## **Supplementary information**



**Figure S1. Validation of the high-throughput sequencing data by qPCR.** (A) Schematic diagram of the transcriptome sequencing protocol and heatmap of differentially expressed circular RNAs in blood samples from patients with depression.(B-D) The differential expression of circRNAs with homology between

humans and mice identified by high-throughput sequencing of blood samples from depressed patients (n=29) and healthy control subjects (n=16) was verified by real-time PCR. (E) Correlations between circ-TTC8 expression and HAMD-17 scores were determined using Pearson's correlation coefficient. (F) Correlations between circ-TTC8 expression and HAMD-24 scores were determined using Pearson's correlation coefficient. The data are presented as the mean  $\pm$  SEM. P values were determined by a two-tailed unpaired Student's t test. \*\*P < 0.01.



**Figure S2.** Construction of a depression mouse model and behavioral analysis. (A) Schematic diagram of circ-UBE2K. (B) Analysis of circ-UBE2K sequence alignment between humans and mice. (C) Schematic diagram of the mouse model and behavioral tests. (D) Body weight changes in mice 4 weeks after CUMS treatment. (E-F) The total distance traveled (E) and number of standing of mice from different groups in the OFT. (G-I) Performance of CUMS model mice and control mice in the behavioral tests (SPT, FST and TST). (J-N) The expression levels of circ-UBE2K in the heart, liver, spleen,

lung and kidney of CUMS-induced depression model mice and control mice. n=13-22/group. The data are presented as the mean  $\pm$  SEM. P values were determined by a two-tailed unpaired Student's t test. ns, not significant, \*P < 0.05, \*\*P < 0.01 and \*\*\*P < 0.001.



**Figure S3. Circ-UBE2K was significantly upregulated in depression model animals.** Images of circ-UBE2K in brain tissues from CUMS model mice and control mice. Green, FITC-labeled probes specific for circ-UBE2K; blue, DAPI (nuclei). Scale bar, 50 μm.



Figure S4. Microinjection of circ-UBE2K lentivirus into the hippocampus. (A) Evaluation of circ-UBE2K expression by analysis of GFP expression at 4 weeks after microinjection. Scale bar, 50  $\mu$ m. (B) Distribution of the circ-UBE2K lentivirus in different cell types in the hippocampus 4 weeks after lentivirus microinjection. The white triangular arrow points to the co-localization of circ-UBE2K with astrocytes, microglia and neurons. Scale bar, 50  $\mu$ m.



**Figure S5. Overexpression of circ-UBE2K aggravated depression-like behavior.** (A) Body weight changes in mice 4 weeks after CUMS treatment. (B) The total distance traveled of mice from different groups in the OFT. (C) The number of standing of mice from different groups in the OFT. One-way ANOVA followed by Tukey's post hoc test. All the data are presented as the mean ± SEM. ns, not significant.



Figure S6. Knockdown of circ-UBE2K inhibits LPS-induced microglial secretion of inflammatory factors. (A) Heatmaps of the DEGs. (B) GO enrichment analysis of the enriched biological processes for important DEGs. (C) Relative expression of circ-UBE2K in microglia transfected with circ-UBE2K siRNA. (D-F) The mRNA expression levels of IL-6, IL-1 $\beta$  and TNF- $\alpha$  were measured by qPCR. The data are presented as the means  $\pm$  S.D. from three independent experiments. One-way ANOVA followed by Tukey's post hoc test. \*P < 0.05 and \*\*\*\*P < 0.0001.



Figure S7. KEGG pathway analysis of the pulled-down proteins.



Figure S8. Circ-UBE2K directly interacts with the HNRNPU protein in microglia. (A) The levels of the proinflammatory cytokines IL-6 in the different groups. (B) The levels of the proinflammatory cytokines IL-1 $\beta$  in the different groups. ns, not significant, \*P < 0.05 and \*\*P < 0.01.

## Supplemental Tables

| siRNA sequences             | 5'-3'                    |
|-----------------------------|--------------------------|
| siRNA NC sense              | UUCUCCGAACGUGUCACGU TT   |
| siRNA NC antisense          | ACGUGACACGUUCGGAGAA TT   |
| circ-UBE2K-si-1 sense       | AAGAUCAAUGACGAGCAAAAA TT |
| circ-UBE2K-si-1 antisense   | UUUUUGCUCGUCAUUGAUCUU TT |
| circ-UBE2K-si-2 sense       | AUCAAUGACGAGCAAAAAUCATT  |
| circ-UBE2K-si-2 antisense   | UGAUUUUUGCUCGUCAUUGAU TT |
| circ-UBE2K-si-3 sense       | GAAAGAUCAAUGACGAGCAAATT  |
| circ-UBE2K-si-3 antisense   | UUUGCUCGUCAUUGAUCUUUC TT |
| Human HNRNPU-si-1 sense     | CAGUGCUUCUUCCCUUACAAU TT |
| Human HNRNPU-si-1 antisense | AUUGUAAGGGAAGAAGCACUGTT  |
| Human HNRNPU-si-2 sense     | GCAACUGUGAGACUGAAGAUU TT |
| Human HNRNPU-si-2 antisense | AAUCUUCAGUCUCACAGUUGC TT |
| Human HNRNPU-si-3 sense     | AGAUCAUGGCCGUGGAUAUUU TT |
| Human HNRNPU-si-3 antisense | AAAUAUCCACGGCCAUGAUCU TT |

Table S2. Nucleotide sequences used in this study.

