Supplementary Information

SPOP downregulation promotes bladder cancer progression based on cancer cell-macrophage crosstalk via STAT3/CCL2/IL-6 axis and is regulated by VEZF1

Meiqian Li*, Yangyan Cui*, Qi Qi, Jiakuan Liu, Jiaxuan Li, Guifang Huang, Jiale Yang, Jingya Sun, Zhihui Ma, Shengjie Liang, Dianzheng Zhang, Jun Jiang, Rujian Zhu[#], Qiuli Liu[#], Ruimin Huang[#], Jun Yan[#]

*These authors contributed equally to this article.

#Corresponding authors:

Jun Yan, Ph.D., Fudan University, Shanghai 200032, China. Phone: 86-21-54237454; E-mail: <u>yan_jun@fudan.edu.cn</u>

Ruimin Huang, Ph.D., Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. Phone: 86-21-68077978; E-mail: rmhuang@simm.ac.cn

Qiuli Liu, M.D., Daping Hospital, Army Medical University, Chongqing 400042, China. Phone: 86-23-68729241; E-mail: <u>liuqiuli900827@163.com</u>

Rujian Zhu, M.D., Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China. Phone:86-18918753975; E-mail: <u>tzzhurj@163.com</u>

Supplementary Figure S1. Rare genetic alterations of *SPOP* gene in human UBC specimens and its function in UBC cell proliferation and cancer stemness. A, The genetic alterations of *SPOP* in 127 UBC patients with mutation information from TCGA-BLCA dataset. **B**, Two SPOP mutations were depicted on SPOP protein. **C**, Western blotting analysis on SPOP protein in non-malignant SV-HUC-1 and six UBC cell lines. **D**, MTT assay on T24 cells with SPOP overexpression (SPOP) and control cells (CV) for 4 days. **E-F**, Representative images (**E**) and quantification (**F**) of sphere number of SPOP-overexpressing (SPOP) and control (CV) T24 cells for 6 days. Scale bar, 200 µm. Data were presented as mean \pm SD and analyzed by Student's *t* test. ns, $p \ge 0.05$.

Supplementary Figure S2. SPOP suppressed macrophage-mediated proliferation and stemness in SW780 cells. A, The knockdown efficiency of SPOP in SW780 cells by RNA interfering was assessed by Western blotting analysis. B, MTT assay on control (shNC) and SPOP knockdown (sh1 and sh2) SW780 cells for 3 days, after cocultured with or without U937 cells in a non-contact system. C-D, Representative images (C) and quantification (D) of sphere formation in mCherry-labelled SPOP deficient (sh1 and sh2) and control (shNC) SW780 cells, co-cultured with and without U937 cells over a 6-day period. Scale bar, 200 μ m. E, Western blotting analysis of stemness markers in SPOP-knockdown SW780 cells, co-cultured with and without U937 cells. Data were presented as mean \pm SD and analyzed by unpaired *t* test (B&D). **, p < 0.01; ***, p < 0.001. #, p < 0.05; ##, p < 0.01; ###, p < 0.001; with *vs* without co-cultured U937 cells.

Supplementary Figure S3. STAT3 activation was required for SPOP downregulation-induced UBC cell proliferation and cancer stemness via the interaction with macrophage. A, GO enrichment analysis identified the pathways affected by SPOP knockdown in 5637 cells. B-C, Validation of SPOP and STAT3's target genes in SPOP knockdown (sh1 and sh2) and control (shNC) 5637 cells (B), as well as in SPOP-overexpressing (SPOP) and control (CV) T24 cells (C) by RT-qPCR analysis. D, MTT assay on control (shNC) and SPOP knockdown (sh1) 5637 cells, after 96 h co-cultured with or without U937 cells in a non-contact system. Stattic (20 μ M) was added to block STAT3 activation. E, Quantification of mCherry-labelled control (shNC) and SPOP knockdown (sh1) 5637 spheres, co-cultured with and without U937 cells for 10 days. Stattic was added to block STAT3 activation. F, MTT assay on T24 cells (CV and SPOP) for 3 days, after co-cultured with U937 cells in a non-contact system or treated with IL-6. G, Quantification of sphere number of

mCherry-labelled SPOP-overexpressing (SPOP) and control (CV) T24 cells, cocultured with or without U937 cells or treated with IL-6 (50 ng/ml) after 6-day sphere formation. Data were presented as mean \pm SD and analyzed by unpaired *t* test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, $p \ge 0.05$. #, p < 0.05; ##, p < 0.01; ###, p < 0.001; with *vs* without co-cultured U937 cells or with *vs* without Stattic or IL-6 treatment.

