Supplementary Material—Methods

M1: Inclusion and exclusion criteria of these two clinical trials:

(1) Inclusion criteria

Clinical suspicion of prostate cancer:

- blood PSA level > 4.0 ng/ml and/or
- free-to-total PSA ratio <22% and/or
- progressive rise of PSA levels in two consecutive blood samples despite antibiotics

(2) Exclusion criteria

- antiandrogen therapy
- prostate needle biopsy <21 days before PET/MRI
- known active secondary cancer
- endorectal coil not applicable (e.g. anus praetor with short rectal stump)
- known active prostatitis (e.g. painful DRE)
- known anaphylaxis against gadolinium-DOTA
- patient's written informed consent not given
- Needle biopsy and/or prostatectomy compound not available for histology
 immunohistochemistry

M2: Genomics Data Acquisition

FFPE tissue processing and DNA isolation Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections (3×10 µm) derived from the RP were prepared from the archival blocks. The sections were deparaffinized using xylene and rehydrated through a series of ethanol washes. DNA extraction from FFPE tissues was performed using the EZ1 DNA tissue kit following the manufacturer's instructions. The extracted DNA was quantified using a spectrophotometer and assessed for quality using agarose gel electrophoresis.

Library preparation Library preparation was carried out using the xGen[™] DNA Library Prep EZ UNI (IDT) with xGen[™] CS adapters (IDT) containing UMIs. FFPE DNA was first repaired using NEBNext® FFPE DNA Repair Mix (New England Biolabs) according to the original protocol. A total of 300 ng DNA for tumor samples and 100 ng DNA for normal samples was used as input. After index PCR and library purification, the KAPA HyperCapture Reagent Kit (Roche) was used to enrich exome sequences with KAPA HyperExome Probes (Roche) and backbone sequences for CNVs identification with KAPA HyperCap Custom Probes (Roche). The library quantity and size distribution were verified using the QuantiFluor dsDNA System (Promega) and High Sensitivity NGS Fragment Analysis Kit (Agilent Technologies). The finalized library pool was sequenced on NovaSeq 6000 (Illumina) using SP Reagent Kit v1.5 200 cycles (Illumina) in paired-end mode. Raw sequence data in FASTQ format were generated and stored for subsequent analysis.

Data Processing and Variant Calling The raw sequencing data were pre-processed to remove adapter sequences and trim low-quality bases. The cleaned reads were aligned to the human reference genome GRCh38 using BWA alignment software ¹. Duplicate reads were identified and removed using the UMI-aware version of MarkDuplicates from Picard Tools ². Somatic small variants, including single nucleotide variants (SNVs) and small insertions and deletions (indels), were identified from paired tumor and corresponding normal tissue samples using the SomaticSeq variant caller ³, a meta-caller that aggregates calls from multiple tools, including Strelka2 ⁴, VarDict ⁵, MuTect ⁶, SomaticSniper ⁷, LoFreq ⁸, MuSE ⁹, and VarScan2 ¹⁰.

2

Variant Annotation and Filtering Identified variants were annotated using Ensembl's Variant Effect Predictor (VEP) tool ¹¹, utilizing its full annotation cache. Pathogenicity scores from the Evolutionary Model of Variant Effect (EVE) ¹², Combined Annotation-Dependent Depletion (CADD) ¹³, and PolyPhen-2 ¹⁴ were annotated, alongside cancer-specific annotations from clinical databases such as fOne, MD Anderson, TruSight Oncology, and the Cancer Gene Census (CGC). Specific filtering criteria were applied to identify probable true positive somatic variants and mitigate potential FFPE DNA artifacts:

- Minimal tumor variant depth of 35.

- Variants with a tumor variant allelic frequency (tVAF) lower than 2% were removed.

- Variants with tVAF between 2% and 5% were retained only if the variant read depth was more than 100 and there was at least one record for the variant in the COSMIC database.

- Variants not meeting these criteria were removed as potential false positives.

- Variants identified in the GnomAD or 1000 Genomes database with a population MAF of non-Finnish Europeans higher than 2%, and not having a record in the COSMIC database, were filtered out as potential germline variants.

Genetic Disruption Calculation The pathogenicity scores of CADD were normalized to a zero to one range by mapping the raw values to a logistic distribution. Scores were prioritized from best to worst (EVE, CADD, PolyPhen-2) according to the most recent benchmarks in the EVE paper. The highest available score was then selected as the combined pathogenicity score for every variant. Pathogenic genetic disruption of each gene was computed as the sum of combined pathogenicity scores of all variants within that gene. Pathway genetic disruption was subsequently computed as the sum of the genetic disruption of all genes in each pathway, derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) ¹⁵.

Genomic Features Tumor mutational burden (TMB) for each sample was computed as the

number of identified coding non-synonymous single nucleotide variants per million base pairs of the sequenced region. Copy number variants (CNVs) were called using CNVkit ¹⁶ with a set of paired normal samples used as a panel of normals for the computation. Any region with a predicted copy number differing from 2 was considered a CNV. The sum size of all CNVs was computed for each sample, and CNV burden was calculated as the ratio of the CNV sum size to the sum size of all sequenced regions.

The schematic workflow of genomics data acquisition is shown in **Supplementary Figure S1**.

M3: Antibodies used for IHC staining

The following antibodies were respectively used: PSMA (clone EP192, Cell Marque 327R-18, rabbit monoclonal, ready to use), AR (clone EPR1535(2), Abcam ab133273, rabbit monoclonal, 1:100 dilution), Ki-67 (clone rabbit anti-human, Novocastra, NCL-KI67-p, Rabbit Polyclonal, dilution 1:1000), PSA (clone ER-PR8, DAKO M750, mouse monoclonal, 1:20 dilution), NKX3.1 (clone N/A, Biocare Medical CP4228, Rabbit Polyclonal, 1:100 dilution), CDK2 (clone E8J9T, Cell signaling, #18048, rabbit monoclonal, dilution 1:250), CD3 (clone SP7, Neomarkers RM9107, rabbit monoclonal, dilution 1:150), STAT3 (clone 124H6, Cell signaling, #9139, mouse monoclonal, dilution 1:100), FASN (clone C20G5, Cell signaling, #3180, rabbit monoclonal, dilution 1:80), TR β (clone 2386, Rockland 209-301-A96, mouse monoclonal, dilution 1:100), gp130 (clone E-8, Santa Cruz Biotechnology sc-376280, mouse monoclonal, dilution 1:25).

Details on how the whole-mount pathology performed:

After surgical removal, the prostate was fixed in formalin and sectioned at approximately 3 to 4 mm intervals on whole-mount slides. These distances were chosen to ensure comprehensive coverage and detailed examination of the gland, which is standard practice in prostate pathology. Each slide was stained with haematoxylin and eosin (H&E) for detailed tissue analysis. A specialist urological pathologist (L.K.) examined these slides under the microscope, focusing on the grading of the cancer, tumour margins and possible extraprostatic extension. This systematic approach enabled an accurate assessment of tumor characteristics, which are essential for effective staging and treatment decisions.

The schematic workflow of pathomics data acquisition is shown in **Supplementary Figure S3**.

5

M4: Technical details on machine learning.

ML was conducted using five classification algorithms, namely k-nearest neighbours (kNN), random forest (RF), extreme gradient boosting (XGB), support vector machine (SVM) and logistic regression (LGR). Robust performance evaluation was performed using 100-fold stratified Monte Carlo cross-validation with 70% of samples in the training set and 30% in the test set. The test set was exclusively used for testing while a subset of the training data was employed for preprocessing and hyperparameter tuning. Feature standardization was performed using z-scaling. Features were removed if more than 30% of values were missing. If less than 30% of values were missing, feature imputation was performed using k-nearest neighbor imputation with distance weighting. However, only a small subset of features contained missing values and the imputed feature with the most missing values had only <14% missing values. To handle class imbalance, we employed the synthetic minority oversampling technique (SMOTE). Selection of features was performed using the minimum redundancy maximum relevance (mRMR) algorithm to select eight features (square root of the number of samples), reducing overfitting and redundancy. Hyperparameter optimization was conducted using random search through a predefined grid of reasonable parameters in a 10 x 5-fold nested cross-validation scheme. In the process of ML, the following packages were used:

- Graphviz 0.20
- Imbalanced-learn 0.8.0
- Numpy 1.25.2
- Pandas 1.4.2
- Pymrmr 0.1.11
- Scikit-learn 1.1.0
- Scipy 1.11.4
- Shap 0.44.1
- Umap-learn 0.5.3
- Xgboost 1.6.1
- Ydata-profiling 4.6.4

Supplementary Material—Results

R1: The radiomics profile based on permutation importance.

According to permutation importance, ten important imaging features (radiomics features and SUV metrics) contribute most to the prediction of whole mount Gleason grading in the ML model (**Supplementary Figure S6**). Among these features, texture features have the highest

proportion, which accounts for 60% of the total observations. Only GLCM, GLDM, and GLRLM features contribute to the importance, of which GLCM features play the most important role. Histogram features are the next category with significance. Of note, maximum is the most important feature of all these features. For the conventional SUV metrics, SUVmean and SUVmax are important features for predicting whole mount Gleason grading.

