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Method S1: Identification of prognostic metabolic reprogramming-associated genes (PMGs) 
A list of molecules involved in metabolic reprogramming-associated pathways was 

obtained from curated gene sets of Kyoto Encyclopedia of Genes and Genomes (KEGG) in the 
Gene Set Enrichment Analysis (GSEA) database1. With this extracted gene list, the expression 
profiles of metabolic reprogramming-associated genes (MGs) in the control and NBL cohorts 
were extracted. A differential expression analysis was subsequently conducted to identify 
aberrantly expressed MGs in patients with NBL using the limma package in R. The 
chromosome locations of MGs were obtained from annotations supported by the Ensembl 
database2.  

A univariate Cox proportion hazard regression analysis was performed using the survival 
package in R to further screen the PMGs in MG expression profiles and evaluate the association 
between each MG and the overall survival time of each patient in the NBL cohort; MGs with p-
values < 0.05 were considered PMGs. 

 
Method S2 Construction of the MPS based on PMGs 

In the training cohort, least absolute shrinkage and selection operator (LASSO) was first 
applied to further narrow the group of candidate PMGs, and thereby the risk of overfitting was 
accessible to minimization. A multivariable Cox hazard regression analysis was conducted 
using the stepwise method using Akaike information criterion (AIC) to eliminate the PMGs 
with multicollinearity3, thereby the MPS was identified for modeling. 

LASSO and Cox regression analyses were performed using the glmnet, rms and survival 
packages, and the MPS was modeled with the following formula: 

𝐌𝐌𝐌𝐌𝐌𝐌 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 = � 𝜷𝜷𝒊𝒊 × 𝑬𝑬𝒊𝒊
𝒏𝒏

𝒊𝒊=𝟏𝟏
 

where n represents the total number of PMGs included in the 
𝐌𝐌𝐬𝐬𝐌𝐌𝐌𝐌𝐌𝐌𝐬𝐬𝐌𝐌𝐌𝐌𝐬𝐬  𝐩𝐩𝐬𝐬𝐬𝐬𝐩𝐩𝐩𝐩𝐬𝐬𝐬𝐬𝐌𝐌𝐌𝐌𝐬𝐬 𝐬𝐬𝐌𝐌𝐩𝐩𝐩𝐩𝐌𝐌𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬, 𝜷𝜷𝒊𝒊 represents the regression coefficient of gene i, and 𝑬𝑬𝒊𝒊 
represents the log transformed expression of gene i.  

 
Method S3 Exploration of identified MGs describing NBL metabolism  

MGs associated with metabolic reprogramming in NBL were investigated using Gene 
Ontology (GO) annotation and KEGG enrichment analysis with the clusterProfiler package in 
R4. A biological understanding of the MPS in risk groups was attained using a Gene Set 
Enrichment Analysis (GSEA, version 4.0.3), and the reference list of genes was a curated gene 
set from KEGG that was provided by GSEA1, 5. GO and KEGG analyses were also conducted in 
STRING (string-db.org version 11.0) to obtain an understanding of the biological functions of 
key PMGs constructing the MPS (kPMGs). 

Protein-protein interactions (PPIs) among kPMGs were analyzed using STRING. The 
transcription factor (TF) and kPMG regulatory networks were identified using the protocol 
described below. A list of TFs involved in tumor progression was collected from the Cistrome 
database6, and the differentially expressed TFs (DETFs) in NBL were extracted by referring to 
this list and based on a differential expression analysis using limma in R. Thus, Spearman’s 
correlation coefficients were calculated to identify the regulatory relationships between DETFs 
and kPMGs, and Spearman’s correlation coefficients > 0.4 and p-values < 0.01 were considered 
regulatory relationships. 



 
Method S4 Elucidation of cellular components of specific immune microenvironment of 
MPS-I and MPS-II NBLs 

Estimation of stromal and immune cells in malignant tumor tissues using expression data 
(ESTIMATE) algorithm is a sophisticated algorithm which designed for measuring the degree 
of infiltration of cancer cells and different normal cells by exploiting the unique properties of 
tumor cell transcriptional profiles7, its robustness is validated in various cancers including 
NBL7, 8. The present study employed ESTIMATE algorithm which provided by ESTIMATE 
package in R, to quantify the global tumor-microenvironment into four characterized indictors, 
including Stromal score, Immune score, ESTIMATE score, and Tumor purity. Where, those 
indictors represent infiltration abundance of stromal cells, immune cells, overall normal cells, 
and tumor cells, respectively. Since the resultant data met skew distribution, grouped 
comparison was performed with Wilcoxon test, and Spearman coefficients evaluated their 
correlation. All p-values were corrected using Benjamini–Hochberg method to avoid false 
positive results. 

To further dissect the detailed atlas of various immune cells’ infiltration, single-sample 
Gene Sets Enrichment Analysis (ssGSEA) was conducted for independently measuring 28 types 
of immune cellular components that infiltrated in each NBL clinical samples, and outline the 
comprehensive view of immune cells’ infiltration of MPS-I and MPS-II NBL. This typical 
method was elaborated in our previous work8. Briefly, ssGSEA was performed for 
transcriptome data of each NBL sample by GSVA and GSEABase packages in R, the referred 
gene sets used in this program was published gene sets of 28 types of immune cellular 
components9. For exhibition of atlas of identified dysregulation of immune cellular 
components, of which the enrichment scores were scaled using pheatmap packages. 
Furthermore, the kernel density estimation was performed for each NBL sample by ggridges 
package, to describe the density distribution of each immune cellular components in the MPS-
I and MPS-II NBL. The interactive network of these components was delineated by ggcor 
package with Spearman coefficient, which also employed for assessing the correlation between 
these and MPS. 

