Supplementary Figure legends

Figure S1. scRNA-seq analysis of 9 GC samples. (A) A violin plot illustrating the expression levels of specific marker genes across nine distinct cell types. (B) Featureplot showing the distribution of clusters as indicated by specific marker genes. (C) GSEA was performed on scRNA-seq data comparing the BATF2 low expression cells to the high expression epithelial cells.

Figure S2. mRNA expression levels of stemness markers in adherent cells and spheroid.

(A) Analysis of stem cell marker expression in adherent and spheroid cells via qRT-PCR. (B) Examination of stem cell markers in HGC-27 and AGS cells with BATF2 overexpression or knockdown using qRT-PCR. (C) qRT-PCR assessment of stem cell markers in HGC-27 and AGS spheroid with elevated BATF2 expression.

Figure S3. BATF2 knockdown enhances stem cell-like properties in gastric cancer cells.

(A) Western blot analysis evaluating stem cell marker levels in HGC-27 and AGS cells with stable BATF2 knockdown, with or without MK2206 treatment. (B) Western blot examination of stem cell markers and key AKT pathway components in spheroid from HGC-27 and AGS with stable BATF2 knockdown. (C) Images showcasing spheroids with or without BATF2 knockdown. (D-E) Immunofluorescence imaging and quantification of CD44 and NANOG in spheroids treated with BATF2 knockdown and MK2206. (F-G) Flow cytometric assessment of the CD44-positive cell fraction in HGC-27 or AGS cells with stable transfection, including visual representations and numerical quantification of the findings.

Figure S4. BATF2 impedes gastric cancer cell stem cell-like properties in MKN-45 cells.

(A) Analysis of BATF2 expression GES-1, MKN-45, HGC-27, ASG and MKN-28 cells via western blot. (B-C) Western blot assessment of stem cell markers and AKT pathway components in MKN-45 cells with elevated BATF2 expression. (D-F) Spheroid formation frequency in U-bottom 96-well plates using MKN-45 cells with varying BATF2 expression. (G-I) Serial dilution and subcutaneous xenograft of MKN-45 cells with/without BATF2 overexpression into NOD/SCID mice, tracking tumor cell injection numbers and tumor formation frequency by day 42, with probability estimates from Extreme Limiting Dilution Analysis (ELDA).

Figure S5. BATF2 increased the sensitivity of 5-Fu treatment.

(A) Kaplan–Meier survival analysis assessing chemotherapy's impact based on BATF2 high and low expression patients in external cohort. (B) Western blot assessment of stem cell markers and AKT pathway components in parental and 5-Fu resistant cells. (C) Concentration-survival curves for 5-Fu in 5-Fu resistant AGS and HGC-27 cell lines determined by CCK-8 assay. (D) The body weight of all mice involved in Figure 5H during the experiment.

Figure S6. Analysis of genes downstream of BATF2.

(A) Sequencing data indicating ABCG2 as a gene regulated by BATF2. (B) Expression levels of ABC transporter family members derived from sequencing. (C) Gene set enrichment analysis (GSEA) conducted to understand the downstream signaling impacted by BATF2.

Figure S7. BATF2 increases 5-Fu sensitivity via blocking PTEN/AKT/β-catenin/ABCG2 signaling.

(A) Western blot analysis of ABCG2, ABCB6, and ABCB1 in HGC-27 cells with increased BATF2 expression. (B) qRT-PCR evaluation of ABCG2, ABCB6, and ABCB1 in BATF2-altered AGS and HGC-27 cells. (C) Feature plot depiction of cells positive for ABCG2 (red), BATF2 (green), or both (yellow). (D) Western blot results for ABCG2 and BATF2 expression in GC cell lines administrated by gradient 5-Fu treatment. (E) Western blot analysis of AKT signaling components in BATF2-modified HGC-27 cells. (F) Protein level assessment of AKT pathway members in HGC-27 cells with BATF2 knockdown and MK2206 treatment. (G) Immunofluorescence staining of β -catenin and EpCAM in GC organoids, with BATF2 knockdown or overexpression (DAPI-stained nuclei). (H) Ouantification of nuclear β-catenin fluorescence in G. (I) Nuclear and cytoplasmic protein extractions assay of phosphorylated βcatenin and total β -catenin induced by BATF2 overexpression. (J) qRT-PCR evaluation of BATF2 and PLHPP in BATF2-altered AGS and HGC-27 cells. (K) Quantification of PTEN expression in AGS cells after cycloheximide treatment. (L) Concentration-survival curves for 5-Fu in AGS and HGC-27 cell lines with BATF2 overexpression and PTEN deletion determined by CCK-8 assay. (M) Concentration-survival curves for 5-Fu in AGS and HGC-27 cell lines with BATF2 deletion and PTEN overexpression determined by CCK-8 assay.