Supplementary Figure S4. The correlation between VEZF1 and SPOP in UBC patients and cells. A, A Venn diagram showing the significantly negative association between transcriptional factors derived from Human TFome library and *SPOP* mRNA levels in four UBC datasets. **B-H**, Pearson correlation analysis of *SPOP* and *VEZF1* mRNA levels in seven UBC datasets, including GSE13507 (**B**), GSE32894 (**C**),

GSE87304 (**D**), GSE128702 (**E**), GSE48075 (**F**), GSE48276 (**G**) and GSE31684 (**H**). **I**, Western blotting analysis of SPOP protein levels in T24 cells transfected with different amounts of pFLAG-VEZF1 plasmid. **J**, The alignment of evolutionarily conserved *SPOP* promoter sequences from three different species. Transcriptional start site (TSS) and four putative VEZF1 binding sites, predicted by JASPAR, were labelled underlying the nucleotide sequences. **K**, Kaplan–Meier survival plot of cumulative overall survival of 94 UBC patients from our own cohort stratified by VEZF1 protein level, according to the IHC staining score on tissue microarray. **L-N**, Kaplan–Meier survival plots of cumulative overall survival of UBC patients from GSE48075 dataset, stratified by *SPOP* mRNA level (**L**), *VEZF1* mRNA level (**M**) and *SPOP*^{Low}*VEZF1*^{Low} *vs SPOP*^{High}*VEZF1*^{High}(**N**). **O-Q**, Kaplan–Meier survival plots of cumulative disease-specific survival of UBC patients from GSE48075 dataset, stratified by *SPOP* mRNA level (**O**), *VEZF1* mRNA level (**P**) and *SPOP*^{Low}*VEZF1*^{Low} *vs SPOP*^{High}*VEZF1*^{High}(**Q**).

Supplementary Table S1. Correlation between immunohistochemical variables and clinicopathologic features in UBC patients from our own cohort (n = 94).