 
Method S5 Exploration of inflammatory microenvironment of MPS-identified MPS-I NBL 

GO gene sets describing biological process (BP), cellular component (CC) and molecular 
function (MF) were obtained from Gene Set Enrichment Analysis (GSEA) dataset, and then 45 
gene sets associated with inflammation were extracted for independently estimating the 
inflammatory microenvironment of each NBL sample. For exhibition of inflammatory 
microenvironment atlas, pheatmap package was also employed to scale the enrichment score 
of corresponding inflammatory components of each sample. Correlation analyses were 
conducted using Spearman coefficient, and further interactive network analyses were 
performed with Cytoscape software. 

 
Method S6 Exploration of potential therapeutic molecular targets for MPS-I and MPS-II NBL 

Molecules with promising potential for targeted therapies, including immune 
microenvironment-associated molecules and inflammation-associated molecules8, 10, were 
included for potential therapeutic targets' detection. As pervious reported, molecules with 



significantly different expression level between MPS-I and MPS-II NBL were deemed the 
promising therapeutic targets. 

 
Method S7 Cell viability measurement 

Human NBL cell lines of SKNSH and SKNAS were purchased from Procell Life 
Science&Technology Co.,Ltd. (Wuhan, China). SKNSH cells were grown in Minimum Essential 
Medium (Gibco®, USA) supplemented with 10% FBS (Gibco®, USA), 1% penicillin–
streptomycin (Beyotime Company, China). SKNAS cells were grown in Dulbecco's Modified 
Eagle Medium (Gibco®, USA) supplemented with 10% FBS (Gibco®, USA), 1% penicillin–
streptomycin (Beyotime Company, China). All cells viability assays were performed according 
to the CCK-8 Kit (Beyotime Company, China). Compounds were tested at appropriate serial 
concentrations, with each concentration duplicated five times. Cells were exposed to treatment 
for 48 h, and the absorbance was measured at 450 nm with a microplate reader (ELX808, BioTek, 
German). The IC50 values were calculated using GraphPad Prism version 5.0. For the following 
other assays, cells were treated with etoposide an AZD7762 according to their corresponding 
IC50. 
 

Method S8 Cell proliferation assay 

The 5-ethynyl-20-deoxyuridine (EdU) incorporation assay was designed to accurately 
quantify the DNA duplication that could direct quantify the cell proliferation ratio. The 
inhibition of cell proliferation impacted by etoposide an AZD7762 was determined by EdU 
assay according to our previous publication[11]. Cells were exposed to treatment for 48h, and 
were stained for analyses in digital microscope system (IX81, Olympus). Each experiment was 
carried out in triplicate. 
 
Method S9 Cell migration measurement 

According to the previous research, the inhibition effect of etoposide an AZD7762 on NBL 
cells’ migration ability were quantified using cell wound healing assay[12]. After cell wounds 
created in the 6-wells plates, all cells were exposed to treatment for 48h, and digital microscope 
system (IX81, Olympus) and Image-Pro Plus 6.0 were used to analyzed the cell wound healing 
ratio at 0, 24, and 48h. Each experiment was carried out in triplicate. 
 
Method S10 Cell invasion measurement 

Transwell assay was employed to estimate the inhibition effects of etoposide an AZD7762 
on NBL cells invasion. The 24-transwell plates were covered with Matrigel matrix at a 1:8 
dilution ratio. 2 × 105 cells in 200 µL of corresponding medium without FBS were placed in the 
upper chamber, with 800 µL corresponding medium containing 20% FBS being placed in the 
lower chamber. After incubation for 48 h at 37°C with 5% CO2, the cells that had invaded 
through the bottom chambers were fixed with 4% paraformaldehyde for 20 min and then 
stained with 0.05% crystal violet for 30 min. The amount of invaded cells was calculated by 
observation under a microscope. Each experiment was carried out in triplicate. 
 
Method S11 Cell colony formation measurement 

Cells were seeded into 6-well plates at 500 cells per well, separately, and were exposed to 



treatment. Two weeks later, the cells were fixed in 75% alcohol for 30 min and stained with 0.05% 
crystal violet for 30 min. The colonies imaged under a microscope and calculated using the 
Image-Pro Plus 6.0. The experiments were performed in triplicate to calculate the mean. 
 
Method S12 Flow cytometry to assess apoptosis 

The rate of apoptosis was assessed by flow cytometry. Briefly, treated cells were collected 
by centrifugation at 300 g for 5 min and rinsed twice with pre-chilled PBS. Next, collected cells 
were carefully resuspended in 100 µl of binding buffer at concentration of 1×106 cells/ml. 10 µl 
7-Aminoactinomycin D (7-AAD) and 5 µl phycoerythrin (PE)-labeled Annexin V (Yeason, 
Shanghai, China) were added, followed by staining at room temperature for 20 min in the dark, 
and then raised cell suspension to 500 µl with binding buffer for estimating apoptotic rate by 
flow cytometry (Becton-Dickinson and Company). The experiments were performed in 
triplicate to calculate the mean. 

