

1 Supplementary Information

2

3 **Targeted delivery of anti-miRNA21 sensitizes PD-L1^{high} tumor to**
4 **immunotherapy by promoting immunogenic cell death**

5

6 *Eun Hye Kim^{1,2}, Jiwoong Choi¹, Hochung Jang^{1,3}, Yelee Kim^{1,2}, Jong Won Lee^{1,4}, Youngri Ryu^{1,2}, Jiwon*
7 *Choi^{1,5}, Yeonho Choi⁵, Sung-Gil Chi², Ick Chan Kwon^{1,4}, Yoosoo Yang^{1,3*} and Sun Hwa Kim^{1,4*}*

8

9 ¹Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of
10 Science and Technology (KIST), Seoul 02792, Republic of Korea

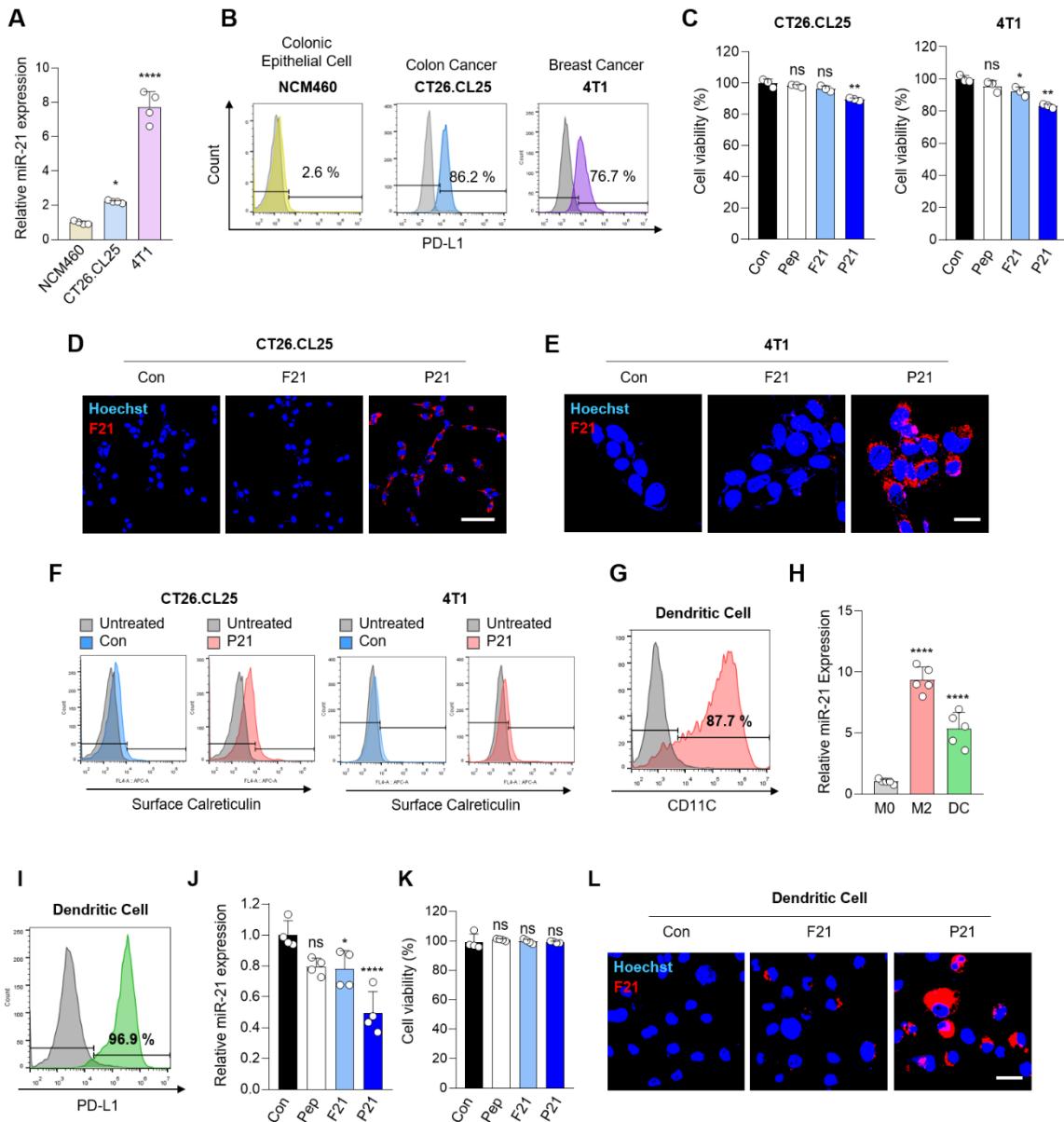
11 ²Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea

