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Supplementary Material—Methods 

M1: Inclusion and exclusion criteria of these two clinical trials: 

(1) Inclusion criteria 

Clinical suspicion of prostate cancer: 

• blood PSA level > 4.0 ng/ml and/or 

• free-to-total PSA ratio <22% and/or 

• progressive rise of PSA levels in two consecutive blood samples despite antibiotics 

 

(2) Exclusion criteria  

• antiandrogen therapy  

• prostate needle biopsy <21 days before PET/MRI  

• known active secondary cancer  

• endorectal coil not applicable (e.g. anus praetor with short rectal stump)  

• known active prostatitis (e.g. painful DRE)  

• known anaphylaxis against gadolinium-DOTA  

• patient’s written informed consent not given  

• Needle biopsy and/or prostatectomy compound not available for histology 

immunohistochemistry  
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M2: Genomics Data Acquisition 

FFPE tissue processing and DNA isolation Formalin-Fixed Paraffin-Embedded (FFPE) tissue 

sections (3×10 μm) derived from the RP were prepared from the archival blocks. The sections 

were deparaffinized using xylene and rehydrated through a series of ethanol washes. DNA 

extraction from FFPE tissues was performed using the EZ1 DNA tissue kit following the 

manufacturer's instructions. The extracted DNA was quantified using a spectrophotometer and 

assessed for quality using agarose gel electrophoresis.  

Library preparation Library preparation was carried out using the xGen™ DNA Library Prep 

EZ UNI (IDT) with xGen™ CS adapters (IDT) containing UMIs. FFPE DNA was first repaired 

using NEBNext® FFPE DNA Repair Mix (New England Biolabs) according to the original 

protocol. A total of 300 ng DNA for tumor samples and 100 ng DNA for normal samples was 

used as input. After index PCR and library purification, the KAPA HyperCapture Reagent Kit 

(Roche) was used to enrich exome sequences with KAPA HyperExome Probes (Roche) and 

backbone sequences for CNVs identification with KAPA HyperCap Custom Probes (Roche). 

The library quantity and size distribution were verified using the QuantiFluor dsDNA System 

(Promega) and High Sensitivity NGS Fragment Analysis Kit (Agilent Technologies). The 

finalized library pool was sequenced on NovaSeq 6000 (Illumina) using SP Reagent Kit v1.5 

200 cycles (Illumina) in paired-end mode. Raw sequence data in FASTQ format were 

generated and stored for subsequent analysis. 

Data Processing and Variant Calling The raw sequencing data were pre-processed to remove 

adapter sequences and trim low-quality bases. The cleaned reads were aligned to the human 

reference genome GRCh38 using BWA alignment software 1. Duplicate reads were identified 

and removed using the UMI-aware version of MarkDuplicates from Picard Tools 2. Somatic 

small variants, including single nucleotide variants (SNVs) and small insertions and deletions 

(indels), were identified from paired tumor and corresponding normal tissue samples using the 

SomaticSeq variant caller 3, a meta-caller that aggregates calls from multiple tools, including 

Strelka2 4, VarDict 5, MuTect 6, SomaticSniper 7, LoFreq 8, MuSE 9, and VarScan2 10. 
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Variant Annotation and Filtering Identified variants were annotated using Ensembl's Variant 

Effect Predictor (VEP) tool 11, utilizing its full annotation cache. Pathogenicity scores from the 

Evolutionary Model of Variant Effect (EVE) 12, Combined Annotation-Dependent Depletion 

(CADD) 13, and PolyPhen-2 14 were annotated, alongside cancer-specific annotations from 

clinical databases such as fOne, MD Anderson, TruSight Oncology, and the Cancer Gene 

Census (CGC). Specific filtering criteria were applied to identify probable true positive somatic 

variants and mitigate potential FFPE DNA artifacts: 

 

- Minimal tumor variant depth of 35. 

- Variants with a tumor variant allelic frequency (tVAF) lower than 2% were removed. 

- Variants with tVAF between 2% and 5% were retained only if the variant read depth was 

more than 100 and there was at least one record for the variant in the COSMIC database. 

- Variants not meeting these criteria were removed as potential false positives. 

- Variants identified in the GnomAD or 1000 Genomes database with a population MAF of 

non-Finnish Europeans higher than 2%, and not having a record in the COSMIC database, 

were filtered out as potential germline variants. 

 

Genetic Disruption Calculation The pathogenicity scores of CADD were normalized to a zero 

to one range by mapping the raw values to a logistic distribution. Scores were prioritized from 

best to worst (EVE, CADD, PolyPhen-2) according to the most recent benchmarks in the EVE 

paper. The highest available score was then selected as the combined pathogenicity score for 

every variant. Pathogenic genetic disruption of each gene was computed as the sum of 

combined pathogenicity scores of all variants within that gene. Pathway genetic disruption was 

subsequently computed as the sum of the genetic disruption of all genes in each pathway, 

derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 15. 

 

 

Genomic Features Tumor mutational burden (TMB) for each sample was computed as the 
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number of identified coding non-synonymous single nucleotide variants per million base pairs 

of the sequenced region. Copy number variants (CNVs) were called using CNVkit 16 with a set 

of paired normal samples used as a panel of normals for the computation. Any region with a 

predicted copy number differing from 2 was considered a CNV. The sum size of all CNVs was 

computed for each sample, and CNV burden was calculated as the ratio of the CNV sum size 

to the sum size of all sequenced regions. 

The schematic workflow of genomics data acquisition is shown in Supplementary Figure S1. 
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M3: Antibodies used for IHC staining 

The following antibodies were respectively used: PSMA (clone EP192, Cell Marque 327R-18, 

rabbit monoclonal, ready to use), AR (clone EPR1535(2), Abcam ab133273, rabbit 

monoclonal, 1:100 dilution), Ki-67 (clone rabbit anti-human, Novocastra, NCL-KI67-p, Rabbit 

Polyclonal,dilution 1:1000), PSA (clone ER-PR8, DAKO  M750, mouse monoclonal, 1:20 

dilution), NKX3.1 (clone N/A, Biocare Medical CP4228, Rabbit Polyclonal, 1:100 dilution), 

CDK2 (clone E8J9T, Cell signaling, #18048, rabbit monoclonal, dilution 1:250), CD3 (clone 

SP7, Neomarkers RM9107, rabbit monoclonal, dilution 1:150), STAT3 (clone 124H6, Cell 

signaling, #9139, mouse monoclonal, dilution 1:100), FASN (clone C20G5, Cell signaling, 

#3180, rabbit monoclonal, dilution 1:80), TRβ (clone 2386, Rockland 209-301-A96, mouse 

monoclonal, dilution 1:100), gp130 (clone E-8, Santa Cruz Biotechnology sc-376280, mouse 

monoclonal, dilution 1:25). 