 
Method S13 TdT mediated dUTP Nick End Labeling (TUNEL) assays 

TUNEL Apoptosis Detection Kit (Yeason, Shanghai, China) was used to detect the 
breakage of nuclear DNA in cells and tissues during the late stages of apoptosis. For cells slices, 
the treated cells were fixed with 4% paraformaldehyde for 20 min and rinsed twice with PBS. 
The fixed cells were incubated with 0.2% Triton X-100 for 5 min for permeabilization, and 
rinsed twice with PBS. Then, according to the instructions provided by the manufacturer, cells 
were stained using FITC-12-dUTP Labling Mix and Recombinant TdT Enzyme, and cells nuclei 
were stained using DAPI. For paraffin-embedded tissue sections, sections were treated with 
xylene and gradient ethanol, followed by permeabilization with 20 µg/mL Proteinase K 
solution. Subsequent TUNEL experimental steps were similar to those for cell slices. All stained 
sections were analyzed in digital microscope system (IX81, Olympus). Each experiment was 
carried out in triplicate. 

 
Method S14 Mitochondrial membrane potential measurement 

Enhanced mitochondrial membrane potential assay kit with JC-1 (Beyotime, Shanghai, 
China) was employed for measuring the mitochondrial membrane potential. Briefly, treated 
cells were incubated with JC-1 solution for 20min at 37℃, and rinsed twice using staining buffer 
for analyses in digital microscope system (IX81, Olympus). Then, DAPI/PI staining was 
employed to avoid the necrosis-induced false positive results of JC-1 assays. Each experiment 
was carried out in triplicate. 
 
Method S15 Western blotting 
Western blotting was used to quantify the proteins expression of treated cells, and the protocol 
was according to our previous publications [12]. Primary antibodies: cleaved caspase-3 (cat. no. 
9661; Cell Signaling Technology, US); cleaved caspase-9 (cat. no. 20750; Cell Signaling 
Technology, US); bax (cat. no. 5023; Cell Signaling Technology, US); bcl-2 (cat. no. 4223; Cell 
Signaling Technology, US); CD209 (cat. no. PHX6604; Abmart, China); β-tubulin (cat. no. 
PA4302; Abmart, China); GAPDH (cat. no. MA9166; Abmart, China). Secondary antibody: 
horseradish peroxidase-conjugated goat anti-rabbit (cat. no. GB23303; Servicebio, Inc.); 
horseradish peroxidase-conjugated goat anti-mouse (cat. no. GB23301; Servicebio, Inc.). A 



chemiluminescence luminol reagent (cat. no. G2014, Servicebio, China) was used to visualize 
the protein bands employing the Image Lab 5.2 quantitative assay system (Bio-Rad 
Laboratories, US). The relative protein levels were determined by normalizing to β-tubulin or 
GAPDH. 

 
Method S16 MPS-identified MPS-I and MPS-II xenograft NBL models 

The Ethics Committee of Renmin Hospital of Wuhan University approved the study 
protocol and all the animal research procedures were performed according to the institutional 
ethical standards and/or those of the national research committee and according to the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards. The collected 
1.5×107 MPS-identified MPS-I cells (SKNAS) and MPS-II cells (SKNSH) were washed in serum-
free medium, suspended in 100 µL of PBS, and implanted subcutaneously into the dorsal area 
of male BALB/c nude mice (5 weeks old), purchased from Beijing Life River Experimental 
Animal Technology Co. Ltd. (Beijing, China).  

When the tumor volume was approximately 150 mm3, MPS-I and MPS-II nude mice were 
respectively randomly divided into three groups (n = 8 per group), which were treated via 
caudal vein injection with normal saline, AZD7762 (5.2μM/g), and etoposide(14.6μM/g). The 
tumor volume was measured every 3 days. The tumor volume (TV) was calculated using the 
following formula: TV (mm3) = d2 × D/2, where d and D represent the shortest and longest 
diameters, respectively. After 36 days, the mice were euthanized their tumors were isolated, 
and hematoxylin-eosin (H&E) staining were employed for histological assessment 
 
Method S17 Immunofluorescence and immunohistochemistry 

Immunofluorescence and immunohistochemistry were performed according to our 
previous publication with some modifications [12]. Ki67 immunofluorescence was employed 
for proliferation capacity measurement, and immunohistochemistry of cleaved caspase-3, 
cleaved caspase-9, bax, and bcl-2 were used to evaluate the activity of mitochondrial pathway. 
Primary antibodies: ki67 (cat. no. 9129; Cell Signaling Technology, US); cleaved caspase-3 (cat. 
no. 9661; Cell Signaling Technology, US); cleaved caspase-9 (cat. no. 20750; Cell Signaling 
Technology, US); bax (cat. no. 5023; Cell Signaling Technology, US); bcl-2 (cat. no. 4223; Cell 
Signaling Technology, US); CD209 (cat. no. PHX6604; Abmart, China). Secondary antibodies: 
Alexa Fluor 594 -conjugated goat anti-rabbit (cat. no. 8889; Cell Signaling Technology, US); 
Alexa Fluor 594 -conjugated goat anti-mouse (cat. no. 8890; Cell Signaling Technology, US); 
biotinylated goat anti-rabbit secondary antibody (cat. no. ab205718; Abcam). Image Pro Plus 
6.0 analysis software (Media Cybernetics, Inc.) was used to analyze the results. 