12 ³Division of Bio-Medical Science and Technology, KIST School, University of Science and
13 Technology, Seoul 02792, Republic of Korea

14 ⁴KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul
15 02841, Republic of Korea

16 ⁵Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea

17


18 *Corresponding author:

19 Yoosoo Yang, Ph.D. (Y. Yang)

20 Tel: +82-2-958-6655; fax: +82-2-958-5909; e-mail: ysyang@kist.re.kr

21 Sun Hwa Kim, Ph.D. (S.H. Kim)

22 Tel: +82-2-958-6639; fax: +82-2-958-5909; e-mail: sunkim@kist.re.kr

23

24 **Figure S1.** (A) Relative miR-21 expression levels measured by RT-qPCR in NCM460,
25 CT26.CL25 and 4T1 cell lines. All samples were normalized to U6 expression ($n = 4$ /group).
26 (B) Expression of PD-L1 in indicated cancer cell lines measured by flow cytometry (grey: isotype control). (C) Viability of CT26.CL25 (left) and 4T1 (right) cell lines following
27 treatment with Pep (300 nM), F21 (300 nM), or P21 (300 nM) for 24 h ($n = 3$ /group). (D)
28 Representative confocal images of uptake by CT26.CL25 cell lines after treatment with F21
29 (300 nM) or P21 (300 nM) for 6 h. The nuclei were stained with Hoechst 33342 (blue) (scale
30 bar = 200 μ m; $n = 3$ /group). (E) Representative confocal images of uptake by 4T1 cell lines
31 after treatment with F21 (300 nM) or P21 (300 nM) for 6 h. The nuclei were stained with
32 Hoechst 33342 (blue) (scale bar = 50 μ m; $n = 3$ /group). (F) Expression of CRT measured by
33 flow cytometry (grey: isotype control). (G) Representative histograms of BMDCs
34 differentiation with anti-CD11c antibody. (H) Relative miR-21 expression was measured by
35 RT-qPCR in M0, M2, and DCs. All samples were normalized to U6 expression ($n = 4$ /group).
36 (I) Expression of PD-L1 in BMDCs measured by flow cytometry. (J) Relative miR-21
37 expression was measured by RT-qPCR in BMDCs after treatment with Pep (150 nM), F21
38

39 (150 nM), or P21 (150 nM) for 18 h. All samples were normalized to U6 expression ($n =$
40 4/group). (K) Viability of BMDCs after treatment with Pep (300 nM), F21 (300 nM), or P21
41 (300 nM) for 24 h ($n = 4$ /group). (L) Representative confocal images of uptake by BMDCs
42 after treatment with F21 (300 nM) or P21 (300 nM) for 6 h. The nuclei were stained with
43 Hoechst 33342 (blue) (scale bar = 50 μ m; $n = 3$ /group). Data are presented as the mean \pm SD
44 ($*p < 0.05$, $**p < 0.01$, $****p < 0.0001$). Statistical significance was calculated by (A, C, H, J,
45 K) one-way ANOVA followed by Tukey's multiple comparisons test.

