2 transamidase and 
kinase activities introduces a compelling layer to the 
investigation. Furthermore, untangling the functions 
of TGase2 disulfide isomerase and GTPase activities 
introduces complexity, urging further investigations 
to unravel their roles in the pathogenesis of diabetic 
complications. The challenge and excitement lie in 
deciphering these intricate facets, expanding our 
understanding, and paving the way for potential 
therapeutic interventions that could transform the 
landscape of diabetic care. 
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