Supporting Information

Adeno-associated-virus-mediated delivery of CRISPR-CasRx

induces efficient RNA knockdown in the mouse testis

Kai Li[†], Mengzhen Li[†], Yanyun Luo[†], Dingfeng Zou, Yahui Li, Xinyu Mang, Zexuan Zhang, Pengyu Li, Yan Lu, Shiying Miao & Wei Song*

Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.

[†]These authors contributed equally to this work

* Corresponding author (Wei Song, email: songwei@ibms.pumc.edu.cn)

Contents:

Supplemental Figures S1-S4

Supplemental Tables S1-S4

SF1

Figure S1. Expression profiling of transgenic tissues and developmental assessment of spermatozoa after AAV microinjection into testicular seminiferous tubules.

(A) Stereomicroscopic fluorescence imaging of various tissues from mice co-injected with AAV9-CMV-RFP and 3-MA. Scale bar: 1 mm.

(B) Western blotting analysis of RFP in various tissues from mice co-injected with AAV9-CMV-RFP and 3-MA. β -Tubulin was used as a loading control.

(C) Number of mature sperm from representative caudal epididymis 5 weeks after microinjection with PBS, AAV9-CMV-RFP or AAV9-CMV-RFP co-injection with 3-MA (n = 5).

(D) Immunostaining of spermatozoa for PNA(green) ,RFP(red) from representative caudal epididymis 5 weeks after microinjection with PBS, AAV9-CMV-RFP or AAV9-CMV-RFP co-injection with 3-MA. Nuclei were stained with DAPI (blue). Scale bar: 5 μm.

All data are presented as the mean \pm SEM. *P*-values were determined using the two-tailed Student's t-test; *n.s. P* > 0.05.

Figure S2

Figure S2. CRISPR-CasRx enables efficient reporter mRNA knockdown in HEK293T cells.

(A) Fluorescence imaging of tdTomato in HEK293T cells transfected with an expression vector encoding the tdTomato reporter as well as an all-in-one vector encoding CasRx and gRNAs. Scale bar: $40 \mu m$.

(B) Western blotting analysis of tdTomato expression in HEK293T cells after CRISPR-CasRx gene editing. GAPDH was used as a loading control.

(C) Schematic drawing of tdtomato-targeting guide RNAsequences and spacers position matched siRNA.

(**D**) Fluorescence imaging of tdTomato in HEK293T cells transfected with expression vector encoding tdTomato reporter as well as siRNAs. Scale bar: 40 µm.

(E) Stereomicroscopic fluorescence imaging of representative testes received either microinjection with siRNA non-targeting or siRNA tdtomato-targeting together with AAV9-EFS-tdTomato. Scale bar: 1 mm.

(F) qRT-PCR analysis of representative functional genes expression in somatic and spermatogenic cells. Data were normalized to *Actb* expression (n = 3 biologically independent samples).

(G) Scatterplot showing mRNAlevels (determined by RNA-seq) in testes microinjected with AAV9-EFS-CasRx-tdTomato (y-axis) relative to those in the control testes treated with AAV9-EFS-CasRx-NTG (x-axis). tdTomato mRNAis highlighted in red. Dashed lines indicate a 2-fold difference in RNA levels (n = 3 biologically independent samples).

Figure S3

Figure S3. Transcriptome editing of *Sycp3* and lncRNA-*Eif2c5* by AAV9-mediated CRISPR-CasRx in the testis *in vivo*.

(A) qRT-PCR analysis of *Sycp3* mRNA knockdown efficiency in HEK293T cells transfected with the expression vector encoding SYCP3 as well as the all-in-one vector encoding CasRx and gRNAs. Data were normalized to *Actb* expression (n = 3 biologically independent samples).

(B) Immunostaining of testicular sections from the control (CasRx-NTG) and

SYCP3-depleted (CasRx-*Sycp3*) mice for WT1 (green). Nuclei were stained with DAPI (blue). Scale bar: 50 μ m. *Left*: representative images; *Right*: number of stained cells per tubule (*n* = 10).

(C) qRT-PCR analysis of lncRNA-*Malat1* knockdown efficiency in GC1 cells. Data were normalized to *Actb* expression (n = 3 biologically independent samples).

(D) qRT-PCR analysis of lncRNA-*Malat1* knockdown efficiency targeted by AAV9-mediated CRISPR-CasRx *in vivo*. Data were normalized to *Actb* expression (n = 3 biologically independent samples).

