
Supplementary Methods 

Processing raw data from scRNA-Seq of 10x Genomics 

We used the default parameters of Cell Ranger single-cell software suite (v2.2.0) (10x 

Genomics) (https://support.10xgenomics.com/single-cell-

vdj/software/pipelines/latest/system-requirements#header). The quality of the sample-

specific FASTQ file was evaluated by the counts of Cell Ranger which were aligned to the 

human reference genome (hg19) using a STAR aligner to generate the digital gene 

expression matrix [1]. The expression level for each transcript was determined using the 

number of unique molecular identifiers (UMI) assigned to the transcript. The filtered gene 

expression matrices were then used for downstream analyses. 

Bioinformatic analysis 

Raw expression matrices were calculated by CellRanger toolkit (version.5.0 10× Genomics, 

Pleasanton, CA, USA) via alignment to human genome reference build GRCh38 (Ensembl 

88). The low-quality cells were discarded according to following criteria: (1) cells had 

unique molecular identifier (UMI) less than 800 or more than 20,000; (2) cells had no more 

than 500 expressed genes; and (3) the mitochondrial genes should account for less than 

15% UMI. Subsequently, the batch effect of donors was removed by applying integration 

workflow wrapped in Seurat (version 4.0, New York, NY, USA). Briefly, we first constructed 

a reference with finding “anchors” among batches/individuals by reciprocal PCA reduction. 

Then, we split the combined object by each donor and performed log normalization prior 

to finding anchors. The UMI count was normalized by the “NormalizeData” function. The 

top 3000 highly variable genes (HVGs) were calculated with “FindVariableFeatures” and 



selected for downstream analysis. Data were scaled with the “ScaleData” function, setting 

the parameter “vars.to.regress” to “percent.mito” and “nUMI”. Principal component analysis 

(PCA) was performed using the “RunPCA” function with the top 3000 HVGs. To cluster 

single cells into subsets, we adopted unsupervised graph-based clustering algorithm 

implemented in Seurat package. “PCElbowPlot” function was used to choose the number 

of PCs and a shared nearest-neighbor (SNN) graph was constructed using the 

“FindNeighbors” function with the top 35 PCs. Lastly, cells were clustered by the 

“FindClusters” and “RunUMAP” functions. “FindAllMarkers” function was applied to detect 

signature genes for each cluster with setting the parameter “min.pct” to 0.3 and 

“logfc.threshold” to 0.4. Subsequently, cell clusters were annotated manually to the major 

cell types according to known markers. Any cluster with multiple markers of two types of 

cells was manually discarded as a doublet. 

scRNA-Seq data analysis and cell-type identification 

Seurat R package (version 2.3.4) [2] was used to further analyze the single-cell RNA-seq 

data. After the initial Cell Ranger metric assessment, cells with fewer than 500 genes or 

more than 5,000 genes detected, and more than 10% mitochondrial genes were further 

excluded from the downstream analyses. After quality control, 35,678 cells remained and 

were used for downstream bioinformatic analyses. Sequencing reads for each gene were 

normalized to total UMIs in each cell to obtain normalized UMI values by “NormalizeData” 

function. In other words, the UMI counts of each gene was then divided by the total UMIs 

of the cell and multiplied by the median of the total UMI, and transformed by the natural 

logarithm. The “ScaleData” function was used to scale and center expression levels in the 



data set for dimensional reduction. To avoid batch effects among samples and experiments, 

the top 1,100 highly variable genes were used for canonical correlation analysis (CCA) 

implemented in Seurat to align samples. The aligned CCs were then used for downstream 

dimensionality reduction and clustering analyses. Total cell clustering was performed by 

“FindClusters” function at a resolution of 2.0 and the first 30 CCs were used to define cell 

identity. Dimensionality reduction was performed with “RunUMAP” function and visualized 

by Uniform Manifold Approximation and Projection (UMAP). For subgroup cell clustering, 

cells of different types were extracted separately and clustered by their respective first 10 

CCs using resolutions of 0.5 for mitotic cells and 0.8 for fibroblasts. Epidermal cells were 

clustered by the first 21 CCs using a resolution of 1.8. Marker genes for each cluster were 

determined with the Wilcoxon rank-sum test by “FindAllMarkers” function. Only those with 

|‘avg_logFC’| > 0.25 and ‘p_val_adj’ < 0.05 were considered as marker genes.  