A subgroup analysis of the key imaging features was conducted within each category, ranking them in detail (**Supplementary Figure S7**). For SUV metrics, four features out of 6 have permutation importance. For shape features, nine features out of 14 are essential. For histogram features, four features out of 18 are of vital importance. For texture features, 30 features out of 75 are crucial. The distribution of these essential features is shown in

Supplementary Figure S8.

The interpretation of all radiomics features were respectively listed in **Supplementary Tables S5-7**.

R2: The pathomics profile based on permutation importance.

S8)

According to permutation importance, the five pathomic features, which are PSA, CD3, FASN, NKX3.1, STAT3 and CDK2, were identified as the most important features that contribute most to the ML model to predict the whole mount Gleason grading. Their importance values in ascending order were shown in **Supplementary Figure S9**.

R3: The ML performance after adding the additional MRI and fusion features and MRIbased scores.

We delineated the VOI on MRI and fusion images and derived the MRI- and fusion-based radiomics features. As part of our feature set, we have included established MRI scoring systems, such as the PI-RADS (Prostate Imaging-Reporting and Data System). This score provides a standardized assessment of lesion characteristics and has demonstrated clinical relevance and prognostic value. In this scenario, Prof. Pascal Baltzer and Prof. Thomas Helbich, radiologists with more than 20 years of experience in prostate cancer diagnosis, helped us assess the PI-RADS of our cohort. After inputting the MRI- and fusion-based radiomics features, the five ML model give the following performance. (Supplementary Table

Supplementary Materials--Tables

Table S1. Data dictionary of all features and outcomes (labels) captured.

The number (percentage) of missing values for each feature and labels are provided.

Fosturos	Data tuna	Description of method of	Range of values for numerical features,	Missing values,
reatures	Data type	collection or measurement	coded values for categorical features	n (%)
Clinical features				
Age	Numerical	Age at the time of PET/MR	42 to 75	0 (0)
1.90	Hamonoal	examination, in years		
Weight/kg	Numerical	Direct from clinical documentation	62 to 123	0 (0)
height/m	Numerical	Direct from clinical documentation	1.65 to 1.96	0 (0)
ВМІ	Numerical	Calculated based on the formular	20 to 36	0 (0)
PSA-pre OP μg/l	Numerical	Direct from laboratory documentation	1.95 to 827.8	0 (0)
Pre-op therapy	Binary	Direct from clinical documentation	0 = no; 1 = yes	2 (3.08%)
		Assessed by nuclear modicing	whether the tumor affected one or two	
Lesion involvement	Categorical		lobes or was diffusely spread throughout	22 (33.85%)
		physician based on PEI	the prostate;	

			1 = one lobe; 2 = two lobes; 3 = whole	
			prostate	
			whether the tumor was located in the	
			central zone (CZ), transition zone (TZ),	
			peripheral zone (PZ), anterior	
			fibromuscular stroma (AFS), or it was	
Lesion position in	Catagoriaal	Assessed by nuclear medicine	diffusely distributed (i.e., tumor lesions	23 (35.38%)
anatomy zone	Categorical	physician based on PET	involving at least two anatomical zones or	
			the whole prostate;	
			1 = central zone; 2 = transition zone; 3 =	
			peripheral zone; 4 = anterior fibromuscular	
			stroma; 5 = diffusion:	
Entre consular			whether the tumor exceeded the prostate	
Extracapsular	Binary	Assessed by nuclear medicine	capsule;	22 (33.85%)
extension	extension	physician based on PET	0 = no; 1 = yes	
Contact to	Dimensi	Assessed by nuclear medicine	whether the tumor infiltrated adjacent	
neurovascular bundles	Binary physician based on PE	physician based on PET	neurovascular bundles;	22 (33.85%)

			0 = no; 1 = yes	
Lymph nodes(LNs) infiltration	Binary	Assessed by nuclear medicine physician based on PET	whether the tumor infiltrated the pelvic or distant LNs; 0 = no; 1 = yes	21 (32.31%)
Bone metastasis	Binary	Assessed by nuclear medicine physician based on PET	whether tumor metastasized to bones; 0 = no; 1 = yes	22 (33.85%)
T staging PET	Categorical	Assessed by nuclear medicine physician based on PET	1 = cT2a; 2 = cT2b; 3 = cT2c; 4 = cT3a; 5 = cT3b; 6 = cT3a+b; 7 = cT4	20 (30.77%)
Radiomics-wide featu	res			
SUVmin	Numerical	Computed from tumor VOI	0.44 to 9.79	0 (0)
SUVmax	Numerical	Computed from tumor VOI	3.39 to 73.05	0 (0)
SUVmean	Numerical	Computed from tumor VOI	1.89 to 27.22	0 (0)
SUVpeak	Numerical	Computed from tumor VOI	2.46 to 58.05	0 (0)
MTV	Numerical	Computed from tumor VOI	0.77 to 31.32	0 (0)
TLG	Numerical	Computed from tumor VOI	2.88 to 458.78	0 (0)
shape_Elongation	Numerical	Derived from tumor VOI on Pyradiomics	0.36 to 0.97	0 (0)

shape_Flatness	Numerical	Derived from tumor VOI on	0.27 to 0.82	0 (0)
shape_Least Axis		Derived from tumor VOI on		
Length	Numerical	Pyradiomics	7.76 to 32.20	0 (0)
shape_Major Axis	Numerical	Derived from tumor VOI on	16 09 to 81 87	0 (0)
Length		Pyradiomics		0(0)
shape_Maximum 2D	Numerical	Derived from tumor VOI on	12.0 to 70.46	0 (0)
Diameter Column		Pyradiomics		- (-)
shape_Maximum 2D	Numerical	Derived from tumor VOI on	16.49 to 56.04	0 (0)
Diameter Row		Pyradiomics		. ,
shape_Maximum 2D	Numerical	Derived from tumor VOI on	17.89 to 70.34	0 (0)
Diameter Slice		Pyradiomics		
shape_Maximum 3D	shape_Maximum 3D Numerical	Derived from tumor VOI on	20.20 to 71.16	0 (0)
Diameter		Pyradiomics		
shape_Mesh Volume	Numerical	Derived from tumor VOI on	577.67 to 30049.67	0 (0)
		Pyradiomics		

shape_Minor Axis	Numerical	Derived from tumor VOI on	8 87 to 42 59	0 (0)	
	Length	Numerical	Pyradiomics	0.07 10 42.33	0(0)
	chopo Sphoriaity	Numerical	Derived from tumor VOI on	0.24 to 0.72	0 (0)
	snape_opnencity	Numerica	Pyradiomics	0.34 10 0.73	
	shapa Surface Area	Numorical	Derived from tumor VOI on	500 55 to 12580 24	0 (0)
		Numerical	Pyradiomics	300.33 10 12380.24	
	shape_Surface Numerical Volume Ratio	Derived from tumor VOI on	0.33 to 1.02	0 (0)	
		Numerical	Pyradiomics	0.00 10 1.02	0 (0)
	shape Voyel Volume	Numerical	Derived from tumor VOI on	640.0 to 30456.0	0 (0)
			Pyradiomics		0(0)
	first	Numerical	Derived from tumor VOI on	1.30 to 17.75	0 (0)
	order_10Percentile	Numerical	Pyradiomics		0(0)
	first	Numerical	Derived from tumor VOI on	2 41 to 43 62	0 (0)
	order_90Percentile	Numerical	Pyradiomics	2.4110 40.02	
	first order. Energy	Numerical	Derived from tumor VOI on	891 73 to 1855871 76	0 (0)
	line order_energy		Pyradiomics		0(0)
	1				

first order_Entropy	Numerical	Derived from tumor VOI on	1.88 to 7.22	0 (0)
Cash and an International		Pyradiomics		
first order_Interquartile	Numerical	Derived from tumor VOI on	0.37 to 15.60	0 (0)
Range				
first order_Kurtosis	Numerical		1.92 to 9.03	0 (0)
first order_Maximum	Numerical	Pyradiomics	3.34 to 72.95	0 (0)
first order. Mean		Derived from tumor VOI on		
Absolute Deviation	Numerical	Pyradiomics	0.24 to 9.65	0 (0)
		Derived from tumor VOI on		
first order_Mean	Numerical	Pyradiomics	1.90 to 26.99	0 (0)
		Derived from tumor VOI on		
first order_Median	Numerical	Pyradiomics	1.88 to 26.08	0 (0)
first order Minimum	Numerice	Derived from tumor VOI on	0 20 to 9 45	0 (0)
nist order_winimum	numerical	Pyradiomics	0.39 10 0.43	U (U)

first order_Range	Numerical	Derived from tumor VOI on Pyradiomics	1.24 to 70.03	0 (0)
first order_Robust Mean Absolute Deviation	Numerical	Derived from tumor VOI on Pyradiomics	0.17 to 6.57	0 (0)
first order_Root Mean Squared	Numerical	Derived from tumor VOI on Pyradiomics	1.94 to 29.65	0 (0)
firstorder_Skewness	Numerical	Derived from tumor VOI on Pyradiomics	-0.72 to 2.15	0 (0)
first order_Total Energy	Numerical	Derived from tumor VOI on Pyradiomics	7133.83 to 14846974.06	0 (0)
first order_Uniformity	Numerical	Derived from tumor VOI on Pyradiomics	0.01 to 0.31	0 (0)
first order_Variance	Numerical	Derived from tumor VOI on Pyradiomics	0.09 to 150.63	0 (0)
GLCM_Autocorrelation	Numerical	Derived from tumor VOI on Pyradiomics	18.83 to 9363.16	0 (0)