	•	Expressio	n of SPOP		CD68	⁺ TAM		CD206	⁺ TAM		Expression	n of VEZF1	
Characteristics	n	High	Low	р	High	Low	р	High	Low	р	High	Low	р
		(n, %)	(n, %)		(n, %)	(n, %)		(n, %)	(n, %)		(n, %)	(n, %)	
Gender				0.1196			0.3545			0.0271			0.1586
Male	82	44 (54%)	38 (46%)		39 (48%)	43 (52%)		37 (45%)	45 (55%)		64 (78%)	18 (22%)	
Female	12	3 (25%)	9 (75%)		8 (67%)	4 (33%)		10 (83%)	2 (17%)		7 (58%)	5 (42%)	
Age				0.1438			0.8349			>0.9999			0.8101
<65	40	24 (60%)	16 (40%)		19 (48%)	21 (52%)		20 (50%)	20 (50%)		31 (78%)	9 (22%)	
≥65	54	23 (43%)	31 (57%)		28 (52%)	26 (48%)		27 (50%)	27 (50%)		40 (74%)	14 (26%)	
Smoking				>0.999			0.6320			0.3374			0.5772
Yes	23	11 (48%)	12 (52%)		10 (43%)	13 (57%)		9 (39%)	14 (61%)		16 (70%)	7 (30%)	
No	71	36 (51%)	35 (49%)		37 (52%)	34 (48%)		38 (%)	33 (%)		55 (77%)	16 (23%)	
Tumor grade				0.019			0.0055			0.1370			>0.9999
Low	36	24 (67%)	12 (33%)		11 (31%)	25 (69%)		14 (39%)	22 (61%)		27 (75%)	9 (25%)	
High	58	23 (40%)	35 (60%)		36 (62%)	22 (38%)		33 (57%)	25 (43%)		44 (76%)	14 (24%)	
T stage				0.012			0.0414			0.1136			0.1190
T1	66	39 (59%)	27 (41%)		28 (42%)	38 (58%)		29 (44%)	37 (56%)		53 (80%)	13 (20%)	
T2-4	28	8 (29%)	20 (71%)		19 (68%)	9 (32%)		18 (64%)	10 (36%)		18 (64%)	10 (36%)	
N stage				0.120			0.3545			0.1196			0.0078
NO	82	44 (54%)	38 (46%)		39 (48%)	43 (52%)		38 (46%)	44 (54%)		66 (80%)	16 (20%)	
≥N1	12	3 (25%)	9 (75%)		8 (67%)	4 (33%)		9 (75%)	3 (25%)		5 (42%)	7 (58%)	
M stage				>0.999			>0.9999			>0.9999			0.1472
M0	91	46 (51%)	45 (49%)		46 (51%)	45 (49%)		46 (51%)	45 (45%)		70 (77%)	21 (23%)	
≥M1	3	1 (33%)	2 (67%)		1 (33%)	2 (67%)		1 (33%)	2 (67%)		1 (33%)	2 (67%)	
Tumor number				0.2524			0.0956			0.1498			0.4443
NA	2	2 (100%)	0 (0%)		1 (50%)	1 (50%)		0 (0%)	2 (100%)		2 (100%)	0 (0%)	
1	23	13 (57%)	10 (43%)		7 (30%)	16 (70%)		9 (39%)	14 (61%)		19 (83%)	4 (17%)	
≥1	69	32 (46%)	37 (54%)		39 (57%)	30 (43%)		38 (55%)	33 (45%)		50 (72%)	19 (28%)	

Notes: UBC, urothelial bladder cancer. The Pearson Chi-square test was applied. Numbers in bold indicate p value with statistical difference.