 

Details on how the whole-mount pathology performed: 

After surgical removal, the prostate was fixed in formalin and sectioned at approximately 3 to 

4 mm intervals on whole-mount slides. These distances were chosen to ensure 

comprehensive coverage and detailed examination of the gland, which is standard practice in 

prostate pathology. Each slide was stained with haematoxylin and eosin (H&E) for detailed 

tissue analysis. A specialist urological pathologist (L.K.) examined these slides under the 

microscope, focusing on the grading of the cancer, tumour margins and possible extraprostatic 

extension. This systematic approach enabled an accurate assessment of tumor 

characteristics, which are essential for effective staging and treatment decisions.  

The schematic workflow of pathomics data acquisition is shown in Supplementary Figure S3. 
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M4: Technical details on machine learning.  

ML was conducted using five classification algorithms, namely k-nearest neighbours (kNN), 

random forest (RF), extreme gradient boosting (XGB), support vector machine (SVM) and 

logistic regression (LGR). Robust performance evaluation was performed using 100-fold 

stratified Monte Carlo cross-validation with 70% of samples in the training set and 30% in the 

test set. The test set was exclusively used for testing while a subset of the training data was 

employed for preprocessing and hyperparameter tuning. Feature standardization was 

performed using z-scaling. Features were removed if more than 30% of values were missing. 

If less than 30% of values were missing, feature imputation was performed using k-nearest 

neighbor imputation with distance weighting. However, only a small subset of features 

contained missing values and the imputed feature with the most missing values had only <14% 

missing values. To handle class imbalance, we employed the synthetic minority oversampling 

technique (SMOTE). Selection of features was performed using the minimum redundancy 

maximum relevance (mRMR) algorithm to select eight features (square root of the number of 

samples), reducing overfitting and redundancy. Hyperparameter optimization was conducted 

using random search through a predefined grid of reasonable parameters in a 10 x 5-fold 

nested cross-validation scheme. In the process of ML, the following packages were used: 

- Graphviz 0.20 

- Imbalanced-learn 0.8.0 

- Numpy 1.25.2 

- Pandas 1.4.2 

- Pymrmr 0.1.11 

- Scikit-learn 1.1.0 

- Scipy 1.11.4 

- Shap 0.44.1 

- Umap-learn 0.5.3 

- Xgboost 1.6.1 

- Ydata-profiling 4.6.4 
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Supplementary Material—Results 

 

R1: The radiomics profile based on permutation importance. 

According to permutation importance, ten important imaging features (radiomics features and 

SUV metrics) contribute most to the prediction of whole mount Gleason grading in the ML 

model (Supplementary Figure S6). Among these features, texture features have the highest 

proportion, which accounts for 60% of the total observations. Only GLCM, GLDM, and GLRLM 

features contribute to the importance, of which GLCM features play the most important role. 

Histogram features are the next category with significance. Of note, maximum is the most 

important feature of all these features. For the conventional SUV metrics, SUVmean and 

SUVmax are important features for predicting whole mount Gleason grading. 

A subgroup analysis of the key imaging features was conducted within each category, ranking 

them in detail (Supplementary Figure S7). For SUV metrics, four features out of 6 have 

permutation importance. For shape features, nine features out of 14 are essential. For 

histogram features, four features out of 18 are of vital importance. For texture features, 30 

features out of 75 are crucial. The distribution of these essential features is shown in 

Supplementary Figure S8. 

The interpretation of all radiomics features were respectively listed in Supplementary Tables 

S5-7. 
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R2: The pathomics profile based on permutation importance. 

According to permutation importance, the five pathomic features, which are PSA, CD3, FASN, 

NKX3.1, STAT3 and CDK2, were identified as the most important features that contribute most 

to the ML model to predict the whole mount Gleason grading. Their importance values in 

ascending order were shown in Supplementary Figure S9. 

 

R3: The ML performance after adding the additional MRI and fusion features and MRI-

based scores.  

We delineated the VOI on MRI and fusion images and derived the MRI- and fusion-based 

radiomics features. As part of our feature set, we have included established MRI scoring 

systems, such as the PI-RADS (Prostate Imaging-Reporting and Data System). This score 

provides a standardized assessment of lesion characteristics and has demonstrated clinical 

relevance and prognostic value. In this scenario, Prof. Pascal Baltzer and Prof. Thomas 

Helbich, radiologists with more than 20 years of experience in prostate cancer diagnosis, 

helped us assess the PI-RADS of our cohort. After inputting the MRI- and fusion-based 

radiomics features, the five ML model give the following performance. (Supplementary Table 

S8) 
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Supplementary Materials--Tables 

Table S1. Data dictionary of all features and outcomes (labels) captured.  

The number (percentage) of missing values for each feature and labels are provided. 

Features Data type 
Description of method of 

collection or measurement  

Range of values for numerical features, 

coded values for categorical features  

Missing values, 

n (%)  

Clinical features 

Age Numerical 
Age at the time of PET/MR 

examination, in years  
42 to 75 0 (0) 

Weight/kg Numerical Direct from clinical documentation 62 to 123 0 (0) 

height/m Numerical Direct from clinical documentation 1.65 to 1.96 0 (0) 

BMI Numerical Calculated based on the formular 20 to 36 0 (0) 

PSA-pre OP µg/l Numerical Direct from laboratory documentation 1.95 to 827.8 0 (0) 

Pre-op therapy Binary Direct from clinical documentation 0 = no; 1 = yes 2 (3.08%) 

Lesion involvement Categorical 
Assessed by nuclear medicine 

physician based on PET 

whether the tumor affected one or two 

lobes or was diffusely spread throughout 

the prostate;  

22 (33.85%) 
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1 = one lobe; 2 = two lobes; 3 = whole 

prostate 

Lesion position in 

anatomy zone 
Categorical 

Assessed by nuclear medicine 

physician based on PET 

whether the tumor was located in the 

central zone (CZ), transition zone (TZ), 

peripheral zone (PZ), anterior 

fibromuscular stroma (AFS), or it was 

diffusely distributed (i.e., tumor lesions 

involving at least two anatomical zones or 

the whole prostate; 