GLCM_Cluster	Numerical	Derived from tumor VOI on	10 69 to 115837280 1	0 (0)
Prominence	Pyradiomics	10.03 10 113007200.1	0(0)	
GLCM_Cluster Shade Numerical	Derived from tumor VOI on		0 (0)	
GLOW_Gluster Shade	Numerical	Pyradiomics	1922.90 10 290000.79	0(0)
GLCM_Cluster	Numorical	Derived from tumor VOI on	1 60 to 5942 79	0 (0)
Tendency	Numericai	Pyradiomics	1.09 10 3042.70	
GLCM Contract	Numorical	Derived from tumor VOI on	0.72 to 782.03	0 (0)
GLCM_COntrast	Numericai	Pyradiomics	0.72 10 7 62.95	0(0)
GLCM Correlation	Numerical	Derived from tumor VOI on	0.38 to 0.95	0 (0)
GLCM_Conelation	Numerical	Pyradiomics	0.30 10 0.93	0(0)
GLCM_Difference	Numerical	Derived from tumor VOI on	0.59 to 21.79	0 (0)
Average	Numerical	Pyradiomics	0.59 10 21.79	0(0)
GLCM_Difference	Numerical	Derived from tumor VOI on	1 21 to 5 76	0 (0)
Entropy	Numerical	Pyradiomics	1.21 10 3.70	0(0)
GLCM_Difference	Numerical	Derived from tumor VOI on	0 35 to 289 49	0 (0)
Variance	Numerical	Pyradiomics	0.00 10 209.49	0(0)
I				

GLCM Id	Numerical	Derived from tumor VOI on	0 11 to 0 73	0 (0)	
		Numerical	Pyradiomics	0.1110 0.10	0 (0)
		Numerical	Derived from tumor VOI on	0.05 to 0.72	0 (0)
		Numericai	Pyradiomics	0.05 10 0.72	U (U)
	CI CM Idmn	Numorical	Derived from tumor VOI on	0.06 to 0.10	0 (0)
		Numericai	Pyradiomics	0.90 10 0.10	
	GLCM Ide	Numerical	Derived from tumor VOI on	0.87 to 0.97	0 (0)
		Numerical	Pyradiomics		
	GLCM Imc1	Numerical	Derived from tumor VOI on	-0 56 to -0 13	0 (0)
			Pyradiomics	-0.30 10 -0.13	0(0)
	GLCM Imc2	Numerical	Derived from tumor VOI on	0.59 to 0.10	0 (0)
		Numerical	Pyradiomics	0.00 10 0.10	0(0)
	GLCM_Inverse	Numerical	Derived from tumor VOI on	0.05 to 0.50	0 (0)
	Variance	Numerical	Pyradiomics	0.00 10 0.00	0(0)
	GLCM Joint Average	Numerical	Derived from tumor VOI on	4 25 to 89 97	0 (0)
		Numerical	Pyradiomics	7.2010 00.01	0(0)

	GLCM Joint Energy	Numerical	Derived from tumor VOI on	0.00 to 0.19	0 (0)
_ 0,		Pyradiomics			
	GLCM Joint Entropy	Numerical	Derived from tumor VOI on	2.76 to 11.35	0 (0)
			Pyradiomics		- (-)
	GLCM_MCC Nume	Numerical	Derived from tumor VOI on	0 49 to 0 10	0 (0)
		Numerical	Pyradiomics		0(0)
	GLCM_Maximum	Numerical	Derived from tumor VOI on	0 00 to 0 29	0 (0)
	Probability		Pyradiomics		
	GLCM Sum Average	Numerical	Derived from tumor VOI on	8 50 to 179 93	0 (0)
	CLOW_COUNTWORDS	Numerioai	Pyradiomics	0.00 10 11 0.00	0(0)
	GLCM Sum Entropy	Numerical	Derived from tumor VOI on	2 11 to 8 02	0 (0)
	Probability GLCM_Sum Average Nu GLCM_Sum Entropy Nu GLCM_Sum Squares Nu	Numerioai	Pyradiomics	2.1110 0.02	0(0)
	GLCM Sum Squares	Numerical	Derived from tumor VOI on	0.60 to 1656 43	0 (0)
		Numerical	Pyradiomics	0.00 10 1000.43	0(0)
	GLRLM_Gray Level	Numerical	Derived from tumor VOI on	7 74 tto 263 04	0 (0)
Non Uniformity	Non Uniformity	Numenca	Pyradiomics	1.1+ IIO 200.04	0(0)
	l				

GLRLM_Gray Level Non Uniformity Normalized	Numerical	Derived from tumor VOI on Pyradiomics	0.01 to 0.30	0 (0)
GLRLM_Gray Level Variance	Numerical	Derived from tumor VOI on Pyradiomics	1.09 to 1679.98	0 (0)
GLRLM_High Gray Level Run Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	15.48 to 8316.15	0 (0)
GLRLM_Long Run Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	1.04 to 2.44	0 (0)
GLRLM_Long Run High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	29.03 to 8611.91	0 (0)
GLRLM_Long Run Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.21	0 (0)
GLRLM_Low Gray Level Run Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.13	0 (0)

GLRLM_Run Entropy	Numerical	Derived from tumor VOI on Pyradiomics	2.64 to 7.29	0 (0)
GLRLM_Run Length Non Uniformity	Numerical	Derived from tumor VOI on Pyradiomics	38.39 to 3206.36	0 (0)
GLRLM_Run Length Non Uniformity Normalized	Numerical	Derived from tumor VOI on Pyradiomics	0.61 to 0.98	0 (0)
GLRLM_Run Percentage	Numerical	Derived from tumor VOI on Pyradiomics	0.76 to 0.99	0 (0)
GLRLM_Run Variance	Numerical	Derived from tumor VOI on Pyradiomics	0.01 to 0.61	0 (0)
GLRLM_Short Run Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.79 to 0.99	0 (0)
GLRLM_Short Run High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	11.22 to 8245.42	0 (0)

GLRLM_Short Run Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.11	0 (0)
GLSZM_Gray Level	Numerical	Derived from tumor VOI on Pyradiomics	2.83 to 18595.0	0 (0)
GLSZM_Gra yLeve INon Uniformity Normalized	Numerical	Derived from tumor VOI on Pyradiomics	0.01 to 0.24	0 (0)
GLSZM_Gray Level Variance	Numerical	Derived from tumor VOI on Pyradiomics	1.39 to 1757.813	0 (0)
GLSZM_High Gray Level Zone Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	8.5 to 8394.619154	0 (0)
GLSZM_Large Area Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	1.63 to 55875.0	0 (0)
GLSZM_Large Area High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	965.03 to 229276.03	0 (0)

GLSZM_Large Area Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 425.09	0 (0)
GLSZM_Low Gray Level Zone Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.29	0 (0)
GLSZM_Size Zone Non Uniformity	Numerical	Derived from tumor VOI on Pyradiomics	3.67 to 1362.06	0 (0)
GLSZM_Size Zone Non Uniformity Normalized	Numerical	Derived from tumor VOI on Pyradiomics	0.10 to 0.67	0 (0)
GLSZM_Small Area Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.25 to 0.89	0 (0)
GLSZM_Small Area High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	2.52 to 7576.37	0 (0)

GLSZM_Small Area Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 2.24	0 (0)
GLSZM_Zone Entropy	Numerical	Derived from tumor VOI on Pyradiomics	2.92 to 7.81	0 (0)
GLSZM_Zone	Numerical	Derived from tumor VOI on	0.03 to 0.85	0 (0)
Percentage	Numerical	Pyradiomics	0.03 10 0.85	0(0)
GLSZM_Zone	Numerical	Derived from tumor VOI on	0.24 to 8038.92	0 (0)
Variance	Numerical	Pyradiomics		0(0)
GLDM_Dependence	Numerical	Derived from tumor VOI on	4.44 to 8.04	0 (0)
Entropy	Numerical	Pyradiomics		0(0)
GLDM_Dependence	Numerical	Derived from tumor VOI on	29 62 to 7175 0	0 (0)
Non Uniformity	Numerical	Pyradiomics	23.02 10 7 17 3.0	0(0)
GLDM_Dependence		Derived from tumor VOI on		
Non Uniformity	Numerical	Pyradiomics	0.08 to 0.59	0 (0)
Normalized		r yradioffilos		