Supplementary Table S2. The sequences of primers and siRNAs							
Name	Forward primer (5'-3')	Reverse primer (5'-3')					
Subcloning							
pCMV10-3×	ATTTGCGGCCGCGATGTCAAGGG	CGGGATCCTTAGGATTGCTTCAGGC					
FLAG-SPOP-WT	TTCCAAGTCCTCC	GTTTG					
pCDH-3×FLAG	ACGATGACAAGCTTGCGGCCGCG	TCTGCCCTCGATATCGAATTCGGATT					
-SPOP-WT	ATGTCAAGGGTTCCAAGTCCTCC	GCTTCAGGCGTTTGCG					
	GACTTGAATCGGCCTGAATTCAT	TAGTCATGAAGATCTCTCGAGTCAA					
pCS2-1×Myc-Ub	GCAGATCTTCGTGAAAACCCTC	CCACCACGCAGGCGGAGC					
pCDH-3×FLAG	AAGCTTGCGGCCGCGAATTCAGA	TTCGCGGCCGCCCGGGTTAGTTACC					
-VEZF1-WT	GGCCAACTGGACCGCGT	AAGGCGGTGATGTAG					
pCS2-4×HA	TACGCTGGCCGGCCTGAATTCAT	GCTATCTAGTCATGAAGATGTTCACA					
-STAT3-WT	GGCTCAGTGGAACCAGCTG	TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG					
nCS2-4×HA							
-STAT3-ASBC	TG	CAGCCCCCGCTCTGCCAGCTGAG					
-51A15- <u>2</u> 5DC							
рС52-4×ПА	AGEIGGCAGGCAICGICCACCAC	GUIGGACGAIGECIGECAGEIGAGE					
-SIAI3-F512A							
pCS2-4×HA	IGGCAGIICGCAICCACCACCAA	GGIGGIGGAIGCGAACIGCCAGCIG					
-SIAI3-S513A							
pCS2-4×HA	CAGITUICGGCAACCACCAAGCG	CTTGGTGGTTGCCGAGAACTGCCAG					
-STAT3-S514A	GGGGCIGAGC	CIGAGCACCICG					
pCS2-4×HA	TTCTCGTCCGCAACCAAGCGGGG	CCGCTTGGTTGCGGACGAGAACTGC					
-STAT3-T515A	GCIGAGCAICGA	CAGCIGAGCAC					
pCS2-4×HA	TCGTCCACCGCAAAGCGGGGGGCT	CCCCCGCTTTGCGGTGGACGAGAAC					
-STAT3-T516A	GAGCATCGAGC	TGCCAGCTGAG					
pLKO.1-shSPOP-1	CCGG <u>CACAAGGCTATCTTAGCAG</u>	AATTCAAAAA <u>CACAAGGCTATCTTA</u>					
-puro	<u>CICICGAGAGCIGCIAAGAIAGC</u>	<u>GCAGCI</u> CICGAG <u>AGCIGCIAAGAIA</u>					
•							
pLKO.1-shSPOP-2	A ACTCCA CTTCATCCTCCA CATC	CATCAACTCCACTTCATCTCCACA					
-puro	TAGGAGTTTTTG	TGTAGGAG					
	CCGGCTCAGAGGATCCCGGAAAT	AATTCAAAAACTCAGAGGATCCCGG					
pLKO.1-shSTAT3-	TTCTCGAGAAATTTCCGGGATCC	AAATTTCTCGAGAAATTTCCGGGAT					
1-BSD	TCTGAGTTTTTG	CCTCTGAG					
pGL3-SPOP-WT	TCTCTATCGATAGGTACAACAGG	GTACCGGAATGCCAAGCTCTCTCAA					
-Luciferase	CTCATTATCTGG	ATCCCCGGGCC					
pGL3-SPOP-Mut	TCCCTCGACTCTCCT <u>AAAAAA</u> AC	GCCGCTCTCAGGTGAGT <u>TTTTTT</u> AG					
1-Luciferase	TCACCTGAGAGCGGC	GAGAGTCGAGGGA					
pGL3-SPOP-Mut	CTCTTCAGGGAGGTG <u>AAAAAAA</u>	GGTTGTCCTGTCGGAGT <u>TTTTTTTT</u>					
2-Luciferase	AAAACTCCGACAGGACAACC	<u>T</u> CACCTCCCTGAAGAG					
pGL3-SPOP-Mut	GTATATGTGTGTGGGC <u>TTTTTT</u> TGG	CCCCCACTGTCCCCCCAAAAAAAGC					
3-Luciferase	GGGGACAGTGGGGG	CACACACATATAC					
pGL3-SPOP-Mut	GATGGGGCTGGGAAATGAT <u>TTTT</u>	GCCCCCTGCCTTCAG <u>AAAAAAA</u> ATC					
4-Luciferase	<u>III</u> CIGAAGGCAGGGGGGC	ATTICCCAGCCCCATC					
SIKINAS							
CUL3-1	AACAACUUUCUUCAAACGCUA						
CUL3-2 DDV1 1							
SPOP		GALILIGCHIICAGGCGULILIGC					
VE7E1_1							
VEZF1-1							
VEZF1-2	I GUGCACCAGAAACAUUAAA	IUUUAAUGUUUCUGGUGCAC					

Supplementary	Table S2.	The sequences	of primers	and siRNAs
---------------	-----------	---------------	------------	------------