(E) qRT-PCR analysis of lncRNA-*Eif2c5* knockdown efficiency *in vivo*. Data were normalized to *Actb* expression (n = 3 biologically independent samples).

All data are presented as the mean \pm SEM. *P*-values were determined using the two-tailed Student's *t*-test; ^{*n.s.*} P > 0.05; *P < 0.05; *P < 0.01; ***P < 0.001; ****P < 0.001.

Figure S4

Figure S4. AAV9 directs the Sycp1 promoter to drive transgene expression in germ cells *in vivo*.

(A) Schematic illustration of how AAV9-mediated germ-cell-specific transgene expression is driven by the *Sycp1* promoter. A vector carrying the *Sycp1* promoter and encoding the Cre recombinase is packaged into AAV9 (AAV9-*Sycp1*-Cre) and microinjected into the testes of an Ai9 mouse (Rosa26-CAG-LSL-tdTomato).

(B) Representative stereomicroscopic fluorescent images of testes from Ai9 mice on days 5, 7, 14, 21, and 28 after microinjection of AAV9-*Sycp1*-Cre. Scale bar: 1 mm.

(C) Immunostaining of testicular sections from Ai9 mice on days 5, 7, 14, 21, and 28 after microinjection of AAV9-*Sycp1*-Cre for DDX4 (green) and tdTomato (red). Nuclei were stained with DAPI (blue). Scale bar: 50 µm.

Supplemental Tables

Table S1. gRNA sequences used for knockdown of mRNA and lncRNA

- Table S2. Primer sequences of PCR
- Table S3. Primer sequences of qRT-PCR
- Table S4. Antibodies used for immunofluorescence

	gRNA sequences 1# (5' to 3')	gRNA sequences 2# (5' to 3')	gRNA sequences 3# (5' to 3')
tdTomato	CATGCGCACCTTGAAGCGC	ATGGCCGTCATCAAAGAGT	TACGTGGACACCAAGCTGG
	ATGAACTCTTT	TCATGCGCTTC	ACATCACCTCC
Sycp3	AACATCTTCAATTATCCCA	CCCAGAATGCTTTCTTCCAC	AATTTCTGTATATCCAGTTC
	GCAGATCTTTT	CAGGCACCAT	CCACTGCTGC
Malat1	CCAGATGTTAAAACAAGCC	AACATTTACCTAAGGCAGC	TCGTTTTAATCTACAAGGC
	CAGGGCCTCTC	ACAGCAAAGGG	CGACCTTCAAA
Eif2c5	TAATACACTCGAAGTACCA	ATACCTTTTAAAGTACGGC	CAGATGATAGATAATGGAA
	GCAGGTCCCAC	ACATACAGTTG	CCAGGCTTTTG
NTG	TCACCAGAAGCGTACCATA	CTACCTGGTAGCCCTTGTAT	TGCCACTACTGTTCATGATC
	CTCACGAACAG	TTGATCAGGC	AGGGCGATGG

Table S1. gRNA sequences used for knockdown of mRNA and lncRNA

Table S2. Primer sequences of PCR

	Forward primer (5' to 3')	Reverse primer (5' to 3')
NLS-Cas13d - NLS	TTTGCCGCCAGAACACAGGACCGGTGCC ACCATGAGCCCCAAGAAGAAG	TTATCATGTCTGCTCGAAGCGGCCTTAA GCGTAATCTGGAACATCGTATGGGTAAG CG
U6-DRs- gRNAs (Vector2#)	CAAATGTGGTAAAATCGAGAGCATGGC TACGAGGGCCTATTTCCCATGATTCCTT CAT	TGATTAACCCGCCATGCTACTTATCTAC ATGCGTAAGGAGAAAATACCGCATCAG A
Stra8 promoter	GATCAATTCAATTCACGCGTATCCCCTA TTCCCCTCTC	CATGGTGGCACTAGGCTAGCTCTAGAGG GATCCCCGTCGCAGA
Hspa2 promoter	GATCAATTCAATTCACGCGTCGGTCGTT CTACATTACAGGTC	GGTGGCACTAGGCTAGCGGGATCCCCTG CCTGCTG
Sycp1 promoter	GATCAATTCAATTCACGCGTATCTTGTC CTAGGTATTAAAACAGG	CATGGTGGCACTAGGCTAGCGGGATCC GGGAGGCT
Pgk2 promoter	GATCAATTCAATTCACGCGTTCACAAAG TCTAATAGCAGATCA	GCACTAGGCTAGCGGGATCCTTGGCCCC GCCTTTCTTTGTGAG
Cre	TCCCGCTAGCCTAGTGCCACCATGCCCA AGAAGAAGAGGAAGGTGTCCAATT	AGCGTAATCTGGAACATCGTATGGGTAA GCGGCCGCATCGCCATCTTCCAGCAGGC GCACCATTG
U6-DRs- gRNAs (AAV- <i>Sycp1</i> -Cre-U6- gRNAs)	CAAATGTGGTAAAATCGAGAGCATGGC TACGAGGGCCTATTTCCCATGATTCCTT CAT	TGATTAACCCGCCATGCTACTTATCTAC ATGCGTAAGGAGAAAATACCGCATCAG A