46

47

48

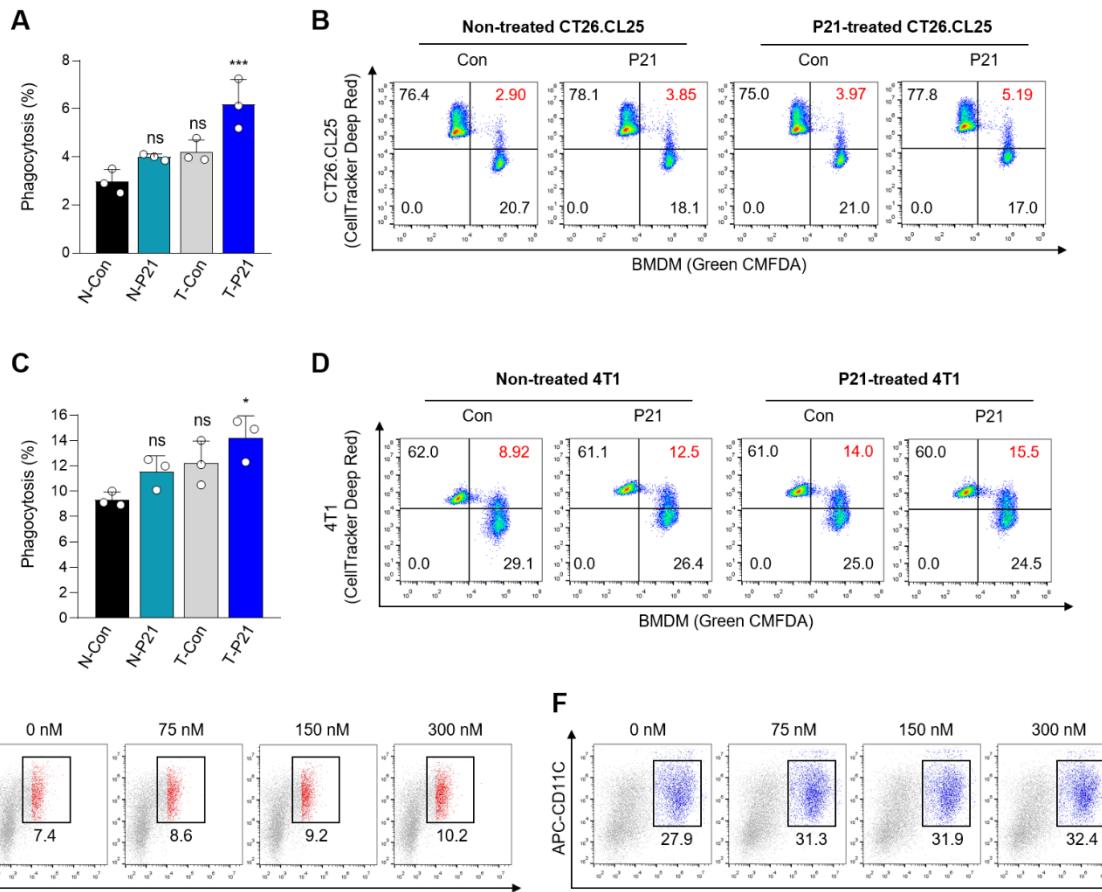
49

50

51

52

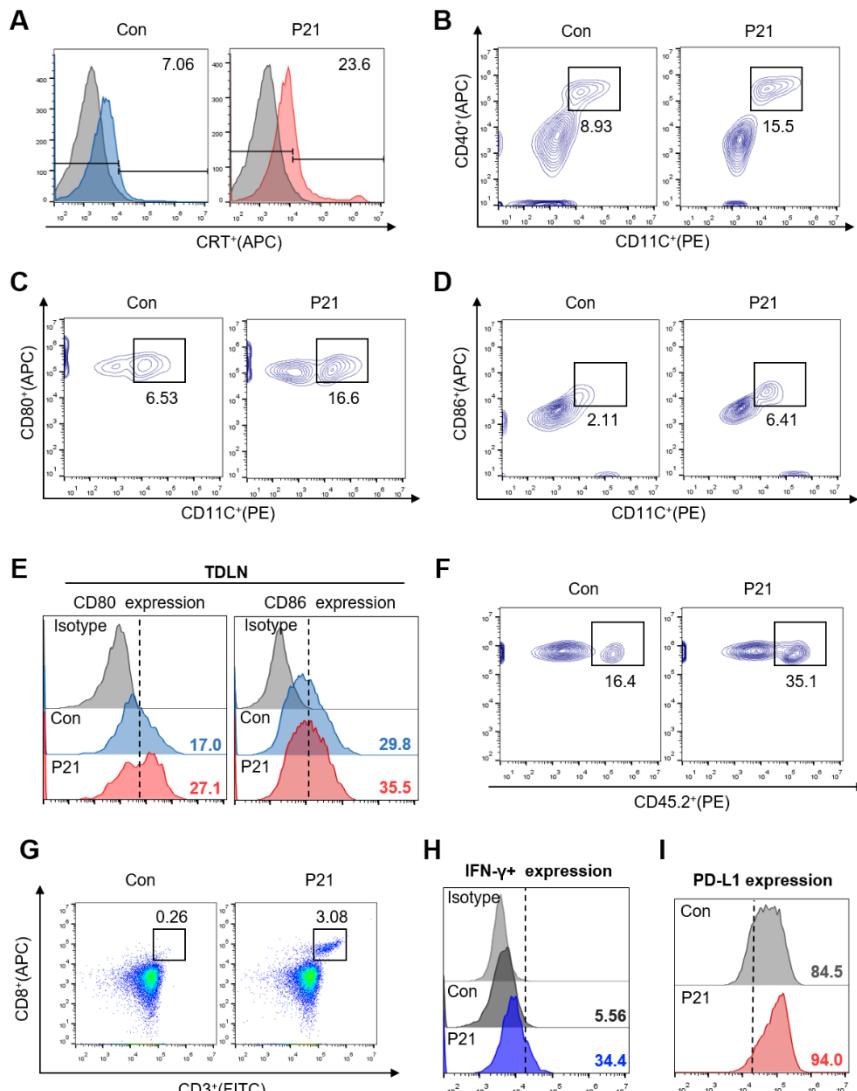
53


54

55

56

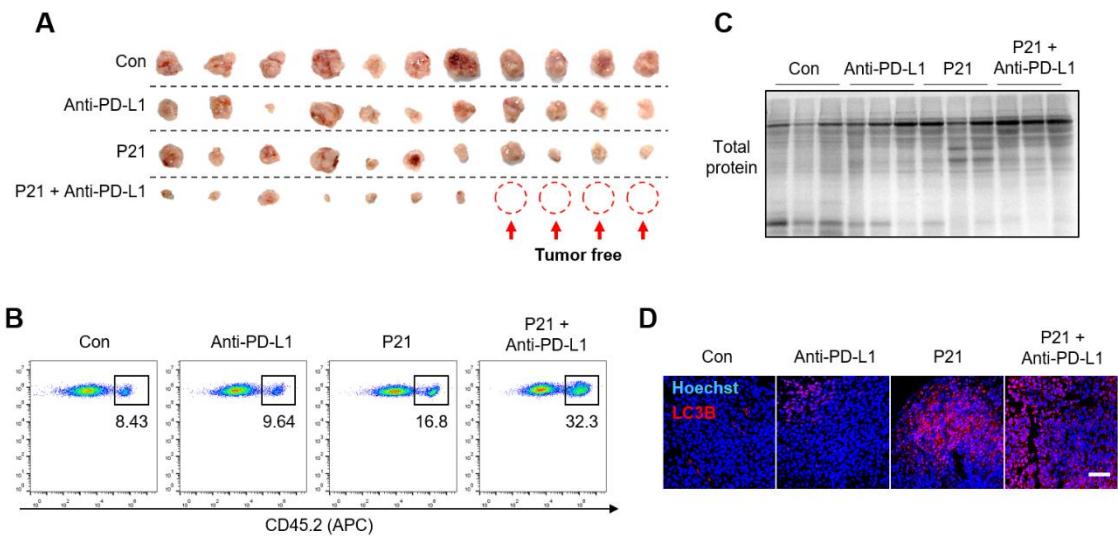
57


58

59

60 **Figure S2.** (A–D) Representative flow cytometry analysis of macrophage phagocytic activity.
61 BMDMs and BMDMs after P21 (150 nM) treatment or no treatment for 24 h were co-cultured
62 with untreated or P21-treated CT26.CL25 and 4T1 cells for an additional 24 h (N: non-treated
63 cancer cells, T: P21-treated cancer cells) ($n = 3$ /group). Phagocytosis (%) was calculated based
64 on the total number of BMDMs. (E and F) Expression of DC maturation markers
65 (CD11C $^{+}$ CD40 $^{+}$ or CD86 $^{+}$) measured by flow cytometry. Data are presented as the relative
66 mean fluorescence intensity against the control ($n = 4$ /group). Data are presented as the mean
67 \pm SD (* $p < 0.05$, *** $p < 0.001$). Statistical significance was calculated by (A, C) one-way
68 ANOVA followed by Tukey's multiple comparisons test.

69



70

71 **Figure S3.** (A) Expression of CRT on tumor tissues measured by flow cytometry