Supplementary Table S2. The sequences of primers and siRNAs (Cont'd)							
Name	Forward primer (5'-3')	Reverse primer (5'-3')					
RT-qPCR							
ACTB	CACTCTTCCAGCCTTCCTTC	GTACAGGTCTTTGCGGATGT					
CCL1	CTCATTTGCGGAGCAAGAGAT	GCCTCTGAACCCATCCAACTG					
CCL11	CCCCTTCAGCGACTAGAGAG	TCTTGGGGTCGGCACAGAT					
CCL13	CTCAACGTCCCATCTACTTGC	TCTTCAGGGTGTGAGCTTTCC					
CCL15	TCCCAGGCCCAGTTCATAAAT	TGCTTTGTGAGATGTAGGAGGT					
CCL19	TACATCGTGAGGAACTTCCACT	CTGGATGATGCGTTCTACCCA					
CCL2	ATCACCAGCAGCAAGTGTCC	TGGGTTGTGGAGTGAGTGTT					
CCL20	TGCTGTACCAAGAGTTTGCTC	CGCACACAGACAACTTTTTCTTT					
CCL21	GTTGCCTCAAGTACAGCCAAA	AGAACAGGATAGCTGGGATGG					
CCL22	ATCGCCTACAGACTGCACTC	GACGGTAACGGACGTAATCAC					
CCL23	CATCTCCTACACCCCACGAAG	GGGTTGGCACAGAAACGTC					
CCL24	ACATCATCCCTACGGGCTCT	CTTGGGGTCGCCACAGAAC					
CCL25	GGCCCTCATGCTGTAAAGAAG	TGCTGATGGGATTGCTAAACTT					
CCL27	GCAGCATTCCTACTGCCAC	AGGTGAAGCACGAAAGCCTG					
CCL3	AGTTCTCTGCATCACTTGCTG	CGGCTTCGCTTGGTTAGGAA					
CCL4	CTGTGCTGATCCCAGTGAATC	TCAGTTCAGTTCCAGGTCATACA					
CCL5	ATATTCCTCGGACACCACACCC	CTCTGGGTTGGCACACACTT					
CCL8	TGGAGAGCTACACAAGAATCACC	TGGTCCAGATGCTTCATGGAA					
CD14	ACGCCAGAACCTTGTGAGC	GCATGGATCTCCACCTCTACTG					
CSF-1	GTGAAAGTTTGCCTGGGTCC	ACAGACCAACAACAGCAGGG					
CSF-2	CCTGAGTAGAGACACTGCTGC	TCTGGGTTGCACAGGAAGTT					
CSF-3	GCTGCTTGAGCCAACTCCATA	GAACGCGGTACGACACCTC					
CX3CL1	CGCGCAATCATCTTGGAGAC	CCACAGACTCGTCCATTCCC					
CXCL1	ATTGTGAAGGCAGGGGAATGT	GCCCCTTTGTTCTAAGCCAGA					
CXCL9	CCAGTAGTGAGAAAGGGTCGC	AGGGCTTGGGGCAAATTGTT					
CXCL10	GTGGCATTCAAGGAGTACCTC	TGATGGCCTTCGATTCTGGATT					
CXCL11	GACGCTGTCTTTGCATAGGC	GGATTTAGGCATCGTTGTCCTTT					
CXCL12	ATTCTCAACACTCCAAACTGTGC	ACTTTAGCTTCGGGTCAATGC					
CXCL13	GCTTGAGGTGTAGATGTGTCC	CCCACGGGGCAAGATTTGAA					
CXCL16	CCCGCCATCGGTTCAGTTC	CCCCGAGTAAGCATGTCCAC					
CXCL2	TGTGACGGCAGGGAAATGTA	TGCTCTAACACAGAGGGAAACA					
CXCL5	TGTGCAATTAACAAAGCTACTGC	ACTCATAACAAAATGGTCAAAACCT					
CXCL6	AGAGCTGCGTTGCACTTGTT	GCAGTTTACCAATCGTTTTGGGG					
FAS	TCTGGTTCTTACGTCTGTTGC	CTGTGCAGTCCCTAGCTTTCC					
HIF1A	CACCACAGGACAGTACAGGAT	CGTGCTGAATAATACCACTCACA					
IL-1a	AGATGCCTGAGATACCCAAAACC	CCAAGCACACCCAGTAGTCT					
IL-1β	ATGATGGCTTATTACAGTGGCAA	GTCGGAGATTCGTAGCTGGA					
IL-11	CGAGCGGACCTACTGTCCTA	GCCCAGTCAAGTGTCAGGTG					
IL-15	TTGGGAACCATAGATTTGTGCAG	GGGTGAACATCACTTTCCGTAT					
IL-16	GCCGAAGACCCTTGGGTTAG	GCTGGCATTGGGCTGTAGA					