 
Method S18 MPS-I and MPS-II NBL pulmonary metastasis models 

The male BALB/c nude mice (5 weeks old) were respectively randomly divided into six 
groups (n = 8), in which three groups were used to establish MPS-I NBL lung metastasis models, 
and other groups were used to construct MPS-II models. The collected MPS-I cells (SKNAS) 
and MPS-II cells (SKNSH) were washed in serum-free medium, suspended in 120 µL of PBS, 
and cells were injected via caudal vein into mice. One week after tail vein injection, the mice 
started to receive treatment of normal saline, AZD7762, and etoposide according their risk 
groups, respectively. Survived mice were sacrificed after 8 weeks of treatment to evaluate 



pulmonary metastasis, and hematoxylin-eosin (H&E) staining were employed for histological 
assessment. The overall survival time analyses were preformed using K-M curve and log-rank 
test. 
 
Method S19 Pre-processing, clustering, annotation, and differential expressed gene 
identification of single-cell RNA-seq (scRNA) data 
The scRNA-seq data and clinical characteristics of 16 NBL patients was obtained from GEO 
(GSE137804). Seurat (version 4.3.0.1) was employed to pre-process scRNA-seq data. The 
doublets were detected and removed using DoubletFinder (version 2.0.3). Afterwards, low-
quality cells were filtered out if 1) RNA counts < 500; 2) recognizable genes < 300 or > 6000; 3) 
mitochondrial genes > 20%. Gene expression was normalized, and the batch effect among 
different samples was corrected by Harmony (version 1.0). The top 2000 highly variable genes 
were distinguished for Principal Component (PC) Analysis (PCA), and the identified PCs were 
used to cluster cells into different populations. All clusters were annotated as cells with 
biological identity by well-known biomarkers. Finally, the differential expressed genes and the 
biomarker genes of each cell type were identified, they should meet: 1) |log2 fold change| > 
0.25; 2) adjusted p-value < 0.05. 
 
Method S20 Measurement of the cell cycle, copy number variations, stemness of each cell types 
The cell cycle was inferred using built-in functions of Seurat. InferCNV (version 1.12.0) were 
utilized to calculate the CNV level. The copy-number karyotyping of aneuploid tumors were 
generated using copy-kat, to distinguish non-malignant and malignant cells. In the present 
study, the endothelial cells were set as reference to identify NBL cells with significant 
chromosomal copy number variation. AUCell algorithm was conducted to estimate stemness 
of each single cell with stemness gene set, which included ABCG2, BMI1, CD34, CD44, 
CTNNB1. EPAS1, EZH2, HIF1A, KDM5B, KLF4, LGR5, MYC, NANOG, NES, NOTCH1, 
POU5F1, SOX2, TWIST1, ZFP42, ZSCAN4. 
 
Method S21 Enrichment analyses, Gene Set Enrichment Analyses (GSEA), and AUCell 
The enrichment analyses were conducted with GO BP terms as reference. The positively 
expressed genes within each cell type or subtype were sent into enrichment analyses to detect 
its major biological functions. GSEA was a ranking-based method to directly quantify the 
degree of up- or down-regulation of all GO BP terms. With all RNA expression profiling as 
input, it offered more detailed information other than enrichment analyses. The AUCell 
algorithm allowed us to quantify the activities of given gene set/pathways/biological processes 
within each single cells. Its high-resolution nature allowed us to gain more detailed biological 
insights. The enrichment and GSEA analyses were conducted using ClusterProfiler (version 
4.6.0), and AUCell was conducted with AUCell (version 1.24.0). 
 
Method S22 Differentiation potential and developmental lineages tracing 
With CytoTRACE (version 0.3.3), the relative differentiation state of each single cell was 
recovered from RNA expression profiling without any additional data or knowledge. Briefly, 
a KNN graph with undirected information among cells was deduced to determine the time 
order of cells. Afterwards, a transfer matrix was generated to predict differentiation potential 



of cells. 
Slingshot (version 2.6.0) was employed to trace the development lineages of NBL cells. Briefly, 
Slingshot was a two-steps method, included 1) the inference of the global lineage structure and 
2) the inference of pseudotime variables for cells along each lineage. A minimum spanning tree 
was generated from identified clusters to detect key elements of the global lineage structure, 
i.e., the number of lineages and where they branch. Afterward, simultaneous principal curves 
were utilized to fit smooth branching curves to these lineages, and then translated the 
knowledge of global lineage structure into stable estimates of the underlying cell-level 
pseudotime variable for each lineage. 
 
Method S23 Cell-cell communication deduction 
CellChat package (version 1.4.0), which integrated network analyses, patterns identification, 
and many learning methods, was employed to detect and quantify the communication among 
cells. For determine the sender, receiver, mediator, and influencer of each signaling, CellChat 
utilized various metrics of weighted directed graph, including outgoing and incoming degree, 
etc. 
 
Method S24 Metabolite flux balance analyses at single-cell level 
The scFEA (version 1.1.2) was employed to recover metabolite flux from scRNA-seq data. The 
scFEA utilizes a meticulously restructured human metabolic map with targeted metabolic 
modules, alongside an innovative probabilistic model that applies flux balance constraints to 
scRNA-seq data. Additionally, it incorporates a cutting-edge graph neural network 
optimization solver. This system effectively captures the complex progression from 
transcriptome to metabolome by employing multi-layer neural networks, which adeptly 
handle the non-linear relationship between enzymatic gene expressions and reaction rates. 
The metabolic signaling analyses were conducted using MetaboAnalyst (version 6.0), which 
employed Small Molecule Pathway Database (SMPDB) as its reference. Furthermore, GSEA 
was conducted to quantify the dysregulation level of metabolic signalings. 
 