| List of oligonucleotide sequences | 5'-3'                    |
|-----------------------------------|--------------------------|
| circ-PIAS1-F                      | AGCTTTAACATCAGACAACAGTC  |
| circ-PIAS1-R                      | TGTTGTGGTGTCAAGGCAAA     |
| circ- PTK2-F                      | ATCATACTGGGAGATGCGGG     |
| circ-PTK2-R                       | TGCTAGGTATCTGTCATATTTCT  |
| circ-MARK3-F                      | ACAATCGGCAAGGGGAATTT     |
| circ-MARK3-R                      | CATGTGACGTGTGCTTTTGT     |
| circ-UBE2K-F                      | TTCCGTCACAGGGGCTATTT     |
| circ-UBE2K-R                      | TTTTGCTCGTCATTGATCTTTCA  |
| circ-TTC8-F                       | AGTAACCCTGCTCTGTGGAA     |
| circ-TTC8-R                       | AGCCAGATCCAAAGCCTCAT     |
| circ-PIAS2-F                      | GCCCACGAGTTTAGAATATGGT   |
| circ-PIAS2-R                      | CATCAGGAGGTCATGCTTGC     |
| circ-MAN2A1-F                     | TCACAAGATTCTCTGCCACAA    |
| circ-MAN2A1-R                     | AACTGTATCTTGGCTCCGCA     |
| circ-EZH2-F                       | ACTTCTAATAATCATGGGCCAGAC |
| circ-EZH2-R                       | AGCTCGTCTGAACCTCTTGA     |
| circ-CCDC132-F                    | TGTGGATGAGCAGACAGGAG     |
| circ-CCDC132-R                    | CATCGAGCCGTGTTCAACAA     |
| circ-ATXN3-F                      | CTCTCTTGACGGGTCCAGAA     |
| circ-ATXN3-R                      | GCCTTCTTGCTTCCTGTTGT     |
| Human GAPDH-F                     | ACAACTTTGGTATCGTGGAAGG   |
| Human GAPDH-R                     | GCCATCACGCCACAGTTTC      |
| Mouse GAPDH-F                     | AGGTCGGTGTGAACGGATTTG    |
| Mouse GAPDH-R                     | TGTAGACCATGTAGTTGAGGTCA  |
| Human UBE2K-F                     | GTTCCGTCACAGGGGCTATTT    |
| Human UBE2K-R                     | AATACCGTGCGGAGAGTCATT    |
| Mouse IL-6-F                      | GGCGGATCGGATGTTGTGAT     |
| Mouse IL-6-R                      | GGACCCCAGACAATCGGTTG     |
| Mouse IL-1β-F                     | TGCCACCTTTTGACAGTGATG    |
| Mouse IL-1 $\beta$ -R             | TGATGTGCTGCTGCGAGATT     |
| Mouse TNFa-F                      | TGTGCTCAGAGCTTTCAACAA    |
| Mouse TNFα-R                      | CTTGATGGTGGTGCATGAGA     |
| Mouse iNOS-F                      | AGGGCTTGGCTGAGTGAG       |
| Mouse iNOS-R                      | GAGCGAGTTGTGGATTGTC      |
| Mouse CD68-F                      | CTGGCTGTGCTTTCTGTG       |
| Mouse CD68-R                      | TCTTGCTAGGACCGCTTAT      |
| Human U3-F                        | TTCTCTGAGCGTGTAGAGCACCGA |
| Human U3-R                        | GATCATCAATGGCTGACGGCAGTT |
| Human β-actin-F                   | GGGAAATCGTGCGTGACATTAAG  |
| Human β-actin-R                   | TGTGTTGGCGTACAGGTCTTTG   |
| Human IL-1β-F                     | AGCTACGAATCTCCGACCAC     |

 Table S3. Information on the PCR primers.

| Human IL-1β-R | CGTTATCCCATGTGTCGAAGAA |
|---------------|------------------------|
| Human TNFα-F  | GAGGCCAAGCCCTGGTATG    |
| Human TNFα-R  | CGGGCCGATTGATCTCAGC    |
| Human IL-6-F  | CCTGAACCTTCCAAAGATGGC  |
| Human IL-6-R  | TTCACCAGGCAAGTCTCCTCA  |

| Antibodies               | Brand                     | Catalog Number | Application |
|--------------------------|---------------------------|----------------|-------------|
| Rabbit anti-Iba1         | Wako                      | 019-19714      | IF          |
| Rabbit anti-a-Tublin     | Abcam                     | ab4074         | WB          |
| Rabbit anti-CD68         | Abcam                     | ab125212       | IF, WB      |
| Rabbit anti-UBE2K        | Abcam                     | ab52930        | WB          |
| Rabbit anti-iNOS         | Proteintech               | 18985-1-AP     | IF, WB      |
| Rabbit anti-Iba1         | Wako                      | 016-20001      | WB          |
| Rabbit anti-hnRNP U      | Abcam                     | ab180952       | IF,WB       |
| Rabbit anti-GFAP         | Abcam                     | ab7260         | IF          |
| Rabbit anti-MAP2         | Cell Signaling Technology | 8707S          | IF          |
| Rabbit anti-PSD95        | Cell Signaling Technology | 3450S          | WB          |
| Rabbit anti-Synatophysin | Proteintech               | 17785-1-AP     | WB          |
| Rabbit anti-IL-6         | Abcam                     | ab259341       | WB          |
| Mouse anti-TNF Alpha     | Proteintech               | 60291-1-Ig     | WB          |
| Rabbit anti-IL-1 beta    | Abcam                     | ab283818       | WB          |
| Goat Anti-Rabbit 488     | Abcam                     | ab150077       | IF          |
| Goat Anti-Rabbit 594     | Abcam                     | ab 150080      | IF          |
| Goat Anti-Rabbit 647     | Abcam                     | ab 150079      | IF          |

## Table S4. Details of the antibodies.