Plasmid	Forward primer (5'-3')	Reverse primer (5'-3')
RT-qPCR (Cont'd)		
IL-1ra	CATTGAGCCTCATGCTCTGTT	CGCTGTCTGAGCGGATGAA
IL-22	GCTTGACAAGTCCAACTTCCA	GCTCACTCATACTGACTCCGT
IL-24	TTGCCTGGGTTTTACCCTGC	AAGGCTTCCCACAGTTTCTGG
IL-32	TGGCGGCTTATTATGAGGAGC	CTCGGCACCGTAATCCATCTC
IL-33	GTGACGGTGTTGATGGTAAGAT	AGCTCCACAGAGTGTTCCTTG
IL-6	AGACAGCCACTCACCTCTTCAG	TTCTGCCAGTGCCTCTTTGCTG
IL-6r	CATGTGCGTCGCCAGTAGT	AGCTCAAACCGTAGTCTGTAGA
IL-7	TTGGACTTCCTCCCCTGATCC	TCGATGCTGACCATTAGAACAC
IL-8	ACACTGCGCCAACACAGAAA	TTGCTTGAAGTTTCACTGGCATC
iNOS	TTCAGTATCACAACCTCAGCAAG	TGGACCTGCAAGTTAAAATCCC
PARP14	TGTTAGTGGAGAACATAAGTGGC	TGAATGGTGCTTGGTACAATCAT
PDGFβ	CTCGATCCGCTCCTTTGATGA	CGTTGGTGCGGTCTATGAG
SERPINB9	AATGCAAGTGGTACTTTTGCCA	AAGCCCGATGAATGTCTTCCT
SOX2	GCCGAGTGGAAACTTTTGTCG	GGCAGCGTGTACTTATCCTTCT
SPOP	GCCCTCTGCAGTAACCTGTC	GTCTCCAAGACATCCGAAGC
TGFβ2	CAGCACACTCGATATGGACCA	CCTCGGGCTCAGGATAGTCT
TNF	CCTCTCTCTAATCAGCCCTCTG	GAGGACCTGGGAGTAGATGAG
VEGFA	AGGGCAGAATCATCACGAAGT	AGGGTCTCGATTGGATGGCA
VEZF1	TTGGGAAAACCCAGTTCCCC	GCTTCATGGGCTGCCATTTT
ChIP		
VEZF-SPOP 1	AGGCGACAGCTCAGTATTTG	CCGTCCCTTCTCCCTATCTCA
VEZF-SPOP 2	CATGGCGTCAGCACGTC	GCGCACTAGGAAAGATAGGCG
VEZF-SPOP 3	GGGTGTAGGAAATGGGACTGAG	CAGTATGAGGCAAGCGCAG

Supplementary Table S2. The sequences of primers and siRNAs (*Cont'd*)