Method S25 Energy Metabolite flux analyses based on LC/MS-MS 

HPLC grade acetonitrile (ACN) and methanol (MeOH) were purchased from Merck 
(Darmstadt, Germany). MilliQ water (Millipore, Bradford, USA) was used in all experiments. 
All standards were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Zhenzhun, etc. 
Formic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA). Stock solutions of 
standards were prepared at 1 mg/mL in MeOH and other solutions. All stock solutions were 
stored at -20°C. Stock solutions were diluted with MeOH to working solutions prior to analysis. 
The sample was thawed on ice, 100 µL ultrapure water extract was added to resuspend the cell 
pellet. The 50 µL cell suspension was divided and 200 µL methanol (precooled at -20°C) was 
added and vortexed for 2 minutes at 2500 rpm. The sample was frozen in liquid nitrogen for 5 
min, removed on ice for 5 min, then the sample was vortexed for 2 min and the previous step 
was repeated 3 times. The sample was centrifuged at 12000 rpm for 10 min at 4°C. Transfer 200 
µL of the supernatant into a new centrifuge tube and place the supernatant in a -20°C 
refrigerator for 30 minutes, then centrifuge the supernatant at 12000 rpm for 10 minutes at 4°C. 



After centrifugation, 180 µL of the supernatant was transferred through a protein precipitation 
plate for further LC-MS analysis. The left 50 µL cell suspension was frozen and thawed three 
times, centrifuged at 12,000 rpm for 10 minutes, and the supernatant was collected to determine 
the protein concentration using the BCA Protein Assay Kit. 
The sample extracts were analyzed by LC-ESI-MS/MS system (Waters ACQUITY H-ClassD, 
https://www.waters.com/nextgen/cn/zh.html; MS, QTRAP® 6500+ System, https://sciex.com /). 
The analytical conditions were as follows 
Amide method: HPLC: column, ACQUITY UPLC BEH Amide (i.d.2 .1×100 mm, 1.7 µm); 
solvent system, water with 10 mM ammonium acetate and 0.3% ammonium hydroxide (A), 90% 
acetonitrile/water (V/V) (B); the gradient was started at 95% B (0-1.2 min), decreased to 70% B 
(8 min), 50% B (9-11 min), finally ramped back to 95% B (11.1-15 min); flow rate, 0.4 mL/min; 
temperature, 40°C; injection volume, 2 µL. 
Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on a triple quadrupole 
linear ion trap (QTRAP) mass spectrometer, QTRAP® 6500+ LC-MS/MS system, equipped with 
an ESI Turbo Ion Spray interface, operating in both positive and negative ion modes and 
controlled by Analyst 1.6.3 software (Sciex). The operating parameters of the ESI source were 
as follows: ion source, ESI+/-; source temperature 550 ℃ ; ion spray voltage (IS) 5500 V
（positive）,-4500 V(negative); curtain gas (CUR) was set at 35 psi, respectively. Energy and its 
metabolites were analyzed using scheduled multiple reaction monitoring (MRM). Data 
acquisition was performed using Analyst 1.6.3 software (Sciex). All metabolites were quantified 
using Multiquant 3.0.3 software (Sciex). Mass spectrometer parameters, including declustering 
potentials (DP) and collision energies (CE) for individual MRM transitions, were performed 
with further DP and CE optimization. A specific set of MRM transitions was monitored for each 
time period according to the metabolites eluted within that time period. 
 
Method S26 Statistical analyses and visualization 

For bioinformatical research part. The raw data were collated by Practical Extraction and 
Report Language (PERL, version 5.30.0) and R software (version 3.61). The statistical analysis 
and all software packages were applied using R software (version 3.61); the visualization of 
the statistical results and interactive network data analysis were performed using Cytoscape 
(version 3.7.1). A detailed description of the statistical analyses is provided below. The 
differential expression analysis used the Wilcoxon test, and the genes with a 
│log2foldchange│ > 1 and an FDR < 0.05 were considered aberrantly expressed MGs, in 
which the FDR represents the p-value corrected using the false discovery rate method. The 
correlation analysis conducted according to the types of variables, and Pearson’s correlation 
coefficients were calculated for continuous variables and Spearman’s correlation coefficients 
were calculated for discrete variables. Comparisons of gene expression, and IC50 of candidate 
drugs between different groups were performed using the Wilcoxon test. For the PPI analysis, 
we comprehensively considered the degree and combined score to identify a core gene. 

For biological validation part. The statistical analysis and all software packages were 
applied using R software (version 3.61), and the visualization of the statistical results were 
performed using OriginPro (version 9.8). Grouped comparison (n > 2) were preformed using 
Fisher’s or Welch’s one-way ANOVA test (a pairwise comparison using Games-Howell test). 

 



 
 

 
 

  



Results S1 Proportions of each INSS stages and INRG stratifications within MPS subgroups 

The proportions of each INSS stages and INRG stratifications within MPS-identified different 

NBL subtypes were investigated. As indicated in Fig. S3, there are much more patients with 

INSS stage 4 and INRG M in the MPS-identified MPS-I group than those in the MPS-II group. 

The proportion of each INSS stage and INRG stratification in NBL patients was almost similar 

in MPS-II group. Specifically, INSS stage 1 and INRG L1, L2 patients were slightly more than 

other stages and INRGs in the MPS-II group, these findings also validated in the test cohort. 

The difference of distribution of stages and INRGs between MPS-identified MPS-I and MPS-II 

groups reached statistical significance, and such findings indicated that the results draw from 

the analysis of INRGs and stages might incorrectly grouped those patients with favorable 

prognosis to the high-risk stages and INRGs, Unfortunately, such hazardous classification 

might most likely makes catastrophic effect on the individualized treatment to these patients. 