1 = central zone; 2 = transition zone; 3 = 

peripheral zone; 4 = anterior fibromuscular 

stroma; 5 = diffusion:  

23 (35.38%) 

Extracapsular 

extension 
Binary 

Assessed by nuclear medicine 

physician based on PET 

whether the tumor exceeded the prostate 

capsule; 

0 = no; 1 = yes 

22 (33.85%) 

Contact to 

neurovascular bundles 
Binary 

Assessed by nuclear medicine 

physician based on PET 

whether the tumor infiltrated adjacent 

neurovascular bundles; 
22 (33.85%) 
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0 = no; 1 = yes 

Lymph nodes(LNs) 

infiltration 
Binary 

Assessed by nuclear medicine 

physician based on PET 

whether the tumor infiltrated the pelvic or 

distant LNs; 

0 = no; 1 = yes 

21 (32.31%) 

Bone metastasis Binary 
Assessed by nuclear medicine 

physician based on PET 

whether tumor metastasized to bones; 

0 = no; 1 = yes 
22 (33.85%) 

T staging PET Categorical 
Assessed by nuclear medicine 

physician based on PET 

1 = cT2a; 2 = cT2b; 3 = cT2c; 4 = cT3a;  5 

= cT3b;  6 = cT3a+b; 7 = cT4  
20 (30.77%) 

Radiomics-wide features 

SUVmin Numerical Computed from tumor VOI 0.44 to 9.79 0 (0) 

SUVmax Numerical Computed from tumor VOI 3.39 to 73.05 0 (0) 

SUVmean Numerical Computed from tumor VOI 1.89 to 27.22 0 (0) 

SUVpeak Numerical Computed from tumor VOI 2.46 to 58.05 0 (0) 

MTV Numerical Computed from tumor VOI 0.77 to 31.32 0 (0) 

TLG Numerical Computed from tumor VOI 2.88 to 458.78 0 (0) 

shape_Elongation Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.36 to 0.97 0 (0) 
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shape_Flatness Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.27 to 0.82 0 (0) 

shape_Least Axis 

Length 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
7.76 to 32.20 0 (0) 

shape_Major Axis 

Length 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
16.09 to 81.87 0 (0) 

shape_Maximum 2D 

Diameter Column 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
12.0 to 70.46 0 (0) 

shape_Maximum 2D 

Diameter Row 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
16.49 to 56.04 0 (0) 

shape_Maximum 2D 

Diameter Slice 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
17.89 to 70.34 0 (0) 

shape_Maximum 3D 

Diameter 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
20.20 to 71.16 0 (0) 

shape_Mesh Volume Numerical 
Derived from tumor VOI on 

Pyradiomics 
577.67 to 30049.67 0 (0) 
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shape_Minor Axis 

Length 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
8.87 to 42.59 0 (0) 

shape_Sphericity Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.34 to 0.73 0 (0) 

shape_Surface Area Numerical 
Derived from tumor VOI on 

Pyradiomics 
500.55 to 12580.24 0 (0) 

shape_Surface 

Volume Ratio 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.33 to 1.02 0 (0) 

shape_Voxel Volume Numerical 
Derived from tumor VOI on 

Pyradiomics 
640.0 to 30456.0 0 (0) 

first 

order_10Percentile 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.30 to 17.75 0 (0) 

first 

order_90Percentile 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
2.41 to 43.62 0 (0) 

first order_Energy Numerical 
Derived from tumor VOI on 

Pyradiomics 
891.73 to 1855871.76 0 (0) 
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first order_Entropy Numerical 
Derived from tumor VOI on 

Pyradiomics 
1.88 to 7.22 0 (0) 

first order_Interquartile 

Range 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.37 to 15.60 0 (0) 

first order_Kurtosis Numerical 
Derived from tumor VOI on 

Pyradiomics 
1.92 to 9.03 0 (0) 

first order_Maximum Numerical 
Derived from tumor VOI on 

Pyradiomics 
3.34 to 72.95 0 (0) 

first order_Mean 

Absolute Deviation 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.24 to 9.65 0 (0) 

first order_Mean Numerical 
Derived from tumor VOI on 

Pyradiomics 
1.90 to 26.99 0 (0) 

first order_Median Numerical 
Derived from tumor VOI on 

Pyradiomics 
1.88 to 26.08 0 (0) 

first order_Minimum Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.39 to 8.45 0 (0) 
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first order_Range Numerical 
Derived from tumor VOI on 

Pyradiomics 
1.24 to 70.03 0 (0) 

first order_Robust 

Mean Absolute 

Deviation 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.17 to 6.57 0 (0) 

first order_Root Mean 

Squared 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.94 to 29.65 0 (0) 

firstorder_Skewness Numerical 
Derived from tumor VOI on 

Pyradiomics 
-0.72 to 2.15 0 (0) 

first order_Total 

Energy 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
7133.83 to 14846974.06 0 (0) 

first order_Uniformity Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.01 to 0.31 0 (0) 

first order_Variance Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.09 to 150.63 0 (0) 

GLCM_Autocorrelation Numerical 
Derived from tumor VOI on 

Pyradiomics 
18.83 to 9363.16 0 (0) 
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GLCM_Cluster 

Prominence 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
10.69 to 115837280.1 0 (0) 

GLCM_Cluster Shade Numerical 
Derived from tumor VOI on 

Pyradiomics 
1922.90 to 298080.79 0 (0) 

GLCM_Cluster 

Tendency 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.69 to 5842.78 0 (0) 

GLCM_Contrast Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.72 to 782.93 0 (0) 

GLCM_Correlation Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.38 to 0.95 0 (0) 

GLCM_Difference 

Average 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.59 to 21.79 0 (0) 

GLCM_Difference 

Entropy 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.21 to 5.76 0 (0) 

GLCM_Difference 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.35 to 289.49 0 (0) 
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GLCM_Id Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.11 to 0.73 0 (0) 

GLCM_Idm Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.05 to 0.72 0 (0) 

GLCM_Idmn Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.96 to 0.10 0 (0) 

GLCM_Idn Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.87 to 0.97 0 (0) 

GLCM_Imc1 Numerical 
Derived from tumor VOI on 

Pyradiomics 
-0.56 to -0.13 0 (0) 

GLCM_Imc2 Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.59 to 0.10 0 (0) 

GLCM_Inverse 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.05 to 0.50 0 (0) 

