Supplementary Material

Figure S1. The synthetic route of P(HEMA-PBE)-PCB.

Figure S2. ¹H NMR spectrum of CB monomer (D₂O).

Figure S3. ¹H NMR spectrum of PCB polymer (D₂O).

Figure S4. The molecular weight of PCB measured via GPC.

Figure S5. ¹H NMR spectra of PHEMA-PCB polymers (DMSO-d₆).

Figure S6. ¹H NMR spectrum of 4-(imidazoyl carbamate)phenylboronic acid pinacol ester (CDCl₃).

Figure S7. ¹H NMR spectra of P(HEMA-PBE)-PCB polymers (DMSO-d₆).

Figure S8. (A) Hydrodynamic diameter and (B) zeta potential of precipitates. $ZnCl_2$ solution was slowly added to the mixture of insulin and GOx under stirring at various mass ratios between $ZnCl_2$ and insulin. Data are presented as the mean \pm SD (n = 3).

Figure S9. PDI value of PGI NPs with different mass ratios between P(HEMA-PBE)-PCB and insulin.

Figure S10. The hydrodynamic diameter and zeta potential of $P_{17}I$ -10 and $P_{17}I$ -15 NPs. Data are presented as the mean \pm SD (n = 3).

Figure S11. Insulin loading efficiency of $P_{17}I$ -10 and $P_{17}I$ -15 NPs. Data are presented as the mean \pm SD (n = 3).

Figure S12. Size distribution of (A) P₁₇GI-10 and (B) P₁₇GI-15 NPs before and after lyophilization.

Figure S13. GOx activity of NPs before and after lyophilization. The concentration of GOx was 62.5 μ g/mL. Data are presented as the mean \pm SD (n = 3). **P* < 0.05.

Figure S14. MSD calculated from Figure 1H. Data are presented as the mean \pm SD (n = 3). ***P < 0.001.

Figure S15. The percentage of Cy5-insulin across the mucus in transwell. Data are presented as the mean \pm SD (n = 3). ****P* < 0.001.

Figure S16. (A) Mechanism of the glucose-responsive P(HEMA-PBE)-PCB polymer. (B) ¹H NMR spectrum of P(HEMA₁₇-PBE)-PCB₂₂ polymer after incubating in H₂O₂ solution for 24 h.

Figure S17. The changes of (A) diameter and (B) zeta potential of P₁₇GI-10 and P₁₇GI-15 NPs after incubating in 400 mg/dL glucose solution for 2 h. Data are presented as the mean \pm SD (n = 3). ****P* < 0.001.

Figure S18. Cumulative insulin release of $P_{17}I$ -10 and $P_{17}I$ -15 NPs in 100 mg/dL and 400 mg/dL glucose solution, respectively. Data are presented as the mean \pm SD (n = 3).

Figure S19. The cell viability of Caco-2 cells after incubating with insulin for 24 h. Data are presented as the mean \pm SD (n = 3).

Figure S20. Quantified results of CLDN4 in Figure 3D using ImageJ. Data are presented as the mean \pm SD (n = 4). ns > 0.05.

Figure S21. TEM image of P_{17} GI-15 NPs across the Caco-2 cell lay in transwell. Scale bar: 200 nm.

Figure S22. (A) TNF- α and (B) IL-6 in serum collected 24 h after five consecutive days administration. Data are presented as the mean \pm SD (n = 3). ns > 0.05.

Figure S23. Hematoxylin-eosin staining of the small intestines collected 24 h after five consecutive days administration. Scale bar: 50 μ m.