Supporting Information

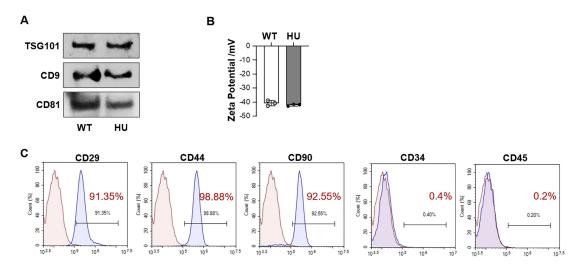
Apoptotic vesicle-mediated senolytics requires mechanical loading

Zhulin Xue^{1,2}, Yexiang Jiang², Bowen Meng², Lu Lu², Meng Hao², Yi Zhang¹, Songtao Shi^{2,3}, Zili Li ^{1,*}, Xueli Mao ^{2,3,*}

¹Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China

²Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China

³Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China


⁴These authors contributed equally

* Corresponding authors:

Prof. Xueli Mao, South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan 2Rd, Guangzhou, Guangdong, 510080, China. Tel: 86-020-83812602. E-mail: maoxuel@mail.sysu.edu.cn.

Prof. Zili Li, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. Tel: 86-010-82195296. E-mail: kqlzl@sina.com.

Supplementary Figures

Figure S1. Characteristics of bone marrow EVs. (**A**) Western blot analysis showing the EV markers in bone marrow EVs. (**B**) Nanoparticle tracking analysis showing the membrane potential of bone marrow EVs. (**C**) Flow cytometric analysis showed the markers of MSCs (CD29, CD44, and CD90), hematopoietic markers (CD34 and CD45).

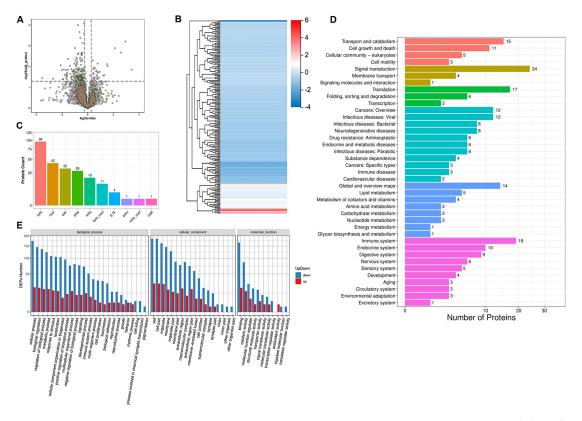


Figure S2. Mechanical unloading alters protein content in bone marrow EVs. (A) Volcano plots showing significantly upregulated (red dots) and downregulated (green dots) protein expression in HU-EVs compared to WT-EVs. Fold change ≥ 1.2 and adjusted *P* value < 0.05 were used to obtain differentially expressed proteins (DEPs). (B) Clustering heatmap of DEPs in HU-EVs was different from WT-EVs. (C) Subcellular localizations of DEPs in HU-EVs compared to WT-EVs. Cyto, cytosol; Nucl, nucleus; Extr, extracellular; Plas, plasma membrane; Mito, mitochondria; Cyto_nucl, cytosol-nucleus; E.R., endoplasmic reticulum; Pero, peroxisome; Mito_nucl, mitochondria-nucleus; Cysk, cytoskeleton. (D) Differential protein pathway classification of HU-EVs compared to WT-EVs. (E) Gene ontology (GO) analysis of DEPs in HU-EVs compared to WT-EVs, categorized into "Biological process", "Cellular component", and "Molecular function". HU-EVs, the bone marrow EVs from hindlimb unloading mice; WT-EVs, the bone marrow EVs from freely moving wildtype mice.