GLDM_Dependence	Numerical	Derived from tumor VOI on Pyradiomics	0.33 to 26.67	0 (0)
GLDM_Gray Level	Numerical	Derived from tumor VOI on Pvradiomics	8.01 to 362.96	0 (0)
GLDM_Gray Level	Numerical	Derived from tumor VOI on Pyradiomics	1.02 to 1673.89	0 (0)
GLDM_High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	16.60 to 16825.00	0 (0)
GLDM_Large Dependence Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	2.06 to 69.2	0 (0)
GLDM_Large Dependence High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	489.26 to 18943.31	0 (0)
GLDM_Large Dependence Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 23.56	0 (0)

GLDM_Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.12	0 (0)
GLDM_Small Dependence Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.04 to 0.79	0 (0)
GLDM_Small Dependence High Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.84 to 6714.97	0 (0)
GLDM_Small Dependence Low Gray Level Emphasis	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.04	0 (0)
NGTDM_Busyness	Numerical	Derived from tumor VOI on Pyradiomics	0.01 to 0.49	0 (0)
NGTDM_Coarseness	Numerical	Derived from tumor VOI on Pyradiomics	0.00 to 0.10	0 (0)
NGTDM_Complexity	Numerical	Derived from tumor VOI on Pyradiomics	4.74 to 188223.78	0 (0)

NGTDM_Contrast	Numerical	Derived from tumor VOI on Pyradiomics	0.02 to 0.82	0 (0)
NGTDM_Strength	Numerical	Derived from tumor VOI on Pyradiomics	0.42 to 146.63	0 (0)
Genomic features				
Citrate cycle (TCA	Numerical	Combined pathogecity scores by	0 to 2 51	0 (0)
cycle)	numenca	bioinformatics analysis	0 10 2.51	
Fatty acid biosynthesis	Numerical	Combined pathogecity scores by	0 to 3.47	0 (0)
		bioinformatics analysis		0(0)
Fatty acid elongation	Numerical	Combined pathogecity scores by	0 to 5.74	0 (0)
	Numerical	bioinformatics analysis		0(0)
Fatty acid degradation	Numerical	Combined pathogecity scores by	0 to 3 33	0 (0)
	Numerical	bioinformatics analysis	0 10 5.55	0(0)
Cysteine and		Combined nathogecity scores by		
methionine	Numerical	bioinformatics analysis	0 to 3.60	0 (0)
metabolism		biomormatics analysis		

One carbon pool by	Numerical	Combined pathogecity scores by	0 to 3 39	0 (0)
folate	Numerical	bioinformatics analysis	0 10 0.00	0(0)
Folato biogynthesia	Numerical	Combined pathogecity scores by	0 to 1 26	0 (0)
Folate biosynthesis	Numerica	bioinformatics analysis	0 10 1.20	0(0)
Metabolic pathways	Numerical	Combined pathogecity scores by	0 to 108 27	0 (0)
Metabolic patriways	Numerical	bioinformatics analysis	0.10.100.27	0(0)
Fatty acid metabolism	Numerical	Combined pathogecity scores by	0 to 5.80	0 (0)
	Numerioar	bioinformatics analysis		0 (0)
EGFR tyrosine kinase	Numerical	Combined pathogecity scores by	0 to 14.07	0 (0)
inhibitor resistance	Numerical	bioinformatics analysis		0(0)
Antifolate resistance	Numerical	Combined pathogecity scores by	0 to 4 76	0 (0)
Antiolate resistance	Numerical	bioinformatics analysis	0 10 4.70	0(0)
PPAR signaling	Numerical	Combined pathogecity scores by	0 to 5 92	0 (0)
pathway	Numerical	bioinformatics analysis	0 10 5.32	0(0)
MAPK signaling	Numerical	Combined pathogecity scores by	0 to 29.03	0 (0)
pathway	numenca	bioinformatics analysis	0 10 20.00	0(0)

Ras signaling pathway	Numerical	Combined pathogecity scores by	0 to 17 92	0 (0)	
		Tumonoul	bioinformatics analysis	0.10.11.52	0 (0)
	Rap1 signaling	Numerical	Combined pathogecity scores by	0 to 20.62	0 (0)
	pathway	Numerical	bioinformatics analysis	0 10 20.02	0(0)
	Calcium signaling	Numerical	Combined pathogecity scores by	0 to 23 51	0 (0)
	pathway	Numerical	bioinformatics analysis	0 10 23.51	U (U)
	cAMP signaling	Numerical	Combined pathogecity scores by	0 to 15.97	0 (0)
	pathway		bioinformatics analysis		0 (0)
	NF-kappa B signaling	Numerical	Combined pathogecity scores by	0 to 9.36	0 (0)
	pathway	Numerical	bioinformatics analysis		0(0)
	HIF-1 signaling	Numerical	Combined pathogecity scores by	0 to 11 50	0 (0)
	pathway	Numerical	bioinformatics analysis	0.10 11.00	0(0)
	FoxO signaling	Numerical	Combined pathogecity scores by	0 to 11 68	0 (0)
	pathway	Numericai	bioinformatics analysis	0.10 11.00	0(0)
		Numerical	Combined pathogecity scores by	0 to 7 16	0 (0)
			bioinformatics analysis	0.107.10	0(0)

p53 signaling pathway	Numerical	Combined pathogecity scores by	0 to 3.99	0 (0)	
	poo orginaling partitaly	Humonoul	bioinformatics analysis		- (•)
	mTOR signaling	Numerical	Combined pathogecity scores by	0 to 22.45	0 (0)
	pathway	Numerica	bioinformatics analysis	0 10 22.45	0(0)
	PI3K-Akt signaling	Numerical	Combined pathogecity scores by	0 to 37.22	0 (0)
	pathway	Numerica	bioinformatics analysis	0 10 37.22	0(0)
	Anontosis	Numerical	Combined pathogecity scores by	0 to 17.36	0 (0)
	Αμομιοσισ	Numerical	bioinformatics analysis		
	Collular concessor	Numerical	Combined pathogecity scores by	0 to 25.75	0 (0)
			bioinformatics analysis		0(0)
	Wht signaling nathway	Numerical	Combined pathogecity scores by	0 to 18 24	0 (0)
	wint signaling pathway	Numerical	bioinformatics analysis	0 10 10.24	U (U)
	Notch signaling	Numerical	Combined pathogecity scores by	0 to 7 25	0 (0)
	pathway	Numerica	bioinformatics analysis	0.107.20	0(0)
	Hedgehog signaling	Numerical	Combined pathogecity scores by	0 to 5 36	0 (0)
	pathway	Humenou	bioinformatics analysis		0(0)

TGF-beta signaling	Numerical	Combined pathogecity scores by	0 to 4 58	0 (0)
pathway	Numerical	bioinformatics analysis	0.004.00	0(0)
VEGF signaling	Numorical	Combined pathogecity scores by	0 to 6 12	0 (0)
pathway	Numencai	bioinformatics analysis	0 10 0.12	0(0)
Focal adhesion	Numerical	Combined pathogecity scores by	0 to 20 85	0 (0)
	Numerical	bioinformatics analysis	0 10 29.03	
ECM-receptor	Numerical	Combined pathogecity scores by	0 to 16.26	0 (0)
interaction	Numerical	bioinformatics analysis		
Adharana junatian Numariaal	Numerical	Combined pathogecity scores by	0 to 10.17	0 (0)
Autorens junction	Numerical	bioinformatics analysis		
Neutrophil extracellular	Numerical	Combined pathogecity scores by	0 to 15 38	0 (0)
trap formation	Numerical	bioinformatics analysis	0.0010.00	0(0)
Toll-like receptor	Numerical	Combined pathogecity scores by	0 to 10 82	0 (0)
signaling pathway	Numerica	bioinformatics analysis	0.10.10.02	0(0)
JAK-STAT signaling	Numerical	Combined pathogecity scores by	0 to 16 82	0 (0)
pathway	Taumenedi	bioinformatics analysis	0.10.10.02	0(0)

Natural killer cell	Numerical	Combined pathogecity scores by	0 to 58.01	0 (0)
mediated cytotoxicity		bioinformatics analysis		- (-)
TNF signaling pathway	Numerical	Combined pathogecity scores by	0 to 9 41	0 (0)
	Italionoal	bioinformatics analysis		0 (0)
Insulin signaling	Numerical	Combined pathogecity scores by	0 to 17 59	0 (0)
pathway	Italionoal	bioinformatics analysis		0(0)
Thyroid hormone	Numerical	Combined pathogecity scores by	0 to 5.32	0 (0)
synthesis	Numerical	bioinformatics analysis		0 (0)
Thyroid hormone	Numerical	Combined pathogecity scores by	0 to 18.28	0 (0)
signaling pathway	Italionoal	bioinformatics analysis		0 (0)
Endocrine and other		Combined pathogecity scores by		
factor-regulated	Numerical	bioinformatics analysis	0 to 4.84	0 (0)
calcium reabsorption				
Pathways of		Combined pathogecity scores by		
neurodegeneration -	Numerical	bioinformatics analysis	0 to 40.80	0 (0)
multiple diseases				

