

Figure S1. *Dis3l2* transcript expression in the mouse testes. (A and B) Analyses of the abundance of *Dis3l2* transcripts in the 11 testicular cell types based on previously reported scRNA-seq data in adult mouse testes. Numbers in A and the Y axis in B reflect the averaged UMIs detected in individual cells. (C) *In situ* hybridization mRNA analysis of *Dis3l2* in P8, P12, and P35 wild-type mouse testes. The DNA was stained with Hoechst 33342. Scale bar, 20 µm. Representative

of n = 3 biologically independent replicates with similar results per condition. (D) Quantitative RT-PCR analysis of *Dis3l2* in P12 control and *Dis3l2* cKO testes. For comparison, the abundance (relative to β -actin) of *Dis3l2* in control testes was set to 1. Data are presented as mean \pm s.d for n=3 biologically independent samples per condition. **P* < 0.05. (E) Immunoblot assay of DIS3L2 protein in P12 control and *Dis3l2* cKO testes using β -ACTIN as a load control (left panel) and the relative DIS3L2 protein expression in P12 control and *Dis3l2* cKO testes (right panel). Mean \pm s.d, n=3 biologically independent replicates with similar results per condition. **P* < 0.05.

Figure S2. Establishment of *Dis3l2* **cKO mice.** (A) Exon map of the mouse *Dis3l2* locus. Two loxP sites were designed flanking exon 8. Exon 8 was deleted after crossing with the *Stra8-Cre* line, leading to a frameshift mutation of the *Dis3l2* gene. (B) An example of the polymerase chain reaction genotyping results to establish the *Dis3l2* cKO mice. The molecular mass and the sizes of the DNA bands are indicated.

Figure S3. Immunohistochemical analysis of adult *Dis3l2* cKO testes. (A) Immunofluorescence staining of adult control and *Dis3l2* cKO testes with antibodies to PLZF (left) or Cyclin D1 (middle), and merged with Hoechst 33342 to stain DNA (right). Arrows indicate both PLZF- and Cyclin D1-positive cells. Scale bars: 50 μ m. (B) Co-immunostaining of Cyclin D1 (left), or GFRA1 (middle), and merged with Hoechst 33342 to stain DNA (right) in adult control and *Dis3l2* cKO testes. Arrows indicate both Cyclin D1- and GFRA1-positive cells. Scale

bars: 50 μ m. (C) Immunofluorescence of cross-sections from adult control and *Dis3l2* cKO testes after staining with antibodies to DDX4 (left), or KIT (middle), and merged with Hoechst 33342 to stain DNA (right). Arrows indicate KIT-positive cells. Scale bars: 50 μ m. (A-C) Images are representative of three independent biological replicates with similar results per condition.

Figure S4. Cell apoptosis in P7 *Dis3l2* cKO testes. Cellular apoptosis was analyzed with TUNEL assay in P7 control and *Dis3l2* cKO testes (left panel). DNA was stained with Hoechst 33342. Scale bar, 50 μ m. The number of apoptotic cells per tubule was analyzed from P7 control and *Dis3l2* cKO testes (right panel). Mean \pm s.d., n = 3 biologically independent testes from three different mice. **P* < 0.05.

Figure S5. Abnormal chromosome synapsis in P13 *Dis3l2* cKO testes. (A) Chromosome spreads of spermatocytes from P13 control and *Dis3l2* cKO mice. Co-staining was performed with antibodies to SYCP3 and SYCP1. Arrowheads indicate discontinued SYCP1 signals on the chromosomes. Scale bar, 10 μ m. (B) Statistical analysis of the proportion of abnormal synaptonemal pachytene spermatocytes. Mean \pm s.d., n = 3 biologically independent testes from three different mice. ***P* < 0.01.

	•	
Biotype	Genes_up	Genes_down
miRNA	1	1
lincRNA	10	40
snRNA	0	2
snoRNA	0	1
scaRNA	2	0
mt tRNA	0	0
mt rRNA	0	0
rRNA	0	0
IG_C_gene	1	0
TEC	1	3
processed transcript	8	25
antisense	7	40
protein coding	3,227	2,580
bidirectional promoter IncRNA	4	8
processed pseudogene	9	24
transcribed processed pseudogene	0	7
transcribed unprocessed pseudogene	1	7
unprocessed pseudogene	4	4
transcribed unitary pseudogene	1	2
polymorphic pseudogene	1	1
sense overlapping	0	1
Total	3,277	2,746

В

GSEA analysis (Pathway enrichment)

Figure S6. Biotypes of DEGs and pathway enrichment analysis of RNA-seq data. (A) The distribution of genes with upregulated and downregulated expression over different classes of transcripts. (B) Pathway enrichment analysis of Dis312 cKO mouse testes compared with control mouse testes using GSEA software program and the MSigDB C2 curated gene sets (left panel).