Reagents	Company	Cat #	Dilution	RRID			
Antibodies							
anti-CD68	Cell Signaling Technology	76437S	IF (1:200) IHC (1:1,000)	AB_2799882			
anti-CK5	COVANCE	PRB-160P	IF (1:1,000) IHC (1:2,000)	AB_10063444			
anti-CUL3	Abways	CY7196	WB (1:1,000)	NA			
Anti-F4/80	Bioworld Technology, Inc.	RB0001	IF (1:50)	NA			
anti-FLAG	Sigma-Aldrich	F3040	WB (1:5,000) IF (1:500) IP (1:1,000)	AB_439712			
anti-GAPDH (6C5)	Santa Cruz	sc-32233	WB (1:1,000)	AB_627679			
anti-HA (F-7)	Santa Cruz	sc-7392	WB (1:1,000) IP (1:200)	AB_627809			
anti-Integrin β1	Cell signaling	34971S	WB (1:1,000)	AB 2799067			
anti-IL-6 neutralizing antibody	R&D systems	MAB2061	Cell assay (100 ng/ml)	AB_2127616			
anti-KLF4	Proteintech	11880-1-AP	WB (1:1,000)	AB 10640807			
anti-Myc (9E10)	Santa Cruz	sc-40	WB (1:1,000)	AB 627268			
anti-RBX1	HuaBio	ER1802-9	WB (1:1,000)	AB 3069189			
anti-SPOP	Proteintech	16750-1-AP	WB (1:1,000)	AB 2756394			
anti-SPOP	Abcam	ab168619	IHC (1:100) IF (1:50)	NA			
anti-STAT3	Cell Signaling Technology	9139S	WB (1:1,000) IP (1:200)	AB_331757			
anti-p-STAT3(Y705)	Cell Signaling Technology	9145S	WB (1:1,000)	AB 2491009			
anti-VEZF1 (B-4)	Santa Cruz Biotechnology	sc-365560	WB (1:1,000) IHC (1:1,000) ChIP (2 µg)	AB_10846717			
ABflo® 488-conjugated Goat anti- Rabbit IgG (H+L)	ABclonal	AS053	IF (1:1,000)	AB_2768320			
ABflo® 555-conjugated Goat anti- Mouse IgG (H+L)	ABclonal	AS057	IF (1:1,000)	AB_2768322			
Alexa Fluor® 647-conjugated Goat anti-Rat IgG	Abcam	ab150167	IF (1:1,000)	AB_2864291			
Protein A/G PLUS-Agarose	Santa Cruz Biotechnology	sc-2003	CoIP (20 µl/test)	AB 10201400			
Chemicals and Kits		•					
Blasticidin S	Yeasen	60218ES60	20 µg/ml				
ClonExpress MultiS One Step Cloning kit	Vazyme	C113-02	NA				
Cycloheximide (CHX)	Sigma-Aldrich	66-81-9	100 µg/ml				
DAB kit	MXB Biotechnologies	DAB-2031	NA				
DAPI	BBI Life Science	28718-90-3	5 µg/ml				
DH5a competent cells	Sangon Biotech	B528413- 0020	NA				
DMSO	Sigma-Aldrich	D2650	NA				
EGF. human recombinant protein	PeproTech	AF-100-15	10 ng/ml				
EZ-ChIP kit	Millipore	17-295	NA				
bFGF, human recombinant protein	PeproTech	100-18B	10 ng/ml				
Human CCL2/MCP-1 ELISA kit	MultiSciences (Lianke) Biotech	EK1872	NA				
Human IL-6 ELISA kit	ExCell Bio	EH004-96	NA				
IL-6 protein, human recombinant		200 5	50 / 1				
protein	PeproTech	200-6	50 ng/ml				
Lipofectamine 2000	ThermoFisher Scientific	11668019	NA				
Luciferase assay system	Promega	E1501	NA				

Supplementary Table S3. List of antibodies, chemicals and kits

Supplementary Table S3. List of antibodies, chemicals and kits (<i>Cont'd</i>)							
Reagents	Company	Cat #	Assay (Dilution)	RRID			
Chemicals and Kits							
Matrigel	Corning	354234	NA				
MG132	Selleck	S2619	10 µM				
MTT	Sigma-Aldrich	M2128	0.5 mg/ml				
Mut Express II Fast Mutagenesis kit V2	Vazyme	C214-01	NA				
NP-40 lysis buffer	Beyotime	P0013F	NA				
Prime-Script RT-PCR kit	Takara	RR047	NA				
PrimeSTAR MAX DNA polymerase	Takara	R045A	NA				
Puromycin dihydrochloride	Yeasen	60210ES80	2 µg/ml				
PVDF membrane	Millipore	IPVH00010	NA				
RS 504393	MedChemExpress	HY-15418	2 μM				
Stattic	MedChemExpress	HY-13818	20 µM				
Super Signal West Pico Stable Peroxide Solution	ThermoFisher Scientific	180-5001E	NA				
SYBR qPCR Master Mix (High Rox)	Vazyme	Q341-02	NA				
TRIzol	Life Technologies	15596018	NA				
T4 ligase	ThermoFisher Scientific	EL0011	NA				

Notes: NA, not applicable.