GLCM_Joint Average Numerical 
Derived from tumor VOI on 

Pyradiomics 
4.25 to 89.97 0 (0) 
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GLCM_Joint Energy Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.19 0 (0) 

GLCM_Joint Entropy Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.76 to 11.35 0 (0) 

GLCM_MCC Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.49 to 0.10 0 (0) 

GLCM_Maximum 

Probability 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.29 0 (0) 

GLCM_Sum Average Numerical 
Derived from tumor VOI on 

Pyradiomics 
8.50 to 179.93 0 (0) 

GLCM_Sum Entropy Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.11 to 8.02 0 (0) 

GLCM_Sum Squares Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.60 to 1656.43 0 (0) 

GLRLM_Gray Level 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
7.74 tto 263.04 0 (0) 
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GLRLM_Gray Level 

Non Uniformity 

Normalized 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.01 to 0.30 0 (0) 

GLRLM_Gray Level 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.09 to 1679.98 0 (0) 

GLRLM_High Gray 

Level Run Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
15.48 to 8316.15 0 (0) 

GLRLM_Long Run 

Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.04 to 2.44 0 (0) 

GLRLM_Long Run 

High Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
29.03 to 8611.91 0 (0) 

GLRLM_Long Run 

Low Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.21 0 (0) 

GLRLM_Low Gray 

Level Run Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.13 0 (0) 
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GLRLM_Run Entropy Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.64 to 7.29 0 (0) 

GLRLM_Run Length 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
38.39 to 3206.36 0 (0) 

GLRLM_Run Length 

Non Uniformity 

Normalized 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.61 to 0.98 0 (0) 

GLRLM_Run 

Percentage 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.76 to 0.99 0 (0) 

GLRLM_Run Variance Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.01 to 0.61 0 (0) 

GLRLM_Short Run 

Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.79 to 0.99 0 (0) 

GLRLM_Short Run 

High Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
11.22 to 8245.42 0 (0) 
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GLRLM_Short Run 

Low Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.11 0 (0) 

GLSZM_Gray Level 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
2.83 to 18595.0 0 (0) 

GLSZM_Gra yLeve 

lNon Uniformity 

Normalized 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.01 to 0.24 0 (0) 

GLSZM_Gray Level 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.39 to 1757.813 0 (0) 

GLSZM_High Gray 

Level Zone Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
8.5 to 8394.619154 0 (0) 

GLSZM_Large Area 

Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.63 to 55875.0 0 (0) 

GLSZM_Large Area 

High Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
965.03 to 229276.03 0 (0) 
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GLSZM_Large Area 

Low Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 425.09 0 (0) 

GLSZM_Low Gray 

Level Zone Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.29 0 (0) 

GLSZM_Size Zone 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
3.67 to 1362.06 0 (0) 

GLSZM_Size Zone 

Non Uniformity 

Normalized 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.10 to 0.67 0 (0) 

GLSZM_Small Area 

Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.25 to 0.89 0 (0) 

GLSZM_Small Area 

High Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.52 to 7576.37 0 (0) 



 23 

GLSZM_Small Area 

Low Gray Level 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 2.24 0 (0) 

GLSZM_Zone Entropy Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.92 to 7.81 0 (0) 

GLSZM_Zone 

Percentage 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.03 to 0.85 0 (0) 

GLSZM_Zone 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.24 to 8038.92 0 (0) 

GLDM_Dependence 

Entropy 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
4.44 to 8.04 0 (0) 

GLDM_Dependence 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
29.62 to 7175.0 0 (0) 

GLDM_Dependence 

Non Uniformity 

Normalized 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.08 to 0.59 0 (0) 
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GLDM_Dependence 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.33 to 26.67 0 (0) 

GLDM_Gray Level 

Non Uniformity 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
8.01 to 362.96 0 (0) 

GLDM_Gray Level 

Variance 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
1.02 to 1673.89 0 (0) 

GLDM_High Gray 

Level Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
16.60 to 16825.00 0 (0) 

GLDM_Large 

Dependence 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
2.06 to 69.2 0 (0) 

GLDM_Large 

Dependence High 

Gray Level Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
489.26 to 18943.31 0 (0) 

GLDM_Large 

Dependence Low 

Gray Level Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 23.56 0 (0) 
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GLDM_Low Gray 

Level Emphasis 
Numerical 

Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.12 0 (0) 

GLDM_Small 

Dependence 

Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.04 to 0.79 0 (0) 

GLDM_Small 

Dependence High 

Gray Level Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.84 to 6714.97 0 (0) 

GLDM_Small 

Dependence Low 

Gray Level Emphasis 

Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.04 0 (0) 

NGTDM_Busyness Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.01 to 0.49 0 (0) 

NGTDM_Coarseness Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.00 to 0.10 0 (0) 

NGTDM_Complexity Numerical 
Derived from tumor VOI on 

Pyradiomics 
4.74 to 188223.78 0 (0) 
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NGTDM_Contrast Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.02 to 0.82 0 (0) 

NGTDM_Strength Numerical 
Derived from tumor VOI on 

Pyradiomics 
0.42 to 146.63 0 (0) 

Genomic features 

Citrate cycle (TCA 

cycle) 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 2.51 0 (0) 

Fatty acid biosynthesis Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.47 0 (0) 

Fatty acid elongation Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 5.74 0 (0) 

Fatty acid degradation Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.33 0 (0) 

Cysteine and 

methionine 

metabolism 

Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.60 0 (0) 
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One carbon pool by 

folate 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.39 0 (0) 

Folate biosynthesis Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 1.26 0 (0) 

Metabolic pathways Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 108.27 0 (0) 

Fatty acid metabolism Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 5.80 0 (0) 

EGFR tyrosine kinase 

inhibitor resistance 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 14.07 0 (0) 

Antifolate resistance Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 4.76 0 (0) 

PPAR signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 5.92 0 (0) 

MAPK signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 29.03 0 (0) 
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Ras signaling pathway Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 17.92 0 (0) 

Rap1 signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 20.62 0 (0) 

Calcium signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 23.51 0 (0) 

cAMP signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 15.97 0 (0) 

NF-kappa B signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 9.36 0 (0) 

HIF-1 signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 11.50 0 (0) 

FoxO signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 11.68 0 (0) 

Cell cycle Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 7.16 0 (0) 
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p53 signaling pathway Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.99 0 (0) 

mTOR signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 22.45 0 (0) 

PI3K-Akt signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 37.22 0 (0) 

Apoptosis Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 17.36 0 (0) 