0000 Raskis (Hits

The distribution of different classes of transcripts

Examples of the enrichment plot for terms of developmental biology and cell cycle (right panel).

Figure S7. scRNA-seq analysis of P15 control and *Dis3l2* **cKO testes.** (A) UMAP plot of identified cell clusters from P15 control and *Dis3l2* cKO testicular cells. Each dot represents a single cell and cell types are indicated by colors. (B) Dot plot for the expression of selected marker genes across all identified cell types. (C) The exact cell number of each cell type in control and *Dis3l2* cKO testes. (D) The percentage of each cell type in control and *Dis3l2* cKO testes.

Figure S8. Differentially expressed genes and GO analysis of SPG2, SPG3, and SPG4 cells.

(A) Volcano plot of DEGs in *Dis3l2* cKO SPG2 cells using a cutoff of P < 0.05 and \log_2 foldchange of > 0.2. (B) GO analysis of upregulated and downregulated transcripts in the SPG2 subtype using Metascape. (C) Top 20 transcripts of upregulated DEGs in *Dis3l2* cKO SPG3 cells (left panel) and enriched GO terms and pathways of the upregulated genes (right panel) using Metascape in *Dis3l2* cKO SPG3 cells. (D) Same as (C), but from *Dis3l2* cKO SPG4 cells. (E) Top 20 downregulated genes in *Dis3l2* cKO SPG3 (left panel) and SPG4 (right panel) cells.

Figure S9. The expression levels of transcripts associated with spermatogonial differentiation and cell cycle. Quantitative RT-PCR analysis of several genes involved in spermatogonial differentiation (up panel) and cell cycle (bottom panel) in P8 control and *Dis3l2* cKO testes. For comparison, the abundance (relative to β -actin) of each gene in control testes was set to 1. Data are presented as mean \pm s.d for n=3 biologically independent samples per condition.

ns, no significance, *P < 0.05, **P < 0.01, and ***P < 0.001.

Figure S10. The expression levels of proteins associated with meiosis. Immunoblot assay of RPA2, RAD51 and DMC1 in P12 control and *Dis3l2* cKO testes using α -Tubulin as a load control. Representative of n = 3 biologically independent replicates with similar results per condition.

Figure S11. Comparison of bulk RNA-seq and scRNA-seq data. (A) Venn diagrams showing the overlap and difference in the number of upregulated and downregulated transcripts between the bulk RNA-seq data from testes and the scRNA-seq data from SPG3 cells (left panel). GO analysis of the upregulated and downregulated transcripts in both sequencing datasets (right panel)

using Metascape. (B) Same as (A), but showing the results between the bulk RNA-seq data from testes and the scRNA-seq data from spermatocytes.

Gene	Direction	Primer (5'-3')
Dis3l2 Flox	\mathbf{F}^{1}	TTTCCTTCGTAGCAGTATTGGG
	R	TCACATATCATAAAGCCCTACCATC
Dis312 Deletion	F	TTTCCTTCGTAGCAGTATTGGG
	R	ATCTTAACATCACTGTCCCCAAGAA
Stra8-Cre	F	ACTCCAAGCACTGGGCAGAA
(Control)	R	GCCACCATAGCAGCATCAAA
Stra8-Cre	F	ACTCCAAGCACTGGGCAGAA
	R	CGTTTACGTCGCCGTCCAG

Table S1. Genotyping primers for *Dis3l2* cKO and *Stra8-Cre* mice

¹F, forward; R, reverse

Table S2. Antibodies used in this study

			Immunohi	Immuno
Antibody	Company	Identifier	sto-	blot
			chemistry	
		Cat# ab27591;		
Mouse anti-DDX4	Abcam	RRID: AB_11139638	1:200	
Rabbit anti-DDX4	Abcam	Cat# ab13840; RRID: AB_443012	1:200	
		Cat# ab89901;		
Rabbit anti-WT1	Abcam	RRID: AB_2043201	1:200	
		Cat# ab97672		
Mouse anti-SYCP3	Abcam	RRID: AB_10678841	1:200	
Goat anti-PLZF	R&D Systems	Cat# AF2944;	1.000	
		RRID: AB_2218943	1:200	
Rabbit anti-DIS3L2	Novus	Cat# NBP2-38264		1:1000
Rabbit anti-RPA2	Abcam	Cat# Ab76420		1:1000
	Abcam	Cat# ab134175;		
Rabbit anti-Cyclin D1		RRID: AB_2750906	1:200	
	Thermo Fisher	hermo Fisher		1:1000
Kabbit anti-KAD51	Scientific	Cat# PA5-27195		
Rabbit anti-DMC1	Proteintech	Cat# 13714-1-AP		1:1000
Rabbit anti-Actin	ABclonal	Cat# AC026		1:10000
Mouse anti-alpha tubulin	Thermo Fisher	Cat# 62204;		1:1000