72 (CD45.2⁺CRT⁺) (grey: isotype control). (B–D) Representative flow cytometry data showing
73 tumor-infiltrating mature DCs (CD11c⁺CD40⁺ or CD80⁺ or CD86⁺). (E) Representative flow
74 cytometry data showing mature DCs (CD11c⁺CD80⁺ or CD86⁺) in TDLN. (F) Representative
75 flow cytometry analysis of the total immune cell (CD45.2⁺) proportion in the TME. (G)
76 Representative flow cytometry data of tumor-infiltrating CD8⁺ T cells (CD45.2⁺CD3⁺CD8⁺).
77 (H) Representative flow cytometry analysis of IFN- γ ⁺-expressing and (I) PD-L1-expressing
78 cells in the TME.

79

81 **Figure S4.** (A) Representative photographs of tumors after 22 days of treatment ($n = 11$ /group).
82 (B) Representative flow cytometry analysis of the total immune cell ($CD45.2^+$) proportion in
83 the TME. (C) Coomassie staining of the total protein abundance to normalize HMGB1
84 expression in tumor tissues ($n = 3$ /group). (D) Representative immunofluorescence images of
85 LC3B expression (red) in tumor tissues. The nuclei were stained with Hoechst 33342 (blue)
86 (scale bar = 50 μ m; $n = 3$ -4/group).