Functional enrichment analysis 

For gene ontology (GO) enrichment analysis, we obtained differential expressed genes 

(DEGs) for each cell subset by setting log2foldchange as 0.4 and observed in at least 30% 

of cells via FindAllMarkers function wrapped in Seurat package. Then, enrichment analysis 

was performed with DEGs using clusterProfiler packages. 

Pseudotime analysis 

R package Monocle2 [3] (version 2.99.3) was used to reconstruct the epidermal cell 

developmental trajectory. The UMI matrix was used as input and variable genes obtained 

from epidermal cell types were detected by Seurat to sort cells in pseudotime. ‘UMAP’ was 

applied to reduce dimensions and the visualization functions “plot_cell_trajectory” were 



used to plot each group along the same pseudotime trajectory. 

Regulatory analysis of transcription factors 

To infer transcription factor (TF)–target interactions, single-cell regulatory network 

inference and clustering (SCENIC) algorithm was run with raw expression matrices to 

identify regulons specifically involving different cell subsets. TF activities (AUCell) for each 

cell were calculated with motif collections version mc9nr. The significantly upregulated 

regulon was defined as log fold change of more than 0.1 and adjusted p-value < 10−5. 

In this study, we retrieved targeted genes that were positively correlated with selected 

TF) from SCENIC output “regulon” file for network analysis visualization. The 

transcriptional network of TF and predicted target genes were visualized by 

Complexheatmap package and Cytoscape (v3.8, Seattle, WA, USA). 

Additionally, we performed coexpression analysis to further support abovementioned 

gene expression network analysis. In brief, the log-transformed normalized expression 

matrix was extracted from cell subset of interest. Then, Pearson correlation was calculated 

for all genes, and only genes with correlation greater than 0.15 and p value lower than 0.05 

were kept. 

Cell-cell interaction analysis  

CellChat [4] (v 1.1.3) R package was used for cell-to-cell ligand-receptor interaction 

analysis. Firstly, the normalized expression matrix was imported and the cellchat object 

was created through the create CellChat function. Use the default parameters through 

identify overexpressed genes, identify overexpressed Interactions and preprocessing 

operations projectData function; The computeCommunProb, filter Communication 



(min.cells = 10) and computeCommunProbPathway functions were used to calculate 

potential ligand-receptor interactions. Finally, the intercellular communication network is 

aggregated by aggregate Net function. 

Cell viability assay 

HaCaT and WS1 cells were seeded in a 96-well plate at a density of 5 × 103 cells per well, 

and then cells were treated with C-DIM8 (20 μM). In vitro viability was measured using the 

Cell Counting Kit-8 (CCK-8) (Dojindo Laboratories, Kumamoto, Japan). Optical density 

was measured at 450 nm using a micro-plate reader (Biotek, Winooski, VT). 

Cellular reactive oxygen species (ROS) assay 

HaCaT and WS1 cells were seeded in triplicate in 6-well plates, cultured overnight, and 

treated with DMSO and 20 μM C-DIM8 for 24 h before 0/20 Gy irradiation (10 Gy irradiation 

for WS1 cells). The levels of ROS in HIEC cells were determined using the ROS sensitive 

dye 2’,7’- dichlorofluorescein diacetate (DCF-DA) (Beyotime, Nantong, China), which is 

converted by ROS into the highly fluorescent 2’ ,7’-dichlorofluorescein (DCF). The cells 

were incubated with 10 mM DCF-DA for 20 min at 37 ˚C and subsequently washed with 

phosphate buffer saline (PBS). The cells infected with ad-NC and ad-Nur77 were stained 

with dihydroethidium (DHE) (Beijing Solarbio Science & Technology Co., Ltd, Beijing, 

China). The level of ROS was performed using FACS Celesta flow cytometer 

(BectonDickinson, Franklin Lakes, NJ). FlowJoTM (Version 10.7) was used to analyze the 

data. 

Cell apoptosis assay 

Annexin V/propidium iodide (PI) double-staining analysis was used to detect cell apoptosis. 