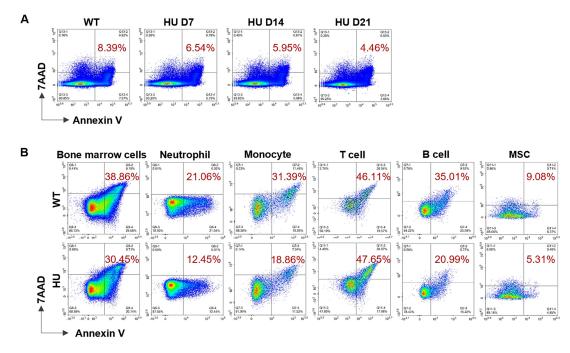
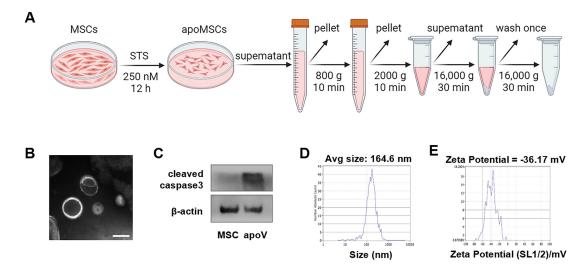



Figure S3. Mechanical unloading induces apoptotic resistance of bone marrow cells. (A) Hindlimb unloading repressed bone marrow cell apoptosis in a time-dependent manner. Representative flow cytometry plots and frequency of total bone marrow cells after 0, 7, 14, and 21 days of hindlimb unloading. n = 3. (B) Hindlimb unloading repressed apoptosis in subsets of bone marrow cells. Representative flow cytometry plots and frequency of CD11b⁺Ly6G⁺ neutrophils, CD11b⁺Ly6G⁻Ly6C⁺ monocytes, CD3⁺ T cells, B220⁺ B cells, and Sca1⁺ MSCs.

Figure S4. Characteristics of apoptotic vesicles (apoVs) derived from MSCs. (A) Scheme illustrating the isolation procedure of apoVs from MSCs. (**B**) Transmission electron microscopy analysis of mouse MSC- derived apoVs. Scale bar, 100 nm. (**C**) Western blot analysis showed MSC-apoVs were positive for cleaved Caspase-3. (**D** and **E**) Nanoparticle tracking analysis of apoVs by Zetaview showed a mean diameter of 164.6 nm and -36.17 mV membrane potential of these vesicles. The Zetaview was calibrated using standard beads of 100 nm. PBS was used as a negative control.

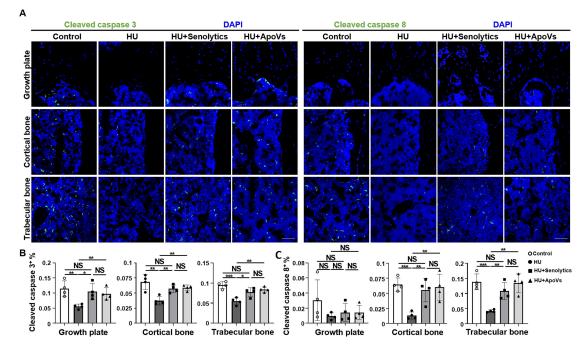


Figure. S5. Senolytics and MSC-apoVs rescue apoptosis resistance in unloading mice. (A) Representative immunostaining showed that hindlimb unloading resulted in a reduced apoptotic rate in the bone marrow compared with that in wildtype mice and unloading mice treated with Senolytics and ApoVs. Scale bars, 50 μ m. (B and C) Quantification of cleaved caspase 3 and cleaved caspase 8 positive cells, respectively, n = 4.

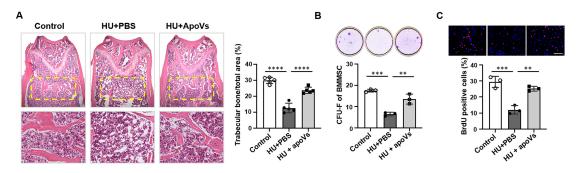


Figure S6. MSC-apoVs rescue osteoporosis and MSC deficiency in mechanical unloading mice. (A) Representative H&E staining showed that hindlimb unloading resulted in a reduced trabecular bone area (yellow circled area) compared to freely moving wildtype mice. MSC-apoV treatment significantly increased the trabecular bone area. Scale bars: 1 mm for upper panel and 100 μ m for lower panel. (B and C) After 2 weeks of MSC-apoV infusion, BrdU labeling and colony formation assays showed that the decreased proliferation and population doubling rates were rescued in hindlimb unloading MSCs. *n* = 3. Scale bar, 100 μ m.