	Scientific	RRID: AB_1965960		
Goat anti-KIT R&D Systems		Cat# AF1356; RRID: AB_354750	1:200	
Rabbit anti-phospho-	Cell Signaling	ling Cat# 9718; 1:200		
histone H2A.X (Ser139)	Technology	y RRID: AB_2118009		
Donkey anti-mouse IgG,	Thermo Fisher	r Cat# A-21202 1.200		
Alexa Fluor 488	Scientific			
Donkey anti-rabbit IgG,	Thermo Fisher	Cat# A-21207	1.200	
Alexa Fluor 594	Scientific			
Donkey anti-goat IgG,	Thermo Fisher Cat# A-11055		1:200	
Alexa Fluor 488	Scientific			
Donkey anti-mouse IgG,	Thermo Fisher	Cat# A-21203	1:200	
Alexa Fluor 594	Scientific			
Goat anti-mouse IgG, HRP	Thermo Fisher	Cat# 62-6520		1:5000
	Scientific			
Goat anti-rabbit IgG, HRP	Thermo Fisher	Cat# 31460		1:5000
	Scientific			

Table S3. Primers used for RT-PCR

Gene	Direction	Primer (5'-3')
Dis3l2	\mathbf{F}^{1}	AGGAGGATGTTTCAGAAGGCT
	R	GGCTCTATTACGAGCAACAACT
Plzf	F	CTGGGACTTTGTGCGATGTG
	R	CGGTGGAAGAGGATCTCAAACA
Dazl	F	ATGTCTGCCACAACTTCTGAG
	R	CTGATTTCGGTTTCATCCATCCT
Pramef12	F	TACAGCTCGCAATGCAAAGC
	R	CCTCAGGATGTTAAGTCGTTTGT
Cpebl	F	GGACTCCCGTTCTAGCAGC
	R	GGAAATGCGAAGGCTTGAAATCA
Spo11	F	CGTGGCCTCTAGTTCTGAGGT
Sport	R	GCTCGATCTGTTGTCTATTGTGA
Rhox10	F	GCCCAATGTCGCTTTGGAAG
	R	AGCTGTAGGTTTGCGTGTATTT
Sohlh2	F	GGGCAGGGCAGAGTAAATCTT
	R	CAAACGAGTTAGCAGCCAAAAG
Sohlh1	F	CGGGCCAATGAGGATTACAGA
	R	TCCTGCGTTCTCTCTCGCT
Stra8	F	CAAAAGCCTTGGCTGTGTTA
	R	AAAGGTCTCCAGGCACTTCA
Sycp1	F	CAAAAGCCCTTCACACTGTTCG

	R	GTTTTCCCGACTGGACATTGTAA
Sycp2	F	AGGATGAGATCACTACACCTAGC
	R	GGTGACGCAGCATAATCCATT
Sycp3	F	AGCCAGTAACCAGAAAATTGAGC
	R	CCACTGCTGCAACACATTCATA
Syce1	F	GCATGTTGCAGGAGTGTAAAGA
	R	GCTGCTGTCCAAAACACACATC
Syce2	F	TGGACTCTAGCATTGAAACCCT
	R	TCCTGAATGATTTTGCTGTGGT
Rec8	F	TATGTGCTGGTAAGAGTGCAAC
	R	TGTCTTCCACAAGGTACTGGC
	F	CCTCCCTTGTGAAATTGGCTG
Maei	R	AATGGAATCGAAATCCTCGTGG
	F	CCCTCTGTGTGACAGCTCAAC
Dmc1	R	GGTCAGCAATGTCCCGAAG
Pad51	F	AAGTTTTGGTCCACAGCCTATTT
Ruusi	R	CGGTGCATAAGCAACAGCC
	F	GGCTCCTAGCTGTTTCAGTATCT
1101 maa 1	R	TTGTCCCATAAGCACGTTCTG
Piwil1	F	AGACCTCATTGGAAGGTGTCA
	R	TGTTCCCCATTCCGAGTCTGA
Piwil2	F	TTGGCCTCAAGCTCCTAGAC
	R	GAACATGGACACCAAACCTACA
1		

Tdrd9	F	TACGTGCTAGACCACTACACC
	R	AACGCTCCTTACTGATCCACC
Ccnt2	F	AGCAAGCAAGGATTTGGCAC
	R	CACATGCTATCACTGTGGGTTT
Psmd8	F	GGCATGTACGAGCAACTCAAG
	R	GCTCAAGCAGAACCAACTTCA
Cenpa	F	CTCCAGTGTAGGCTCTCAGAC
	R	CTGAAAGGCTTCTTCCTGAACA
Cdk2ap2	F	CTGTTTAACGACTTTGGTCCGC
	R	CAGACAGCAGGTCCGTGTAG
β -actin	F	GGCTGTATTCCCCTCCATCG
	R	CCAGTTGGTAACAATGCCATGT
1	•	· · · · · · · · · · · · · · · · · · ·

¹F, forward; R, reverse