Cellular senescence Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 25.75 0 (0) 

Wnt signaling pathway Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 18.24 0 (0) 

Notch signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 7.25 0 (0) 

Hedgehog signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 5.36 0 (0) 
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TGF-beta signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 4.58 0 (0) 

VEGF signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 6.12 0 (0) 

Focal adhesion Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 29.85 0 (0) 

ECM-receptor 

interaction 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 16.26 0 (0) 

Adherens junction Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 10.17 0 (0) 

Neutrophil extracellular 

trap formation 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 15.38 0 (0) 

Toll-like receptor 

signaling pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 10.82 0 (0) 

JAK-STAT signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 16.82 0 (0) 
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Natural killer cell 

mediated cytotoxicity 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 58.01 0 (0) 

TNF signaling pathway Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 9.41 0 (0) 

Insulin signaling 

pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 17.59 0 (0) 

Thyroid hormone 

synthesis 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 5.32 0 (0) 

Thyroid hormone 

signaling pathway 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 18.28 0 (0) 

Endocrine and other 

factor-regulated 

calcium reabsorption 

Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 4.84 0 (0) 

Pathways of 

neurodegeneration - 

multiple diseases 

Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 40.80 0 (0) 
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Human 

immunodeficiency 

virus 1 infection 

Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 24.84 0 (0) 

Pathways in cancer Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 56.59 0 (0) 

Glioma Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 8.68 0 (0) 

Prostate cancer Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 13.19 0 (0) 

Thyroid cancer Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 3.77 0 (0) 

Choline metabolism in 

cancer 
Numerical 

Combined pathogecity scores by 

bioinformatics analysis 
0 to 14.12 0 (0) 

PD-L1 expression and 

PD-1 checkpoint 

pathway in cancer 

Numerical 
Combined pathogecity scores by 

bioinformatics analysis 
0 to 10.73 0 (0) 
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Tumor mutational 

burden (TMB) 
Numerical 

computed as a number of identified 

somatic variants per million base 

pairs of the sequence region 

1.24 to 39.33 0 (0) 

Copy number variant 

(CNV) burden 
Numerical 

Computed as a ratio of CNV sum 

size to the sum size of all sequenced 

regions 

0 to 18.7 9 (13.85%) 

ISUP in needle 

biopsy 
Categorical 

The maximum H-score among all 

tumor cores 
1 to 5 0 (0) 

Pathomics features 

Ki-67max Numerical 
The maximum H-score of Ki-67 

staining among all tumor cores 
0 to 130 1 (1.54%) 

Ki-67avg Numerical 
The average H-score of Ki-67 

staining among all tumor cores 
0 to 108.33 1 (1.54%) 

PSMAmax Numerical 
The maximum H-score of PSMA 

staining among all tumor cores 
0 to 300 1 (1.54%) 

PSMAavg Numerical 
The average H-score of PSMA 

staining among all tumor cores 
0 to 300 1 (1.54%) 
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ARmax Numerical 
The maximum H-score of AR staining 

among all tumor cores 
0 to 300 1 (1.54%) 

ARavg Numerical 
The average H-score of AR staining 

among all tumor cores 
0 to 300 1 (1.54%) 

PSAmax Numerical 
The maximum H-score of PSA 

staining among all tumor cores 
0 to 300 5 (7.69%) 

PSAavg Numerical 
The average H-score of PSA staining 

among all tumor cores 
0 to 200 5 (7.69%) 

NKX3.1max Numerical 
The maximum H-score of NKX3.1 

staining among all tumor cores 
0 to 300 1 (1.54%) 

NKX3.1avg Numerical 
The average H-score of NKX3.1 

staining among all tumor cores 
0 to 260 1 (1.54%) 

CDK2max Numerical 
The maximum H-score of CDK2 

staining among all tumor cores 
0 to 36 1 (1.54%) 

CDK2avg Numerical 
The average H-score of CDK2 

staining among all tumor cores 
0 to 27 1 (1.54%) 
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STAT3max Numerical 
The maximum H-score of STAT3 

staining among all tumor cores 
0 to 180 2 (3.08%) 

STAT3avg Numerical 
The average H-score of STAT3 

staining among all tumor cores 
0 to 85 2 (3.08%) 

CD3max Numerical 
The maximum H-score of CD3 

staining among all tumor cores 
0 to 40 1 (1.54%) 

CD3avg Numerical 
The average H-score of CD3 staining 

among all tumor cores 
0 to 20 1 (1.54%) 

FASNmax Numerical 
The maximum H-score of FASN 

staining among all tumor cores 
0 to 300 0 (0) 

FASNavg Numerical 
The average H-score of FASN 

staining among all tumor cores 
0 to 250 0 (0) 

TRβmax Numerical 
The maximum H-score of TRβ 

staining among all tumor cores 
0 to 300 1 (1.54%) 

Trβavg Numerical 
The average H-score of TRβ staining 

among all tumor cores 
0 to 250 1 (1.54%) 
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IL6ST Categorical 
Derived from tumor cores stained 

with IL6ST 

0 = no IL6ST expression; 1 = low IL6ST 

expression; 2 = high IL6ST expression  
1 (1.54%) 

infiltration to tumor Categorical 
Derived from tumor cores stained 

with IL6ST 
0 = no; 1 = yes 1 (1.54%) 

infiltration to normal Categorical 
Derived from tumor cores stained 

with IL6ST 
0 = no; 1 = yes 1 (1.54%) 

 

Notes: Regarding radiomics features, PET images were resampled to an isotropic voxel size of 2x2x2 mm3 using B-spline interpolation and bin 

width was set to 0.3 SUV units. 
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Table S2. The investigated 51 pathways and matched literature.  

A total of 51 categorized pathways and the corresponding literature is provided to 

indicate their role in PCa tumorigenesis, progression and metastasis. 