Table S3. Primer sequences of qRT-PCR

	Forward primer (5' to 3')	Reverse primer (5' to 3')
Actb	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
Gapdh	ACCCAGAAGACTGTGGATGG	GGATGCAGGGATGATGTTCT
Gdnf	CTTCGAGAAGCCTCTTACCG	GCCACTTGGAGTTAATGTCC
Fgf2	CATAGCAAGGTACCGGTTGG	CTCTACTGCAAGAACGGCG
Cxcl12	TGCATCAGTGACGGTAAACCA	TTCTTCAGCCGTGCAACAATC
Csfl	GGCTTGGCTTGGGATGATTCT	GAGGGTCTGGCAGGTACTC
Wt1	GAGAGCCAGCCTACCATCC	GGGTCCTCGTGTTTGAAGGAA
Gfar1	CACTCCTGGATTTGCTGATGT	AGTGTGCGGTACTTGGTGC
Zbtb16	CTGGGACTTTGTGCGATGTG	CGGTGGAAGAGGATCTCAAACA
Sohlh1	AGGAGGCGGATCTCGTTGA	GTCTGCAATCTGATTCGCCAG
Kit	TGTGGCTAAAGATGAACCCTC	ACACTCCAGAATCGTCAACTC
Sohlh2	GGGCAGGGCAGAGTAAATCTT	CAAACGAGTTAGCAGCCAAAAG
Dazl	ATACCTCCGGCTTATACAACTGT	GACTTCTTTTGCGGGCCATTT
Sycp1	CAAAAGCCCTTCACACTGTTCG	GTTTTCCCGACTGGACATTGTAA
Sycp3	AGCCAGTAACCAGAAAATTGAGC	CCACTGCTGCAACACATTCATA
Ddx4	GCTTCATCAGATATTGGCGAGT	GCTTGGAAAACCCTCTGCTT
Clgn	CCAGGGTGTTGGACTATGTTTG	CCCCGAGGAAGGTTCATCTTTA
tdTomato	CCTGTTCCTGGGGGCATGG	TGATGACGGCCATGTTGTTG
Izumol	ATGGGGCCGCATTTTACACTC	TCTTTAGCGCATCTGTCACAAA
Spem1	GGGTGGGCCTCGTATCAAAAC	ATGCGGATTTGGCTCCAGAG
Eif2c5	ATTGTGGTATGAATGTGAACT	GAAGCAGATGATAGATAATGGAA
Malat1	GTTACCAGCCCAAACCTCAA	CTACATTCCCACCCAGCACT

Table S4. Antibodies used for immunofluorescence

Antibodies description	SOURCE	IDENTIFIER
Anti-c-KIT Antibody	Abcam	ab283653
Anti-DDX4 Antibody	Abcam	ab270534/ab27591
Anti-SYCP3 Antibody	Santa Cruz	sc-74569
Anti-WT1 Antibody	Abcam	ab89901
Lectin PNA from Arachis hypogaea (peanut), Alexa Fluor® 488 conjugate	Abcam	ab70472
Goat anti-Mouse Alexa Fluor 488	Thermo Fisher Scientific	A-11001
Goat anti-Rabbit Alexa Fluor 488	Thermo Fisher Scientific	A-11008
Goat anti-Mouse Alexa Fluor 594	Thermo Fisher Scientific	A-11005
Goat anti-Rabbit Alexa Fluor 594	Thermo Fisher Scientific	A-11012
Goat anti-Rabbit Alexa Fluor 647	Thermo Fisher Scientific	A-21245