Human immunodeficiency virus 1 infection	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 24.84	0 (0)
Pathways in cancer	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 56.59	0 (0)
Glioma	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 8.68	0 (0)
Prostate cancer	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 13.19	0 (0)
Thyroid cancer	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 3.77	0 (0)
Choline metabolism in cancer	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 14.12	0 (0)
PD-L1 expression and PD-1 checkpoint pathway in cancer	Numerical	Combined pathogecity scores by bioinformatics analysis	0 to 10.73	0 (0)

Tumor mutational burden (TMB)	Numerical	computed as a number of identified somatic variants per million base pairs of the sequence region	1.24 to 39.33	0 (0)
Copy number variant (CNV) burden	Numerical	Computed as a ratio of CNV sum size to the sum size of all sequenced regions	0 to 18.7	9 (13.85%)
ISUP in needle biopsy	Categorical	The maximum H-score among all tumor cores	1 to 5	0 (0)
Pathomics features				
Ki-67max	Numerical	The maximum H-score of Ki-67 staining among all tumor cores	0 to 130	1 (1.54%)
Ki-67avg	Numerical	The average H-score of Ki-67 staining among all tumor cores	0 to 108.33	1 (1.54%)
PSMAmax	Numerical	The maximum H-score of PSMA staining among all tumor cores	0 to 300	1 (1.54%)
PSMAavg	Numerical	The average H-score of PSMA staining among all tumor cores	0 to 300	1 (1.54%)

ARmax	Numerical	The maximum H-score of AR staining among all tumor cores	0 to 300	1 (1.54%)
ARavg	Numerical	The average H-score of AR staining	0 to 300	1 (1.54%)
504	.	among all tumor cores The maximum H-score of PSA		E (7 000()
PSAmax	Numerical	staining among all tumor cores	U to 300	5 (7.69%)
PSAavg	Numerical	The average H-score of PSA staining	0 to 200	5 (7.69%)
		among all tumor cores		
NKX3.1max	Numerical	The maximum H-score of NKX3.1	0 to 300	1 (1.54%)
		staining among all tumor cores		
NKX3.1avg	Numerical	The average H-score of NKX3.1	0 to 260	1 (1.54%)
		staining among all tumor cores		
CDK2max	Numerical Numerical	The maximum H-score of CDK2	0 to 36	1 (1.54%)
		staining among all tumor cores		
CDK2avg		The average H-score of CDK2	0 to 27	1 (1.54%)
		staining among all tumor cores		

	STAT3max	Numerical	The maximum H-score of STAT3	0 to 180	2 (3.08%)
			staining among all tumor cores		2 (0.0070)
	STAT3ava	Numerical	The average H-score of STAT3	0 to 85	2 (3 08%)
	STATSavy	Numerical	staining among all tumor cores	0 10 00	2 (0.0070)
	CD3max	Numerical	The maximum H-score of CD3	0 to 40	1 (1.54%)
	ODOMAX	Numerical	staining among all tumor cores		
	CD3avo	Numerical	The average H-score of CD3 staining	0 to 20	1 (1.54%)
	Obourg	Numerioar	among all tumor cores	0.10.20	
	FASNmax	Numerical	The maximum H-score of FASN	0 to 300	0 (0)
	T AGININAX		staining among all tumor cores		0 (0)
	EASNova	Numerical	The average H-score of FASN	0 to 250	0 (0)
	T ACTUALLY		staining among all tumor cores	0.10.200	0 (0)
	TRßmay	Numerical	The maximum H-score of TR β	0 to 300	1 (1 54%)
	Першах	Numericai	staining among all tumor cores		1 (1.0470)
	Trßava	Numerical	The average H-score of TR β staining	0 to 250	1 (1 54%)
	Πρανά		among all tumor cores	0 10 200	1 (1.0770)

IL6ST	Categorical	Derived from tumor cores stained	0 = no IL6ST expression; 1 = low IL6ST	1 (1.54%)
		with IL6ST	expression; 2 = high IL6ST expression	
infiltration to tumor	Categorical	Derived from tumor cores stained	0 = no: $1 = ves$	1 (1.54%)
		with IL6ST	0 – 110, 1 – yes	
infiltration to normal	Categorical	Derived from tumor cores stained	0 = no: $1 = ves$	1 (1 = 40/)
		with IL6ST	0 – 110, 1 – yes	1 (1.3470)

Notes: Regarding radiomics features, PET images were resampled to an isotropic voxel size of 2x2x2 mm³ using B-spline interpolation and bin

width was set to 0.3 SUV units.

Table S2. The investigated 51 pathways and matched literature.

A total of 51 categorized pathways and the corresponding literature is provided to

indicate their role in PCa tumorigenesis, progression and metastasis.

Feature roup	Pathways
	Antifolate resistance ¹⁷
	One carbon pool by folate ¹⁷
	Folate biosynthesis ¹⁷
	Endocrine and other factor-regulated calcium reabsorption ¹⁷
PSMA-related pathways	Calcium signaling pathway ¹⁷
	Cysteine and methionine metabolism ¹⁸
	PI3K-Akt signaling pathway ¹⁹
	MAPK signaling pathway ^{19, 20}
	VEGF signaling pathway ^{20, 21}
	Glioma ²²
Anrogen receptor-related	Pathways of neurodegeneration - multiple diseases ^{23, 24}
pathways	Prostate cancer ²⁵
	Wnt signaling pathway ²⁰
	mTOR signaling pathway ²⁰
	EGFR tyrosine kinase inhibitor resistance ²⁰
	TGF-beta signaling pathway ²⁰
General pathways known	NF-kappa B signaling pathway ²⁵
for Pca	JAK-STAT signaling pathway ²⁵
	Ras signaling pathway ²⁵
	Pathways in cancer ²⁵
	Hedgehog signaling pathway ²⁶
	Notch signaling pathway ²⁶

	FoxO signaling pathway ²⁶		
	Adherens junction ²⁷		
	Cellular senescence ²⁸		
	Cell cycle ²⁹		
	TNF signaling pathway ³⁰		
	p53 signaling pathway ³⁰		
	HIF-1 signaling pathway ³¹		
	PPAR signaling pathway ³²		
	Apoptosis ³³		
	Choline metabolism in cancer ³⁴		
	Fatty acid metabolism ³⁵		
	Fatty acid biosynthesis ^{35, 36}		
Metabolism-related	Fatty acid degradation ^{35, 36}		
pathways	Fatty acid elongation ^{35, 36}		
	Citrate cycle (TCA cycle) ^{37, 38}		
	Metabolic pathways ^{37, 38}		
	Insulin signaling pathway ³⁹		
	ECM-receptor interaction ⁴⁰		
Membrane recruitment	Focal adhesion ⁴¹		
and activation	cAMP signaling pathway ⁴²		
	Rap1 signaling pathway ⁴³		
	Thyroid cancer ⁴⁴		
Thyroid connection	Thyroid hormone signaling pathway ⁴⁴		
	Thyroid hormone synthesis44		
	PD-L1 expression and PD-1 checkpoint pathway in cancer ⁴⁵		
nathwaya	Neutrophil extracellular trap formation ⁴⁶		
paulways	Human immunodeficiency virus 1 infection ⁴⁷		
]		

Toll-like receptor signaling pathway ⁴⁸
Natural killer cell mediated cytotoxicity ⁴⁹

Table S3. The extracted radiomics features in three categories.

The extracted radiomic features from ⁶⁸Ga-PSMA PET/MR images: Shape-based features including 14 shape dimentions; First-order features including 18 intensity statistics; 75 multi-dimensional texture features including 24 Gray Level Co-occurrence Matrix (GLCM), 16 Gray Level Run Length Matrix (GLRLM),16 Gray Level Size Zone Matrix (GLSZM), 14 Gray Level Dependence Matrix (GLDM) and 5 Neighboring Gray Tone Difference Matrix (NGTDM) Features.