 

Results S2 MPS outperforms a genetic prognostic signature based on all genes 

We tested whether MPS outperforms a genetic prognostic signature based on all genes. 

Differential genes analyses identified 2332 upregulated genes and 1559 down-regulated genes 

(Fig.S4 A), in which a total of 1144 genes were confirmed as prognostic genes by iterative 

univariable Cox regression. Then, LASSO regression maintained 40 genes for model training 

(Fig.S4 B and C), and finally multi-variable Cox regression included 25 genes to build genetic 

prognostic signature based on entire genes (GPSA, Table.S3). However, as shown with TROC 

results (Fig.S4 D), the AUC value of GPSA was less than that of the present MPS in the test 

cohort (0.836 vs. 0.860), which indicated that the MPS still presented superior accuracy than 

GPSA for prognostic estimation. The reason might be that the gene capacity of GPSA was 

highly greater than that of MPS (25 vs. 12), such greater number of genes used rendered 

GPSA more noise and made GPSA more likely overfit. Such trend was also evidenced by 

higher AUC value of GPSA achieved in the training cohort. Alternatively, overfitting in the 

training cohort compromised the robustness and generalization of GPSA, which finally 

limited the performance of GPSA applied in the independent test cohort. In conclusion, MPS 

showed better suitability to the potential clinical application, as compared with GPSA. 

 



Result S3 Potential molecular targets detection 

Considering that immunotherapy against immune checkpoint has achieved certain clinical 

progress, we examined the profile differences of key immune checkpoint genes expressed in 

MPS-I and MPS-II NBL samples, and found that only LAG3 manifested differential 

expression between MPS-stratified subgroups (Fig.6 D). High expression of LAG3 in MPS-II 

NBL indicated that clinical treatment of MPS-II patients could benefit from the 

immunotherapy targeting LAG3, which could potentially update the current clinical 

immunotherapy for NBL. 

Subsequently, we further examined the expression of inflammatory-immune related 

molecules that have been reported to be associated with NBL progression in order to explore 

the potential therapeutic molecular targets [13]. As demonstrated in Fig.7 D, total 13 key 

inflammatory-immune related molecules were differentially expressed between MPS-I and 

MPS-II NBL, which include chemokine related molecules, interleukin family, T cell marker 

CD4, etc. Notably, high expression of NFKB1 oncogene was found in MPS-identified MPS-I 

NBL, which strongly indicated that the NFKB1-targeted drugs would greatly facilitate the 

clinical treatment of MPS-I NBL since a NF-κB pathway mainly regulated by NFKB1 has been 

widely confirmed to play an important role in tumor progression.  

 

Result S4 Generation of a nomogram for clinical application 

The MPS was visualized as a nomogram to facilitate its clinical application, and thereby a 

quantitative approach was generated for clinicians (Fig.S9). The usage of nomogram is 

described below. The calculated value of the MPS to the “MPS” axis in the nomogram is 

identified, and then a straight line is drawn vertically downward from the corresponding 

point on the axis to determine the 1-, 3- and 5-year survival rates of patients with NBL. 

 

Result S5 Pre-processing, clustering, and annotation of scRNA-seq data 

Initially, quality control measures were executed on the scRNA-seq data derived from 16 

NBL patients. This process involved the exclusion of duplicates and cells of subpar quality, as 

evidenced in Figure S10. Subsequently, the most variable 2000 genes were discerned (Figure 



S11A), facilitating the application of the Harmony algorithm. This algorithm was instrumental 

in integrating scRNA-seq data from disparate samples and correcting batch effects, as 

depicted in Figure S11B. Following this, a Principal Component Analysis (PCA) was 

conducted to isolate the foremost 15 principal components, which were then used to cluster 

all cells at a resolution of 1.2 (Figures S11C and D). In the final stage, a variety of biomarkers 

were employed to ascertain the identities of the distinct cell clusters, as shown in Figure 

S12A. 

 

 

  



Discussion S1 

Lymphocyte activation gene-3 (LAG3), emerging as a third IR used in the current targeted 

immune therapy, has achieved promising efficacy in a couple of solid tumors such as non-

small cell lung cancer[14]. Recently, LAG3 administration turns to be helpful in offsetting the 

defects occurred in the CTLA4 and PD1-PDL1-targeted immunotherapy of cancer, thus gains 

considerable interest and current scrutiny[14]. NFKB1, as one of five subunits of NF -κB, has 

been widely identified to play an important role in tumorigenesis[15]. For example, the 

increased expression of NFKB1 contributes to the progress of breast, colorectal and pancreatic 

cancer[15]. Interestingly, LAG3 and NFKB1 have been revealed in our study to serve as key 

components in the immune-inflammatory microenvironment of NBL. Briefly, significant up-

regulation of LAG3 expression was shown in MPS-identified MPS-II NBL, whereas 

remarkable increasing expression of NFKB1 exhibited in MPS-identified MPS-I NBL. In view 

of such significant expression trends in the subtypes of NBL identified with MPS, LAG3 and 

NFKB1-targeted molecular immunotherapeutic strategy might be highly promising and 

would greatly promote the clinical treatments of NBL in the near future.   
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Figure S1 Validation of MPS in an external test cohort. 

 

  



Figure S2 For the subgroups of patients that classified by clinical classification approaches, 

MPS allowed further accurate risk-stratification. 

  



Figure S2 For the subgroups of patients that classified by clinical classification approaches, 

MPS allowed further accurate risk-stratification. 