Cell	Vector		BATF2		
Number	Number	Days	Number	Days	
	of well		of well		
100	32/32		32/32		
10	32/32	10	29/32	10	
1	26/32		17/32		
P value	< .0001				

4e+04 8e+04 dose (number of cells)

-1.5

-2.5

0e+00

Cell	Vector		BATF2		
Dose	Tumors/N	Days	Tumors/N	Days	
100000	6/6		6/6		
50000	6/6		5/6		
10000	5/6	42	2/6	42	
5000	3/6		0/6		
1000	2/6		0/6		

kegg.Gsea

Table S1. List of Antibodies	
------------------------------	--

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb	CST	Cat. # 4060s
Akt Antibody #9272 Rabbit mAb	CST	Cat. # 9272S
Phospho-β-Catenin (Ser552) (D8E11) Rabbit mAb	CST	Cat. # 5651
β-Catenin (D10A8) XP® Rabbit mAb	CST	Cat. # 8480s
ABCG2 (D5V2K) XP® Rabbit mAb	CST	Cat. # 42078s
GAPDH (14C10) Rabbit mAb #2118	CST	Cat. # 2118s
BATF2 Antibody (1B11)	Santa cruz	Cat. # sc-293274
PTEN (138G6) Rabbit mAb	CST	Cat. # 9559S
β3-Tubulin (D71G9) XP® Rabbit mAb	CST	Cat. # 5568S
Anti-Laminin beta 1 antibody	abcam	Cat. # ab69633
Sox2 (D9B8N) Rabbit mAb	CST	Cat. # 23064S
Sox9 (D8G8H) Rabbit mAb	CST	Cat. # 82630
Recombinant Human CD44 Protein	abcam	Cat. # RP00973
Anti-PHLPP1 antibody[EPR27151-55]	abcam	Cat. # ab305295
Anti-Nanog antibody [EPR2027(2)]	abcam	Cat. # ab109250
Anti-ABCB6/PRP antibody [EPR21891]	abcam	Cat. # ab221159
MDR1/ABCB1 (E1Y7S) Rabbit mAb	CST	Cat. # 13978s
CD326 (EpCAM) Monoclonal Antibody (1B7)	Thermofisher	Cat. # 14-9326-82
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488	Thermofisher	Cat. # A-11008
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488	Thermofisher	Cat. #A-11001
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 568	Thermofisher	Cat. # A-11011
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 568	Thermofisher	Cat. #A-11004

Sample	Age	Geder	Histopathological diagnosis	Tumor site	Lauren's classification	Pathological stage
Sample01	55	F	Moderately poorly differentiated adenocarcinoma	Antrum	Mixed	pT2N3aM0
Sample02	70	М	Poorly differentiated adenocarcinoma, partial signet ring cell carcinoma	Cardia	Mixed	pT3N3aM0
Sample03	63	М	Signet ring cell carcinoma	Antrum	Diffuse	pT4aN2M0
Sample04	59	М	Poorly differentiated adenocarcinoma	Corpus	Diffuse	pT2N0M0
Sample05	65	М	Moderately differentiated adenocarcinoma	Corpus	Intestinal	pT2N0M0
Sample06	62	F	Poorly differentiated adenocarcinoma	Corpus	Diffuse	pT4aN1M0
Sample07	69	М	Moderately differentiated adenocarcinoma	Corpus	Intestinal	pT2N1M0
Sample08	62	М	Moderately poorly differentiated adenocarcinoma	Cardia	Mixed	pT3N2M0
Sample09	53	F	Moderately differentiated adenocarcinoma	Antrum	Intestinal	pT2N1M0

Table S2.	Clinical	characteristics	ofeach	sample	for scR	NA-seq