Feature group	Feature name
Shape-based (n=14)	Elongation
	Flatness
	Least Axis Length
	Major Axis Length
	Maximum2D Diameter Column
	Maximum2D Diameter Row
	Maximum2D Diameter Slice
	Maximum3D Diameter
	MeshVolume
	MinorAxisLength
	Sphericity
	Surface Area
	Surface Volume Ratio
	Voxel Volume
Histogram-based (n=18)	10Percentile
	90Percentile
	Energy

	Entropy		
	Interquartile Range		
	Kurtosis		
	Maximum	ו	
	Mean Absolute Deviation		
	Mean		
	Median		
	Minimum		
	Range		
	Robust Mean Absolute Deviation		
	Root Mea	an Squared	
	Skewness		
	Total Ene	ergy	
	Uniformit	у	
	Variance		
Texture-based (n=75)	GLCM	Autocorrelation	
	(n=24)	Cluster Prominence	
		Cluster Shade	
		Cluster Tendency	
		Contrast	
		Correlation	
		Difference Average	
		Difference Entropy	
		Difference Variance	
		ld	
		Idm	
		Idmn	

	ldn
	Imc1
	Imc2
	Inverse Variance
	Joint Average
	Joint Energy
	Joint Entropy
	MCC
	Maximum Probability
	Sum Average
	Sum Entropy
	Sum Squares
GLRLM	Gray Level Non Uniformity
(n=16)	Gray Level Non Uniformity Normalized
	Gray Level Variance
	High Gray Level Run Emphasis
	Long Run Emphasis
	Long Run High Gray Level Emphasis
	Long Run Low Gray Level Emphasis
	Low Gray Level Run Emphasis
	Run Entropy
	Run Length Non Uniformity
	Run Length Non Uniformity Normalized
	Run Percentage
	Run Variance
	Short Run Emphasis
	Short Run High Grav Level Emphasis
	5

	Short Run Low Gray Level Emphasis
GLSZM	Gray Level Non Uniformity
(n=16)	Gray Level Non Uniformity Normalized
	Gray Level Variance
	High Gray Level Zone Emphasis
	Large Area Emphasis
	Large Area High Gray Level Emphasis
	Large Area Low Gray Level Emphasis
	Low Gray Level Zone Emphasis
	Size Zone Non Uniformity
	Size Zone Non Uniformity Normalized
	Small Area Emphasis
	Small Area High Gray Level Emphasis
	Small Area Low Gray Level Emphasis
	Zone Entropy
	Zone Percentage
	Zone Variance
GLDM	Dependence Entropy
(n=16)	Dependence Non Uniformity
	Dependence Non Uniformity Normalized
	Dependence Variance
	Gray Level Non Uniformity
	Gray Level Variance
	High Gray Level Emphasis
	Large Dependence Emphasis
	Large Dependence High Gray Level
	Emphasis

	Large Dependence Low Gray Level
	Emphasis
	Low Gray Level Emphasis
	Small Dependence Emphasis
	Small Dependence High Gray Level
	Emphasis
	Small Dependence Low Gray Level
	Emphasis
NGTDM	Busyness
(n=5)	Coarseness
	Complexity
	Contrast
	Strength

Table S4. The performance metrics of five different ML models to predict Gleasongrading in PCa.

	ACC	SNS	SPC	PPV	NPV	AUC
KNN	0.754	0.766	0.740	0.791	0.754	0.828
RF	0.779	0.827	0.722	0.791	0.804	0.869
SVM	0.757	0.816	0.688	0.770	0.768	0.853
LGR	0.748	0.761	0.732	0.788	0.742	0.835
XGB	0.770	0.831	0.698	0.778	0.803	0.868

AUC: area under the curve; SNS: sensitivity; SPC: specificity; ACC: accuracy; PPV: positive predictive value; NPV: negative predictive value; KNN: K-nearest neighbors; RF: random forest; SVM: support vector machines; IGR: information gain ratio; XGB: extreme gradient boosting.

Table S5. The interpretation of shape-based features ranked by descending

contribution to the prediction of whole mount Gleason grading in the ML model.

Feature Name	Formula	Meaning
Maximum 2D diameter (Slice)	NA	Maximum 2D diameter (Slice) is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the row-column (generally the axial) plane.
Maximum 3D diameter	NA	Maximum 3D diameter is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices. Also known as Feret Diameter.
Elongation	elongation = $\sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}$ Here, λ major and λ minor are the lengths of the largest and second largest principal component axes. The values range between 1 (where the cross section through the first and second largest principal moments is circle-like (non- elongated)) and 0 (where the object is a maximally elongated: i.e. a 1 dimensional line).	Elongation shows the relationship between the two largest principal components in the ROI shape. For computational reasons, this feature is defined as the inverse of true elongation. The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI. It therefore takes spacing into account, but does not make use of the shape mesh.

		Maximum 2D diameter (Column) is defined
Maximum 2D		as the largest pairwise Euclidean distance
diameter	NA	between tumor surface mesh vertices in the
(Column)		row-slice (usually the coronal) plane
		This feature yield the largest axis length of
		the ROI-enclosing ellipsoid and is calculated
		using the largest principal component
Major Axis		λ_{major} . The principal component analysis is
Length	major axis = $4\sqrt{\lambda_{major}}$	performed using the physical coordinates of
		the voxel centers defining the ROI. It
		therefore takes spacing into account, but
		does not make use of the shape mesh.
		This feature yield the smallest axis length of
		the ROI-enclosing ellipsoid and is calculated
Logot Avia		using the largest principal component
		λ_{least} . In case of a 2D segmentation, this
Least Axis	least axis = $4\sqrt{\lambda_{least}}$	value will be 0. The principal component
Length		analysis is performed using the physical
		coordinates of the voxel centers defining the
		ROI. It therefore takes spacing into account,
		but does not make use of the shape mesh.
		Flatness shows the relationship between
	flatness = $\sqrt{\frac{\lambda_{least}}{\lambda_{least}}}$	the largest and smallest principal
_	V ∧major	components in the ROI shape. For
Flatness	Here, λ major and λ least are the	computational reasons, this feature is
	lengths of the largest and	defined as the inverse of true flatness. The
	smallest principal component	principal component analysis is performed
1	1	

	axes. The values range between	using the physical coordinates of the voxel
	1 (non-flat, sphere-like) and 0 (a	centersdefining the ROI. It therefore takes
	flat object, or single-slice	spacing into account, but does not make
	segmentation).	use of the shape mesh.
Sphericity	sphericity = $\frac{\sqrt[3]{36\pi V^2}}{A}$	Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It is a dimensionless measure, independent of scale and orientation. The value range is $0 < sphericity \le 1$, where a value of 1 indicates a perfect sphere (a sphere has the smallest possible surface area for a given volume, compared to other solids).
Surface Area	$A_{i} = \frac{1}{2} \mathbf{a}_{i}\mathbf{b}_{i} \times \mathbf{a}_{i}\mathbf{c}_{i} (1)$ $A = \sum_{i=1}^{N_{f}} A_{i} (2)$ where: $\mathbf{a}_{i}\mathbf{b}_{i}$ and $\mathbf{a}_{i}\mathbf{c}_{i}$ are edges of the i^{th} triangle in the mesh, formed by vertices \mathbf{a}_{i} , \mathbf{b}_{i} and \mathbf{c}_{i} .	To calculate the surface area, first the surface area A_i of each triangle in the mesh is calculated (1). The total surface area is then obtained by taking the sum of all calculated subareas.

 Table S6. The interpretation of histogram-based features ranked by descending

 contribution to the prediction of whole mount Gleason grading in the ML model.

Feature Name	Formula	Meaning
Maximum	$maximum = \max(\mathbf{X})$	The maximum gray level intensity within the ROI.
Entropy	$entropy = -\sum_{i=1}^{N_g} p(i) \log_2 (p(i) + \epsilon)$ Here, ϵ is an arbitrarily small positive number ($pprox 2.2 \times 10^{-16}$).	Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of information required to encode the image values.
Range	$range = \max(\mathbf{X}) - \min(\mathbf{X})$	The range of gray values in the ROI.
Minimum	$minimum = \min(\mathbf{X})$	NA

Table S7. The interpretation of texture-based features ranked by descending

contribution to the prediction of whole mount Gleason grading in the ML model.

Class	Feature	Formula	Meaning
GLCM	Joint Entropy	$joint\ entropy = -\sum_{i=1}^{N_g}\sum_{j=1}^{N_g} p(i,j) \log_2 \left(p(i,j) + \epsilon ight)$	Joint entropy is a measure of the randomness/variability in neighborhood intensity values.
GLRLM	Short Run Emphasis	$SRE = rac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} rac{\mathbf{P}(i,j heta)}{j^2}}{N_r(heta)}$	SRE is a measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths and more fine textural textures.
GLDM	Large Dependence Low Gray Level Emphasis	$LDLGLE = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{\mathbf{P}(i,j)j^2}{i^2}}{N_z}$	Measures the joint distribution of large Dependence with lower gray- level values
GLCM	Maximum Probability	maximum probability $= \max ig(p(i,j) ig)$	Maximum Probability is occurrences of the most predominant pair of neighboring intensity values
GLCM	Joint Average	joint average $= \mu_x = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)i$	Returns the mean gray level intensity of the <i>i</i> distribution.
GLCM	Difference Entropy	difference entropy $=\sum_{k=0}^{N_g-1} p_{x-y}(k) \log_2 \left(p_{x-y}(k) + \epsilon ight)$	Difference Entropy is a measure of the randomness/variability in