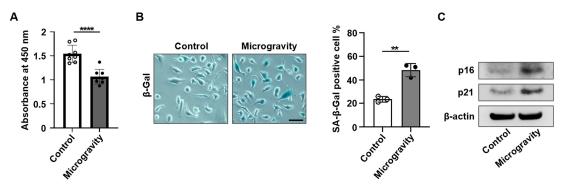


Figure. S7. Microgravity contributes to senescent cell phenotype.

(A) CCK8 assay showed that microgravity resulted in a decreased bioactivity compared with that in control group. (B) SA- β -gal staining of senescent cells increased in MG compared to control after 7 days of recovery phase following 24 h of exposure to MG or normal gravity. (C) Western blot analysis showed that MG upregulated p16 and p21 expression in MSCs. β -actin was used as a protein loading control.

Supplementary Table

Reagent or resource	Source	Identifier
Antibodies		
Anti-Cleaved Caspase-3 -Rabbit	CST	9664s
Anti-Caspase-3 -Rabbit	CST	9662s
Anti-Cleaved Caspase-8 -Rabbit	CST	8592s
Anti-Caspase-8- Rabbit	Abcam	ab25901
Anti-Calreticulin -Rabbit	CST	12238s
Anti-β actin-Mouse	Sigma	A5441
Anti-P21-rabbit	Abcam	ab188224
Anti-CDKN2A/p16INK4a-Rabbit	Abcam	ab211542
Anti-Rad5 c-Mouse	Santa Cruz	sc-46692
Anti-Syntaxin-4-Mouse	Santa Cruz	sc-5275
Anti-Lamin B1 -Mouse	Santa Cruz	sc-37000
Anti-Fas-Mouse	Santa Cruz	sc-74540
Anti-Piezo1- Rabbit	Proteintech	15939
Anti-GAPDH-Mouse	Servicebio	GB12002
Anti-ALP- Rabbit	Abcam	ab108337
Anti-RUNX 2- Rabbit	Affinity	AF5186
Anti-TSG101- Rabbit	Abcam	ab125011
Anti-CD9- Mouse	Santa Cruz	sc-13118
Anti-CD81- Mouse	Santa Cruz	sc-70803
FITC Annexin V	Biolegend	640906
FITC anti-mouse B220	Biolegend	103206
FITC anti-mouse Ly6G/Ly6C	Biolegend	108405
PE/Cyanine7 anti-mouse Ly-6A/E (Sca-1)	Biolegend	108114
PE anti-mouse Ly6G	Biolegend	127608
PE anti-mouse CD95 (Fas)	Biolegend	152607
APC-Cy7 anti-mouse CD11b	Biolegend	101226
Cells and Reagents	Source	Identifier
Human bone marrow mesenchymal stem	ScienCell	7500

Table S1. Antibodies and Reagents

cells (hBMMSCs)

Mounting Medium with DAPI	Abcam	ab104139
SA-β-galactosidase detection Kit	Solarbio	G1580
BrdU Staining Kit	eBioscience	8800-6599-45
Fluo-8AM	Abcam	ab142773
protein extraction kit	Thermo Fisher	78501/ 89842
CellMask TM Deep Red plasma membrane stain	Thermo Fisher	C10046
Dexamethasone	Sigma-Aldrich	D4902
Staurosporine	Enzo Life Sciences	ALX-380-014
TritonTM X-100	Sigma-Aldrich	X100-100ML
α-MEM	Invitrogen	12571-048
Fetal bovine serum (FBS)	Gibco	10270-106
L -glutamine	Invitrogen	35050-061
2-mercaptoethanol	Invitrogen	21985-023
Penicillin-Streptomycin	Invitrogen	15140-122
TrypLETM Express Enzyme	Invitrogen	12605-010
10X Annexin V Binding Buffer	BD Pharmingen	556454
NuPAGE MES SDS Running Buffer	Invitrogen	NP0002
NuPAGE Transfer Buffer	Invitrogen	NP00061
PageRuler [™] Prestained Protein Ladder	Invitrogen	26616
Novex TM Sharp Pre-stained Protein Standard	Invitrogen	LC5800
NuPAGE [™] LDS Sample Buffer	Invitrogen	NP0007
Lipofectamine TM RNAiMAX Transfection Reagent	Invitrogen	13778
Opti-MEM Medium	Invitrogen	31985070