Feature roup Pathways 

PSMA-related pathways 

Antifolate resistance17 

One carbon pool by folate17 

Folate biosynthesis17 

Endocrine and other factor-regulated calcium reabsorption17 

Calcium signaling pathway17 

Cysteine and methionine metabolism18 

PI3K-Akt signaling pathway19 

MAPK signaling pathway19, 20 

VEGF signaling pathway20, 21 

Anrogen receptor-related 

pathways 

Glioma22 

Pathways of neurodegeneration - multiple diseases23, 24 

Prostate cancer25 

General pathways known 

for Pca 

Wnt signaling pathway20 

mTOR signaling pathway20  

EGFR tyrosine kinase inhibitor resistance20 

TGF-beta signaling pathway20 

NF-kappa B signaling pathway25 

JAK-STAT signaling pathway25 

Ras signaling pathway25 

Pathways in cancer25  

Hedgehog signaling pathway26 

Notch signaling pathway26 
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FoxO signaling pathway26  

Adherens junction27 

Cellular senescence28  

Cell cycle29 

TNF signaling pathway30 

p53 signaling pathway30 

HIF-1 signaling pathway31 

PPAR signaling pathway32 

Apoptosis33 

Metabolism-related 

pathways 

Choline metabolism in cancer34 

Fatty acid metabolism35 

Fatty acid biosynthesis35, 36 

Fatty acid degradation35, 36 

Fatty acid elongation35, 36 

Citrate cycle (TCA cycle)37, 38 

Metabolic pathways 37, 38 

Insulin signaling pathway39 

Membrane recruitment 

and activation 

ECM-receptor interaction40 

Focal adhesion41 

cAMP signaling pathway42 

Rap1 signaling pathway43 

Thyroid connection 

Thyroid cancer44 

Thyroid hormone signaling pathway44 

Thyroid hormone synthesis44 

Immunology-related 

pathways 

PD-L1 expression and PD-1 checkpoint pathway in cancer45 

Neutrophil extracellular trap formation46 

Human immunodeficiency virus 1 infection47 
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Toll-like receptor signaling pathway48 

Natural killer cell mediated cytotoxicity49 
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Table S3. The extracted radiomics features in three categories.  

The extracted radiomic features from 68Ga-PSMA PET/MR images: Shape-based 

features including 14 shape dimentions; First-order features including 18 intensity 

statistics; 75 multi-dimensional texture features including 24 Gray Level Co‐

occurrence Matrix (GLCM), 16 Gray Level Run Length Matrix (GLRLM),16 Gray 

Level Size Zone Matrix (GLSZM), 14 Gray Level Dependence Matrix (GLDM) and 5 

Neighboring Gray Tone Difference Matrix (NGTDM) Features.  

Feature group Feature name 

Shape-based (n=14) Elongation 

Flatness 

Least Axis Length 

Major Axis Length 

Maximum2D Diameter Column 

Maximum2D Diameter Row 

Maximum2D Diameter Slice 

Maximum3D Diameter 

MeshVolume 

MinorAxisLength 

Sphericity 

Surface Area 

Surface Volume Ratio 

Voxel Volume 

Histogram-based (n=18) 10Percentile 

90Percentile 

Energy 
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Entropy 

Interquartile Range 

Kurtosis 

Maximum 

Mean Absolute Deviation 

Mean 

Median 

Minimum 

Range 

Robust Mean Absolute Deviation 

Root Mean Squared 

Skewness 

Total Energy 

Uniformity 

Variance 

Texture-based (n=75) GLCM 

(n=24) 

Autocorrelation 

Cluster Prominence 

Cluster Shade 

Cluster Tendency 

Contrast 

Correlation 

Difference Average 

Difference Entropy 

Difference Variance 

Id 

Idm 

Idmn 
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Idn 

Imc1 

Imc2 

Inverse Variance 

Joint Average 

Joint Energy 

Joint Entropy 

MCC 

Maximum Probability 

Sum Average 

Sum Entropy 

Sum Squares 

GLRLM 

(n=16) 

Gray Level Non Uniformity 

Gray Level Non Uniformity Normalized 

Gray Level Variance 

High Gray Level Run Emphasis 

Long Run Emphasis 

Long Run High Gray Level Emphasis 

Long Run Low Gray Level Emphasis 

Low Gray Level Run Emphasis 

Run Entropy 

Run Length Non Uniformity 

Run Length Non Uniformity Normalized 

Run Percentage 

Run Variance 

Short Run Emphasis 

Short Run High Gray Level Emphasis 
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Short Run Low Gray Level Emphasis 

GLSZM 

(n=16) 

Gray Level Non Uniformity 

Gray Level Non Uniformity Normalized 

Gray Level Variance 

High Gray Level Zone Emphasis 

Large Area Emphasis 

Large Area High Gray Level Emphasis 

Large Area Low Gray Level Emphasis 

Low Gray Level Zone Emphasis 

Size Zone Non Uniformity 

Size Zone Non Uniformity Normalized 

Small Area Emphasis 

Small Area High Gray Level Emphasis 

Small Area Low Gray Level Emphasis 

Zone Entropy 

Zone Percentage 

Zone Variance 

GLDM 

(n=16) 

Dependence Entropy 

Dependence Non Uniformity 

Dependence Non Uniformity Normalized 

Dependence Variance 

Gray Level Non Uniformity 

Gray Level Variance 

High Gray Level Emphasis 

Large Dependence Emphasis 

Large Dependence High Gray Level 

Emphasis 
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Large Dependence Low Gray Level 

Emphasis 

Low Gray Level Emphasis 

Small Dependence Emphasis 

Small Dependence High Gray Level 

Emphasis 

Small Dependence Low Gray Level 

Emphasis 

NGTDM 

(n=5) 

Busyness 

Coarseness 

Complexity 

Contrast 

Strength 
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Table S4. The performance metrics of five different ML models to predict Gleason 

grading in PCa. 

 

 

 

AUC: area under the curve; SNS: sensitivity; SPC: specificity; ACC: accuracy; PPV: positive 

predictive value; NPV: negative predictive value; KNN: K-nearest neighbors; RF: random 

forest; SVM: support vector machines; IGR: information gain ratio; XGB: extreme gradient 

boosting. 

 

  

 
ACC SNS SPC PPV NPV AUC 

KNN 0.754 0.766 0.740 0.791 0.754 0.828 

RF 0.779 0.827 0.722 0.791 0.804 0.869 

SVM 0.757 0.816 0.688 0.770 0.768 0.853 

LGR 0.748 0.761 0.732 0.788 0.742 0.835 

XGB 0.770 0.831 0.698 0.778 0.803 0.868 
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Table S5. The interpretation of shape-based features ranked by descending 

contribution to the prediction of whole mount Gleason grading in the ML model. 

Feature 

Name 
Formula Meaning 

Maximum 2D 

diameter 

(Slice) 

NA 

Maximum 2D diameter (Slice) is defined as 

the largest pairwise Euclidean distance 

between tumor surface mesh vertices in the 

row-column (generally the axial) plane. 