		neighborhood intensity value
		differences.
	N _n N	RV is a measure of the
Run Variance	$RV = \sum_{i=1}^{r_{y}} \sum_{j=1}^{r_{r}} p(i,j heta)(j-\mu)^2$	variance in runs for the run
		lengths
		Sum Average measures the
		relationship between
Sum Average	sum average = $\sum_{k=1}^{2N_g} n_{-1} (k)k$	occurrences of pairs with
Sum Average	$\sum_{k=2}^{p_{x+y}(n)/n}$	lower intensity values and
		occurrences of pairs with
		higher intensity values.
Size Zone Non Uniformity	$SZN = \frac{\sum_{j=1}^{N_s} \left(\sum_{i=1}^{N_g} \mathbf{P}(i,j)\right)^2}{N_z}$	SZN measures the variability
		of size zone volumes in the
		image, with a lower value
		indicating more
		homogeneity in size zone
		volumes.
		Energy is a measure of
		homogeneous patterns in the
		image. A greater Energy
loint Energy	joint energy = $\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (n(i \ j))^2$	implies that there are more
Some Energy	$\int \int $	instances of intensity value
		pairs in the image that
		neighbor each other at higher
		frequencies.
	Run Variance Sum Average Size Zone Non Uniformity Joint Energy	Run Variance $RV = \sum_{i=1}^{N_x} \sum_{j=1}^{N_x} p(i,j \theta)(j-\mu)^2$ Sum Average $sum average = \sum_{k=2}^{2N_y} p_{n+y}(k)k$ Size Zone Non Uniformity $SZN = \frac{\sum_{i=1}^{N_x} \left(\sum_{i=1}^{N_x} \mathbf{P}(i,j)\right)^2}{N_x}$ Joint Energy $joint energy = \sum_{i=1}^{N_x} \sum_{j=1}^{N_x} (p(i,j))^2$

		Sum Entropy is a sum of
Sum Entropy	$sum\ entropy = \sum_{k=2}^{2N_g} p_{x+y}(k) \log_2 \left(p_{x+y}(k) + \epsilon ight)$	neighborhood intensity value
		differences.
		A measure of the change
		from a pixel to its neighbour.
		A high value for busyness
Busyness	$Busyness = rac{\sum_{i=1}^{N_g} p_i s_i}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ip_i - jp_j }$, where $p_i \neq 0, p_j \neq 0$	indicates a 'busy' image, with
		rapid changes of intensity
		between pixels and its
		neighbourhood.
		Difference Average
	difference average $=\sum_{k=0}^{N_g-1}kp_{x-y}(k)$	measures the relationship
Difference Average		between occurrences of pairs
		with similar intensity values
		and occurrences of pairs with
		differing intensity values.
Zone Percentage	$ZP = \frac{N_z}{N_p}$	ZP measures the coarseness
		of the texture by taking the
		ratio of number of zones and
		number of voxels in the ROI.
		SZNN measures the
		variability of size zone
Size Zone Non	2	volumes throughout the
	$SZNN = rac{\sum_{j=1}^{N_s} \left(\sum_{i=1}^{N_g} \mathbf{P}(i,j) ight)^2}{N_z^2}$	image, with a lower value
Uniformity Normalized		indicating more homogeneity
		among zone size volumes in
		the image. This is the
	Sum Entropy Busyness Difference Average Zone Percentage Size Zone Non Uniformity Normalized	Sum Entropysum entropy = $\sum_{k=2}^{2N_{p}} p_{k+y}(k) \log_{2}(p_{k+y}(k) + \epsilon)$ Busyness $Busyness = \frac{\sum_{k=2}^{N_{p}} p_{k+y}(k) \log_{2}(p_{k+y}(k) + \epsilon)}{\sum_{k=1}^{N_{p}} \sum_{j=1}^{N_{p}} (\sum_{j=1}^{N_{p}} p_{k+y}(k))}$ Difference Average $difference average = \sum_{k=0}^{N_{p}-1} kp_{x-y}(k)$ Zone Percentage $ZP = \frac{N_{z}}{N_{p}}$ Size Zone Non Uniformity Normalized $SZNN = \frac{\sum_{j=1}^{N_{x}} (\sum_{j=1}^{N_{x}} \mathbf{P}(i,j))^{2}}{N_{z}^{2}}$

			normalized version of the
			SZN formula.
			GLN measures the similarity
			of gray-level intensity values
	Gray Level Non	$\sum_{i=1}^{N_g} \left(\sum_{j=1}^{N_r} \mathbf{P}(i,j heta) ight)^2$	in the image, where a lower
GLKLIVI	Uniformity	$GLN = \frac{(3)}{N_r(\theta)}$	GLN value correlates with a
			greater similarity in intensity
			values
			Note that $k = 0$ is skipped, as
GLCM	Inverse Variance	inverse variance $=\sum_{k=1}^{N_g-1}rac{p_{x-y}(k)}{k^2}$	this would result in a division
		$\kappa = 1$	by 0.
			Coarseness is a measure of
			average difference between
			the center voxel and its
			neighbourhood and is an
NGTDM	Coarseness	$Coarseness = rac{1}{\sum_{i=1}^{N_g} p_i s_i}$	indication of the spatial rate of
			change. A higher value
			indicates a lower spatial
			change rate and a locally
			more uniform texture.
			a measure of the distribution
			of small size zones, with a
GLSZM	Small Area Emphasis	$SAE = \frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{\mathbf{r}(i,j)}{j^2}}{N_z}$	greater value indicative of
		~	more smaller size zones and
			more fine textures.
	Small Dependence	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{\mathbf{P}(i,j)}{i^2}$	A measure of the distribution
GLDIVI	Emphasis	$SDE = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} i^{-j}}{N_z}$	of small dependencies, with a

			greater value indicative of
			smaller dependence and less
			homogeneous textures.
			IDN (inverse difference
			normalized) is another
			measure of the local
			homogeneity of an image.
	Ida	$DN = \sum_{k=1}^{N_g-1} \frac{p_{x-y}(k)}{p_{x-y}(k)}$	Unlike Homogeneity1, IDN
GLCIM		$\sum_{k=0}^{m} 1 + \left(\frac{k}{N_g}\right)$	normalizes the difference
			between the neighboring
			intensity values by dividing
			over the total number of
			discrete intensity values.
			Measures the similarity of
	Gray Level Non Uniformity	$GLN = \frac{\sum_{i=1}^{N_g} \left(\sum_{j=1}^{N_d} \mathbf{P}(i,j)\right)^2}{N_z}$	gray-level intensity values in
			the image, where a lower
GLDM			GLN value correlates with a
			greater similarity in intensity
			values.
		N _c N.	Measures the variance in
GLDM	Dependence Variance	$DV = \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)(j-\mu)^2,$	dependence size in the
			image.
			Measures the similarity of
	Dependence Non	$- N / N$ λ^2	dependence throughout the
GLDM	Uniformity Normalized	$DNN = \frac{\sum_{j=1}^{N_d} \left(\sum_{i=1}^{N_g} \mathbf{P}(i,j)\right)^2}{N_z^2}$	image, with a lower value
			indicating more homogeneity
			among dependencies in the
	1	1	1

			image. This is the normalized
			version of the DLN formula.
			A measure of the distribution
	Large Dependence	$\sum N_a \sum N_d \mathbf{p}(z, z) \cdot 2$	of large dependencies, with a
GLDM	Emphasis	$LDE = \frac{\sum_{i=1}^{j} \sum_{j=1}^{j} \mathbf{P}(i,j)j^2}{N_z}$	greater value indicative of
			larger dependence and more
			homogeneous textures.
			LAE is a measure of the
			distribution of large area size
GI SZM	Large Area Emphasis	$\sum_{i=1}^{N_g}\sum_{j=1}^{N_s}\mathbf{P}(i,j)j^2$	zones, with a greater value
GEGZIWI	Large Area Emphasis	$LAE = \frac{N_z}{N_z}$	indicative of more larger size
			zones and more coarse
			textures.
			RE measures the
	Run Entropy	$\textit{RE} = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i, j \theta) \log_2(p(i, j \theta) + \epsilon)$	uncertainty/randomness in
			the distribution of run lengths
GLRLM			and gray levels. A higher
			value indicates more
			heterogeneity in the texture
			patterns.
			RP measures the coarseness
GLRIM	Run Percentage	$RP = rac{N_r(heta)}{2}$	of the texture by taking the
GLKLM	Runn crochlage	$M = N_p$	ratio of number of runs and
			number of voxels in the ROI.
GI S7M	Large Area High Gray	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \mathbf{P}(i,j) i^2 j^2$	LAHGLE measures the
GLOZIWI	Level Emphasis	$LAHGLE = \frac{\angle_{i=1} \angle_{j=1} \mathbf{r} (i, j)i j}{N_z}$	proportion in the image of the

			joint distribution of larger size zones with higher gray-level values.
GLRLM	Run Length Non Uniformity Normalized	$\textit{RLNN} = \frac{\sum_{j=1}^{N_r} \left(\sum_{i=1}^{N_g} \mathbf{P}(i, j \theta) \right)^2}{N_r(\theta)^2}$	RLNN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity among run lengths in the image. This is the normalized version of the RLN formula.

Table S8. The performance parameters of five machine learning algorithms withMRI-based features and scores.