   



Figure S3 Distribution of INSS stages and INRG stratifications in the MPS-identified NBL 

subtypes. 

 



Figure S4 Construction and validation of genetic prognostic signature based on all genes. 

 

  



Figure S5 Comprehensive view of dysregulated pathways between MPS-I and MPS-II NBL 

  



Figure S6 In the test cohort, different expressions of kPMGs in MPS-I and MPS-II NBL 

patients. 

 

  



Figure S7 The infiltration atlas of immune cells upon NBL samples in the training and test 

cohort. 

 

  



Figure S8 Necrosis levels of cells in control and treated groups. 

 

  



Figure S9 Nomogram of MPS. 

 

  



Figure S10 Quality control of scRNA-seq data 

  



Figure S11 Clustering of scRNA-seq data 

  



Figure S12 Annotation and proportion of cell types 

  



Figure S13 CNV inference

  



Figure S14 Major biological processes of each NBL cell type 

 

  



Figure S15 Differential metabolites between MPS subtyped cells 

 

 

  



Table S1 Clinical parameters and sources for samples. 

Clinical parameters TARGET GSE49711 GTEx GSE85047 
Age ≥18 117 192 NA 1 

(Month) <18 33 306 NA 275 

Gender 
Female 62 211 3679 NA 
Male 88 287 6104 NA 

MYCN 
Not Amplified 119 401 NA 218 

Amplified 30 92 NA 58 

INSS 
stage 

1 NA 121 NA 46 
2 1 78 NA 36 
3 9 63 NA 43 
4 120 183 NA 124 

4S 20 53 NA 27 
Survival 

status 
Alive 75 393 NA 201 
Dead 75 105 NA 75 

Sample size 150 498 9783 276 

Source 
TARGET 

datasets collated 
by UCSC Xena  

GEO 
GTEx datasets 

collated by 
UCSC Xena  

GEO 

Databases website xenabrowser.net www.ncbi.nlm.nih.gov xenabrowser.net www.ncbi.nlm.nih.gov 
 

  



Table S2 Resultant data of iterative univariable cox regression for metabolic genes. 

Metabolic 
genes 

Hazard Ratio (95% 
CI) 

p-value 
Metabolic 

genes 
Hazard Ratio (95% 

CI) 
p-value 

FMO2 0.741(0.637-0.863) 1.11E-04 PLA2G2A 1.119(1.042-1.203) 2.05E-03 
LDHA 1.124(1.068-1.184) 7.62E-06 CKMT2 1.377(1.141-1.662) 8.47E-04 

OGDHL 1.282(1.121-1.466) 2.77E-04 CYP3A43 1.173(0.922-1.493) 1.93E-01 
GALC 1.194(1.055-1.352) 5.02E-03 CA5A 1.015(0.906-1.138) 7.95E-01 

AKR1C2 0.67(0.55-0.815) 6.35E-05 CPS1 1.079(0.93-1.251) 3.16E-01 
TPO 0.636(0.499-0.811) 2.66E-04 ENPP6 1.176(1.056-1.31) 3.20E-03 

PDE1C 0.805(0.642-1.008) 5.85E-02 PFKFB2 1.271(1.074-1.504) 5.36E-03 
MBOAT1 1.165(0.972-1.397) 9.89E-02 CDA 1.232(1.034-1.467) 1.95E-02 

XDH 1.278(1.177-1.388) 5.37E-09 DHRS3 0.994(0.877-1.126) 9.23E-01 
AOC2 0.897(0.822-0.979) 1.45E-02 ADH6 1.02(0.878-1.183) 7.99E-01 

ALDH3A1 1.828(1.419-2.356) 3.12E-06 BHMT 1.131(1.014-1.263) 2.72E-02 
CA4 1.094(0.942-1.271) 2.40E-01 ENTPD2 0.943(0.854-1.041) 2.42E-01 

HMGCS2 0.922(0.768-1.106) 3.81E-01 AOX1 1.144(0.958-1.366) 1.37E-01 
G6PC2 1.017(0.686-1.508) 9.32E-01 ACPP 0.705(0.547-0.908) 6.88E-03 

GUCY2F 1.002(0.697-1.439) 9.93E-01 GLDC 1.287(1.177-1.407) 3.12E-08 
PCK1 0.96(0.85-1.084) 5.07E-01 ENPP3 0.624(0.486-0.8) 2.02E-04 
ADH4 1.025(0.884-1.188) 7.43E-01 PDE4D 1.376(1.171-1.617) 1.04E-04 
IPMK 0.894(0.825-0.97) 6.75E-03 PDE9A 1.137(0.997-1.298) 5.56E-02 

ACSM1 0.835(0.644-1.081) 1.70E-01 AGMAT 0.953(0.868-1.046) 3.12E-01 
AKR1B10 1.11(0.88-1.401) 3.79E-01 PNLIPRP1 2.023(1.362-3.006) 4.85E-04 

BLVRB 1.076(0.985-1.176) 1.05E-01 UGDH 1.233(1.135-1.34) 7.94E-07 
DGKI 0.945(0.767-1.164) 5.94E-01 CYP1B1 1.13(1.024-1.248) 1.53E-02 

TH 0.977(0.898-1.064) 5.97E-01 GPD1 0.937(0.79-1.111) 4.53E-01 
LCT 1.154(1.033-1.289) 1.13E-02 MAOB 1.111(1.019-1.21) 1.67E-02 