Maximum 3D 

diameter 
NA 

Maximum 3D diameter is defined as the 

largest pairwise Euclidean distance 

between tumor surface mesh vertices. Also 

known as Feret Diameter. 

Elongation 

 

Here, 𝜆𝜆major and 𝜆𝜆minor are the 

lengths of the largest and 

second largest principal 

component axes. The values 

range between 1 (where the 

cross section through the first 

and second largest principal 

moments is circle-like (non-

elongated)) and 0 (where the 

object is a maximally elongated: 

i.e. a 1 dimensional line). 

Elongation shows the relationship between 

the two largest principal components in the 

ROI shape. For computational reasons, this 

feature is defined as the inverse of true 

elongation. 

 

The principal component analysis is 

performed using the physical coordinates of 

the voxel centers defining the ROI. It 

therefore takes spacing into account, but 

does not make use of the shape mesh. 
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Maximum 2D 

diameter 

(Column) 

NA 

Maximum 2D diameter (Column) is defined 

as the largest pairwise Euclidean distance 

between tumor surface mesh vertices in the 

row-slice (usually the coronal) plane. 

Major Axis 

Length 
 

This feature yield the largest axis length of 

the ROI-enclosing ellipsoid and is calculated 

using the largest principal component 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.The principal component analysis is 

performed using the physical coordinates of 

the voxel centers defining the ROI. It 

therefore takes spacing into account, but 

does not make use of the shape mesh. 

Least Axis 

Length 
 

This feature yield the smallest axis length of 

the ROI-enclosing ellipsoid and is calculated 

using the largest principal component 

𝜆𝜆𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙. In case of a 2D segmentation, this 

value will be 0. The principal component 

analysis is performed using the physical 

coordinates of the voxel centers defining the 

ROI. It therefore takes spacing into account, 

but does not make use of the shape mesh. 

Flatness 
 

Here, 𝜆𝜆major and 𝜆𝜆least are the 

lengths of the largest and 

smallest principal component 

Flatness shows the relationship between 

the largest and smallest principal 

components in the ROI shape. For 

computational reasons, this feature is 

defined as the inverse of true flatness. The 

principal component analysis is performed 



 48 

 

 

 

  

axes. The values range between 

1 (non-flat, sphere-like) and 0 (a 

flat object, or single-slice 

segmentation). 

using the physical coordinates of the voxel 

centersdefining the ROI. It therefore takes 

spacing into account, but does not make 

use of the shape mesh. 

Sphericity 

 

Sphericity is a measure of the roundness of 

the shape of the tumor region relative to a 

sphere. It is a dimensionless measure, 

independent of scale and orientation. The 

value range is 0 < 𝑙𝑙𝑠𝑠h𝑙𝑙𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒 ≤ 1, where a 

value of 1 indicates a perfect sphere (a 

sphere has the smallest possible surface 

area for a given volume, compared to other 

solids). 
 

Surface Area 
 

where: a𝑒𝑒b𝑒𝑒 and a𝑒𝑒c𝑒𝑒 are edges 

of the 𝑒𝑒th triangle in the mesh, 

formed by vertices a𝑒𝑒, b𝑒𝑒 and c𝑒𝑒. 

To calculate the surface area, first the 

surface area 𝐴𝐴𝑒𝑒 of each triangle in the mesh 

is calculated (1). The total surface area is 

then obtained by taking the sum of all 

calculated subareas. 
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Table S6. The interpretation of histogram-based features ranked by descending 

contribution to the prediction of whole mount Gleason grading in the ML model. 

 

Feature 

Name 
Formula Meaning 

Maximum 
 

The maximum gray level 

intensity within the ROI.  
 

Entropy 
 

Here, 𝜖𝜖 is an arbitrarily small positive number 

(≈ 2.2 × 10
−16

). 

Entropy specifies the 

uncertainty/randomness in 

the image values. It 

measures the average 

amount of information 

required to encode the image 

values.  

Range 
 

The range of gray values in 

the ROI.  

Minimum 
 

NA 
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 Table S7. The interpretation of texture-based features ranked by descending 

contribution to the prediction of whole mount Gleason grading in the ML model. 

 

Class Feature Formula Meaning 

GLCM Joint Entropy 
 

 Joint entropy is a measure of 

the randomness/variability in 

neighborhood intensity 

values.  

GLRLM Short Run Emphasis 
 

SRE is a measure of the 

distribution of short run 

lengths, with a greater value 

indicative of shorter run 

lengths and more fine textural 

textures. 

GLDM 

Large Dependence 

Low Gray Level 

Emphasis 
 

 Measures the joint 

distribution of large 

Dependence with lower gray-

level values 

GLCM Maximum Probability 
 

 Maximum Probability is 

occurrences of the most 

predominant pair of 

neighboring intensity values 

GLCM Joint Average 
 

Returns the mean gray level 

intensity of the 𝑒𝑒 distribution. 

GLCM Difference Entropy 
 

Difference Entropy is a 

measure of the 

randomness/variability in 
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neighborhood intensity value 

differences. 

GLRLM Run Variance 
 

RV is a measure of the 

variance in runs for the run 

lengths 

GLCM Sum Average 
 

 Sum Average measures the 

relationship between 

occurrences of pairs with 

lower intensity values and 

occurrences of pairs with 

higher intensity values. 

GLSZM 
Size Zone Non 

Uniformity  

 SZN measures the variability 

of size zone volumes in the 

image, with a lower value 

indicating more 

homogeneity in size zone 

volumes. 

GLCM Joint Energy 
 

 Energy is a measure of 

homogeneous patterns in the 

image. A greater Energy 

implies that there are more 

instances of intensity value 

pairs in the image that 

neighbor each other at higher 

frequencies. 
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GLCM Sum Entropy 
 

 Sum Entropy is a sum of 

neighborhood intensity value 

differences. 

NGTDM Busyness 
 

 A measure of the change 

from a pixel to its neighbour. 

A high value for busyness 

indicates a ‘busy’ image, with 

rapid changes of intensity 

between pixels and its 

neighbourhood. 

GLCM Difference Average 
 

 Difference Average 

measures the relationship 

between occurrences of pairs 

with similar intensity values 

and occurrences of pairs with 

differing intensity values. 

GLSZM Zone Percentage 
 

 ZP measures the coarseness 

of the texture by taking the 

ratio of number of zones and 

number of voxels in the ROI. 