ML						
algorithms	ACC	SNS	SPC	PPV	NPV	AUC
LGR	0.777	0.751	0.807	0.836	0.753	0.867
SVM	0.772	0.783	0.758	0.795	0.775	0.866
RF	0.784	0.816	0.747	0.805	0.798	0.861
KNN	0.758	0.720	0.802	0.823	0.726	0.846
XGB	0.766	0.816	0.708	0.782	0.786	0.844

Supplementary Materials—Figures

Figure S1. The pipeline of genomics data acquisition.

Figure S2. The workflow of radiomics and machine learning.

Figure S3. The working scheme for pathomics data acquisition.

Figure S4: Mutation profile for genes with mutation frequency of ≥10% among the 65PCa patients. Each row corresponds to a gene and each column represents one patient.The bar plot on the right side indicates the mutation frequency in descending order.

Figure S5: The machine learning (ML)-derived diagnostic workflow to select candidates for radical prostatectomy (RP) by the differentiation of high-risk PCa from low-risk PCa patients. Following the decision tree from the top, the urologist can discern the ISUP high from ISUP low PCa patients. In the rectangular boxes, the bar plot shows the distribution of each feature at the corresponding decision node during model training, where the y-axis represents the number of patients and the x-axis indicates the value of each feature.

Figure S6. The 10 most important radiomics features that contribute most to the prediction of whole mount Gleason grading in the ML model based on permutation importance. The top ten important features are respectively Maximum, Joint Entropy, Short Run Emphasis, SUVmean, Large Dependence Low Gray Level Emphasis, Maximum Probability, SUVmax, Entropy, Joint Average, Difference Entropy in descending order of the permutation importance.

Figure S7. The subgroup analysis of key imaging features within each category according to permutation importance. A. Among SUV metrics, SUVmean, SUVmax, SUVpeak and SUVmin play a role in descending order in the ML model; B. Among shape features, Maximum 2D Maximum 2D diameter (Slice), Maximum 3D diameter, Elongation, Maximum 2D diameter (Column), Major Axis Length, Least Axis Length, Flatness, Sphericity, Surface Area are important features; C. Among histogram features, Maximum, Entropy, Range, Minimum contribute to the ML model; D. Among texture features, 2

NGTDM-based features, 6 GLSZM-based features, 6 GLRLM-based features, 6 GLDM-

based features, 10 GLCM-based feature are of vital significance.

Figure S9. All the important pathomics features that contribute to the prediction of the whole mount Gleason grading. This bar plot showed these five features (PSA, CD3, FASN, NKX3.1, STAT3, CDK2) are the most contributing biomarkers to predict Gleason grading.

References

1. Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760, 2009

2. picard: A set of command line tools (in Java) for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF [Internet]. Github[cited 2024 Mar 4] Available from: https://github.com/broadinstitute/picard

3. Fang LT, Afshar PT, Chhibber A, et al: An ensemble approach to accurately detect somatic mutations using SomaticSeq. Genome Biol 16:197, 2015

4. Kim S, Scheffler K, Halpern AL, et al: Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15:591–594, 2018

5. Lai Z, Markovets A, Ahdesmaki M, et al: VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 44:e108, 2016

6. Cibulskis K, Lawrence MS, Carter SL, et al: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219, 2013

7. Larson DE, Harris CC, Chen K, et al: SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28:311–317, 2012

8. Wilm A, Aw PPK, Bertrand D, et al: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 40:11189–11201, 2012

9. Fan Y, Xi L, Hughes DST, et al: MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol 17:178, 2016

10. Koboldt DC, Zhang Q, Larson DE, et al: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576, 2012
11. McLaren W, Gil L, Hunt SE, et al: The Ensembl Variant Effect Predictor. Genome Biol 17:122, 2016

12. Rogers MF, Shihab HA, Mort M: EVE: An ensemble of CADD-like scores for enhancing variant effect prediction. Bioinformatics 34:4077–4084, 2018

66

13. Rentzsch P, Witten D, Cooper GM, et al: CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–D894, 2019
14. Adzhubei IA, Schmidt S, Peshkin L, et al: A method and server for predicting damaging

missense mutations. Nat Methods 7:248-249, 2010

15. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30, 2000

 Talevich E, Shain AH, Botton T, et al: CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12:e1004873, 2016
 Evans JC, Malhotra M, Cryan JF, et al: The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br J Pharmacol 173:3041–3079, 2016

18. McBean GJ, Aslan M, Griffiths HR, et al: Thiol redox homeostasis in neurodegenerative disease. Redox Biol 5:186–194, 2015

19. Caromile LA, Dortche K, Rahman MM, et al: PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer [Internet]. Sci Signal 10, 2017Available from: http://dx.doi.org/10.1126/scisignal.aag3326

20. He Y, Xu W, Xiao Y-T, et al: Targeting signaling pathways in prostate cancer:

mechanisms and clinical trials. Signal Transduction and Targeted Therapy 7:1-31, 2022

21. Silver DA, Pellicer I, Fair WR, et al: Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85, 1997

22. Zalcman N, Canello T, Ovadia H, et al: Androgen receptor: a potential therapeutic target for glioblastoma. Oncotarget 9:19980–19993, 2018

23. Bianchi VE, Rizzi L, Bresciani E, et al: Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 4:bvaa120, 2020

24. Pike CJ, Nguyen T-VV, Ramsden M, et al: Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav 53:693–705, 2008

67

25. Ramalingam S, Ramamurthy VP, Njar VCO: Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J Steroid Biochem Mol Biol 166:16–27, 2017

26. Shtivelman E, Beer TM, Evans CP: Molecular pathways and targets in prostate cancer. Oncotarget 5:7217–7259, 2014

27. Morgan C, Jenkins SA, Kynaston HG, et al: The role of adhesion molecules as biomarkers for the aggressive prostate cancer phenotype. PLoS One 8:e81666, 2013

28. Guccini I, Revandkar A, D'Ambrosio M, et al: Senescence Reprogramming by TIMP1

Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell 39:68-82.e9, 2021

29. Pisano C, Tucci M, Di Stefano RF, et al: Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol 157:103185, 2021

30. Shah A, Shah AA, K N, et al: Mechanistic targets for BPH and prostate cancer-a review. Rev Environ Health 36:261–270, 2021

31. Tran MGB, Bibby BAS, Yang L, et al: Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer 20:469, 2020

32. Hartley A, Ahmad I: The role of PPARγ in prostate cancer development and progression. Br J Cancer 128:940–945, 2022

33. Zielinski RR, Eigl BJ, Chi KN: Targeting the apoptosis pathway in prostate cancer. Cancer J 19:79–89, 2013

34. Awwad HM, Geisel J, Obeid R: The role of choline in prostate cancer. Clin Biochem 45:1548–1553, 2012

35. Poulose N, Amoroso F, Steele RE, et al: Genetics of lipid metabolism in prostate cancer. Nat Genet 50:169–171, 2018

36. Sena LA, Denmeade SR: Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon? Cancer Res 81:4385–4393, 2021

37. Ahmad F, Cherukuri MK, Choyke PL: Metabolic reprogramming in prostate cancer. Br J Cancer 125:1185–1196, 2021

38. Frégeau-Proulx L, Lacouture A, Berthiaume L, et al: Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol Metab 62:101516, 2022

39. Heidegger I, Kern J, Ofer P, et al: Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis. Oncotarget 5:2723–2735, 2014

40. Luthold C, Hallal T, Labbé DP, et al: The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? [Internet]. Cancers 14, 2022Available from: http://dx.doi.org/10.3390/cancers14122887

41. Figel S, Gelman IH: Focal adhesion kinase controls prostate cancer progression via intrinsic kinase and scaffolding functions. Anticancer Agents Med Chem 11:607–616, 2011

42. Zhang H, Kong Q, Wang J, et al: Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol 9:32, 2020

43. Bailey CL, Kelly P, Casey PJ: Activation of Rap1 promotes prostate cancer metastasis. Cancer Res 69:4962–4968, 2009

44. Aksoy O, Pencik J, Hartenbach M, et al: Thyroid and androgen receptor signaling are antagonized by μ-Crystallin in prostate cancer. Int J Cancer 148:731–747, 2021

45. Xu Y, Song G, Xie S, et al: The roles of PD-1/PD-L1 in the prognosis and

immunotherapy of prostate cancer. Mol Ther 29:1958-1969, 2021

46. Shahzad MH, Feng L, Su X, et al: Neutrophil Extracellular Traps in Cancer Therapy

Resistance [Internet]. Cancers 14, 2022Available from:

http://dx.doi.org/10.3390/cancers14051359

47. Silberstein J, Downs T, Lakin C, et al: HIV and prostate cancer: a systematic review of the literature. Prostate Cancer Prostatic Dis 12:6–12, 2009

48. Zhao S, Zhang Y, Zhang Q, et al: Toll-like receptors and prostate cancer. Front Immunol 5:352, 2014

69

49. Lai H, Zeng D, Liu C, et al: Selenium-containing ruthenium complex synergizes with natural killer cells to enhance immunotherapy against prostate cancer via activating TRAIL/FasL signaling. Biomaterials 219:119377, 2019