HaCaT and WS1 cells were seeded in triplicate in 6-well plates, cultured overnight and 

treated with or without C-DIM8 (20 μM) before irradiation. After 48 h, the cells were stained 

with fluorescein FITC-conjugated Annexin V and PI (Yeason, Shanghai, China), the cells 

infected with ad-NC and ad-Nur77 were stained with Annexin V-APC/7-AAD Apoptosis Kit 

(Multi Sciences, Zhejiang China), The apoptosis analysis was performed using FACS 

Celesta flow cytometer (Becton Dickinson, Franklin Lakes, NJ), FlowJoTM (Version 10.7) 

was used to analyze data. 

Clonogenic assay 

For standard clonogenic assays, cells were re-suspended and seeded into six-well plates 

at 200 cells/well, cells were incubation C-DIM8 than 2, 4, 6 Gy X-rays irradiation. The cells 

were grown from 7-10 d to allow for colony formation and were subsequently fixed and 

stained using crystal violet. Colonies consisting of >50 cells were counted as a clone. 

Lactate dehydrogenase release assay  

To further measure the extent of cellular damage, lactate dehydrogenase (LDH) activity 

was also tested. After incubation, the culture supernatants were collected. The activity of 

LDH was detected at 490 nm according to the LDH assay kit (Beyotime). The LDH activity 

is measured by a 2-step reaction. At the first step, LDH catalyzes the reduction of NAD+ to 

NADH coupled with the oxidation of lactate acid to pyruvic acid. At the second step, 

diaphorase as a coupling enzyme uses NADH to catalyze the reduction of tetrazolium INT 

to formazan. 

Table S1 The sequence of primers used in this study. 

Primers Sequence 



Nur77 forward AGGGCTGCAAGGGCTTCT 

Nur77 reverse GGCAGATGTACTTGGCGTTTTT 

GAPDH forward CAACGGATTIGGTCGTATT 

GAPDH reverse CACAGTCTTCTGGGTGGC 

 

Table S2 The antibodies used in this study. 

Antibodies Source Identifier (Cat 

number) 

Anti-PARP antibody Cell Signaling 

Technology 

9532 

 

Anti-cleaved PARP antibody Cell Signaling 

Technology 

5625 

 

Anti-Bax antibody 
Cell Signaling 

Technology 
2722 

Anti-Bcl2 antibody 
Cell Signaling 

Technology 

3498S 

 

Anti-Caspase 3 antibody Cell Signaling 

Technology 

9662 

 

Anti-Cleaved Caspase 3 antibody Cell Signaling 

Technology 

9661 

 

Anti-Caspase-1 antibody Abcam ab207802 

Anti-Cleaved-Caspase 1 

(Asp297) Antibody 

Cell Signaling 

Technology 
4199 

Anti-Gasdermin D 

 antibody 

Cell Signaling 

Technology 

39754 

 

Anti-Cleaved Gasdermin D 

 antibody 

Cell Signaling 

Technology 

36425 

 



Anti-RIP antibody  
Cell Signaling 

Technology 

3493 

 

Anti-p-Phospho-RIP antibody 
Cell Signaling 

Technology 
65746S 

Anti-MLKL antibody 
Cell Signaling 

Technology 

14993 

 

Anti-Phospho-MLKL antibody 
Cell Signaling 

Technology 

91689 
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Supplementary Results 

 

Figure S1. (A) t-SNE plot of 30281 cells from rat skins of control, 7 days after radiation, 14 

days after radiation, and 28 days after radiation. (B) t-SNE plots showing the dynamic 



changes in all cell clusters in the skin among each group. (C) t-SNE expression plots 

display cell type-specific marker gene expression. (D) Numbers of all cells belonging to the 

skin cell types among each group. (E) Circle network plots showing number of cell-cell 

interactions generated with CellChat in different groups. (F) Statistical chart of nuclear-

cytoplasmic ratio of Nur77 fluorescence intensity in immunofluorescence results. (G) The 

effect of MG132 and CQ on Nur77 expression as determined by Western blotting analysis 

in WS1 and HaCaT cells. (H) The effect of C-DIM8 on ROS production after different dose 

of irradiation as determined by DCFH-DA staining in WS1 and HaCaT cells. (I) The effect 

of C-DIM8 on cell apoptosis determined by AV/PI staining in WS1 and HaCaT cells. 

 