GLSZM 
Size Zone Non 

Uniformity Normalized 
 

 SZNN measures the 

variability of size zone 

volumes throughout the 

image, with a lower value 

indicating more homogeneity 

among zone size volumes in 

the image. This is the 
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normalized version of the 

SZN formula. 

GLRLM 
Gray Level Non 

Uniformity 
 

GLN measures the similarity 

of gray-level intensity values 

in the image, where a lower 

GLN value correlates with a 

greater similarity in intensity 

values 

GLCM Inverse Variance 
 

Note that 𝑘𝑘 = 0 is skipped, as 

this would result in a division 

by 0. 

NGTDM Coarseness 
 

Coarseness is a measure of 

average difference between 

the center voxel and its 

neighbourhood and is an 

indication of the spatial rate of 

change. A higher value 

indicates a lower spatial 

change rate and a locally 

more uniform texture. 

GLSZM Small Area Emphasis 
 

 a measure of the distribution 

of small size zones, with a 

greater value indicative of 

more smaller size zones and 

more fine textures. 

GLDM 
Small Dependence 

Emphasis 
 

 A measure of the distribution 

of small dependencies, with a 
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greater value indicative of 

smaller dependence and less 

homogeneous textures. 

GLCM Idn 
 

 IDN (inverse difference 

normalized) is another 

measure of the local 

homogeneity of an image. 

Unlike Homogeneity1, IDN 

normalizes the difference 

between the neighboring 

intensity values by dividing 

over the total number of 

discrete intensity values. 

GLDM 
Gray Level Non 

Uniformity 
 

 Measures the similarity of 

gray-level intensity values in 

the image, where a lower 

GLN value correlates with a 

greater similarity in intensity 

values. 

GLDM Dependence Variance 
 

Measures the variance in 

dependence size in the 

image. 

GLDM 
Dependence Non 

Uniformity Normalized  

Measures the similarity of 

dependence throughout the 

image, with a lower value 

indicating more homogeneity 

among dependencies in the 
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image. This is the normalized 

version of the DLN formula.  

GLDM 
Large Dependence 

Emphasis 
 

 A measure of the distribution 

of large dependencies, with a 

greater value indicative of 

larger dependence and more 

homogeneous textures. 

GLSZM Large Area Emphasis 
 

 LAE is a measure of the 

distribution of large area size 

zones, with a greater value 

indicative of more larger size 

zones and more coarse 

textures. 

GLRLM Run Entropy 
 

RE measures the 

uncertainty/randomness in 

the distribution of run lengths 

and gray levels. A higher 

value indicates more 

heterogeneity in the texture 

patterns. 

GLRLM Run Percentage 
 

RP measures the coarseness 

of the texture by taking the 

ratio of number of runs and 

number of voxels in the ROI. 

GLSZM 
Large Area High Gray 

Level Emphasis  

 LAHGLE measures the 

proportion in the image of the 
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joint distribution of larger size 

zones with higher 

gray-level values. 

GLRLM 
Run Length Non 

Uniformity Normalized  

RLNN measures the similarity 

of run lengths throughout the 

image, with a lower value 

indicating more homogeneity 

among run lengths in the 

image. This is the normalized 

version of the RLN formula. 
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Table S8. The performance parameters of five machine learning algorithms with 
MRI-based features and scores. 
  

ML 
algorithms ACC SNS SPC PPV NPV AUC 
LGR 0.777 0.751 0.807 0.836 0.753 0.867 
SVM 0.772 0.783 0.758 0.795 0.775 0.866 
RF 0.784 0.816 0.747 0.805 0.798 0.861 
KNN 0.758 0.720 0.802 0.823 0.726 0.846 
XGB 0.766 0.816 0.708 0.782 0.786 0.844 
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Supplementary Materials—Figures 

 

Figure S1. The pipeline of genomics data acquisition. 

 

 

Figure S2. The workflow of radiomics and machine learning. 

 

  

 

Figure S3. The working scheme for pathomics data acquisition. 
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Figure S4: Mutation profile for genes with mutation frequency of ≥10% among the 65 

PCa patients. Each row corresponds to a gene and each column represents one patient. 

The bar plot on the right side indicates the mutation frequency in descending order. 
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Figure S5: The machine learning (ML)-derived diagnostic workflow to select candidates 

for radical prostatectomy (RP) by the differentiation of high-risk PCa from low-risk PCa 

patients. Following the decision tree from the top, the urologist can discern the ISUP high 

from ISUP low PCa patients. In the rectangular boxes, the bar plot shows the distribution of 

each feature at the corresponding decision node during model training, where the y-axis 

represents the number of patients and the x-axis indicates the value of each feature. 
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Figure S6. The 10 most important radiomics features that contribute most to the 

prediction of whole mount Gleason grading in the ML model based on permutation 

importance. The top ten important features are respectively Maximum, Joint Entropy, Short 

Run Emphasis, SUVmean, Large Dependence Low Gray Level Emphasis, Maximum 

Probability, SUVmax, Entropy, Joint Average, Difference Entropy in descending order of the 

permutation importance. 
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Figure S7. The subgroup analysis of key imaging features within each category 

according to permutation importance. A. Among SUV metrics, SUVmean, SUVmax, 

SUVpeak and SUVmin play a role in descending order in the ML model; B. Among shape 

features, Maximum 2D Maximum 2D diameter (Slice), Maximum 3D diameter, Elongation, 

Maximum 2D diameter (Column), Major Axis Length, Least Axis Length, Flatness, 

Sphericity, Surface Area are important features; C. Among histogram features, Maximum, 

Entropy, Range, Minimum contribute to the ML model; D. Among texture features, 2 
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NGTDM-based features, 6 GLSZM-based features, 6 GLRLM-based features, 6 GLDM-

based features, 10 GLCM-based feature are of vital significance. 
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Figure S8. The distribution of important radiomic features based on permutation 

importance among 65 PCa patients. A. The distribution of 4 important SUV metrics. B. The 

distribution of 9 important shape features. Since the feature Surface Area has a significantly 

different range from the other shape features, it was separated. C. The distribution of 4 

important histogram features. D. The distribution of 30 texture features in standardized 

values (log2). 
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Figure S9. All the important pathomics features that contribute to the prediction of the 

whole mount Gleason grading. This bar plot showed these five features (PSA, CD3, 

FASN, NKX3.1, STAT3, CDK2) are the most contributing biomarkers to predict Gleason 

grading. 
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