PNLIP 1.146(0.589-2.231) 6.88E-01 NT5C2 1.139(1.036-1.252) 6.94E-03 
GFPT2 1.142(1.005-1.298) 4.19E-02 ITPK1 1.177(1.073-1.292) 5.96E-04 

ACSM2A 0.949(0.774-1.164) 6.17E-01 HK1 1.091(1.034-1.15) 1.47E-03 
UPP2 0.687(0.601-0.785) 4.04E-08 DHRS4L2 1.308(1.159-1.475) 1.32E-05 
GDA 0.57(0.399-0.815) 2.06E-03 INPP4B 1.15(0.953-1.388) 1.45E-01 

PLA2G10 0.985(0.905-1.073) 7.35E-01 CP 1.113(1.001-1.237) 4.78E-02 
CKM 1.12(0.961-1.304) 1.46E-01 LIPC 0.768(0.611-0.965) 2.33E-02 

ADCY8 1.054(0.96-1.157) 2.73E-01 DDC 1.022(0.948-1.101) 5.71E-01 
ALDH1A1 1.085(1.022-1.153) 7.65E-03 B4GALT1 1.142(1.053-1.239) 1.34E-03 
SULT2B1 1.256(0.994-1.588) 5.64E-02 GAL3ST1 1.285(1.146-1.441) 1.73E-05 
CKMT1A 1.226(1.017-1.477) 3.29E-02 LDHAL6A 1.002(0.928-1.082) 9.68E-01 
AMY1C 0.727(0.618-0.856) 1.25E-04 ACSM4 0.869(0.791-0.955) 3.54E-03 
GATM 0.987(0.827-1.179) 8.87E-01 ALDH3B1 1.658(1.414-1.943) 4.59E-10 
NAT1 1.574(1.277-1.939) 2.05E-05 PRODH 1.033(0.824-1.296) 7.78E-01 
TDO2 0.923(0.756-1.127) 4.32E-01 AKR1C4 0.887(0.821-0.958) 2.16E-03 



RDH8 1.26(0.978-1.622) 7.39E-02 GLUD2 0.93(0.893-0.969) 5.37E-04 
SGPP2 0.825(0.699-0.973) 2.24E-02 ASS1 1.208(1.125-1.297) 1.78E-07 

NT5C1A 0.87(0.825-0.916) 1.87E-07 PLA2G4E 1.68(1.091-2.586) 1.86E-02 
RPE65 0.772(0.656-0.908) 1.83E-03 DHRS9 0.877(0.677-1.136) 3.20E-01 
MGST1 1.03(0.9-1.179) 6.67E-01 WARS 1.149(1.078-1.225) 2.11E-05 
ADH1B 0.978(0.878-1.09) 6.88E-01 ALDH1A2 1.264(1.153-1.385) 5.07E-07 

LPL 1.119(1.02-1.228) 1.69E-02 CHST13 0.879(0.816-0.947) 6.49E-04 
PCCB 1.418(1.228-1.638) 2.08E-06 DGAT2 1.434(1.212-1.697) 2.77E-05 

PRPS1L1 0.923(0.874-0.975) 4.26E-03 GSTA1 0.875(0.75-1.022) 9.14E-02 
CYP4F3 0.934(0.762-1.146) 5.14E-01 SPHK1 1.151(1.034-1.28) 9.76E-03 
P4HA2 1(0.83-1.203) 9.97E-01 ACSS1 0.927(0.753-1.141) 4.76E-01 
LRAT 1.144(0.993-1.318) 6.28E-02 PIP5K1B 0.894(0.655-1.221) 4.81E-01 

CKMT1B 1.134(0.998-1.287) 5.28E-02 ACADL 0.9(0.777-1.044) 1.64E-01 
MGLL 1.129(0.973-1.31) 1.09E-01 ASPA 0.998(0.839-1.187) 9.83E-01 

POLR1A 1.17(1.075-1.274) 3.02E-04 PLCD3 1.211(0.986-1.487) 6.84E-02 
ACSS3 0.607(0.47-0.785) 1.39E-04 GGT6 1.111(0.891-1.386) 3.49E-01 

GK2 1.027(0.83-1.27) 8.09E-01 ADCY1 0.741(0.654-0.84) 2.76E-06 
PDE1A 1.31(1.092-1.571) 3.64E-03 UROC1 0.934(0.797-1.093) 3.94E-01 
UGT2B7 0.856(0.611-1.199) 3.66E-01 CYP2J2 1.136(0.969-1.332) 1.16E-01 

ACP6 1.73(1.433-2.089) 1.17E-08 CYP2B6 0.682(0.589-0.79) 3.24E-07 
GUCY2D 1.05(0.97-1.136) 2.24E-01 ADH7 2.119(0.676-6.647) 1.98E-01 
CYP1A1 1.527(1.289-1.81) 1.02E-06 PLA2G5 1.105(0.916-1.333) 2.98E-01 
AMY1B 0.703(0.577-0.856) 4.67E-04 PIK3C2G 0.927(0.638-1.347) 6.90E-01 

DBH 1.041(0.976-1.11) 2.21E-01 PNLIPRP2 1.551(1.16-2.073) 3.08E-03 
CYP2A13 0.892(0.834-0.953) 6.92E-04 ALOX12 0.804(0.722-0.895) 7.22E-05 

KYNU 1.254(0.984-1.598) 6.75E-02 CYP4A11 0.995(0.855-1.157) 9.44E-01 
ALDH3B2 1.262(0.942-1.689) 1.18E-01 GSTT2 0.894(0.829-0.963) 3.33E-03 

ACSL1 1.123(1.037-1.217) 4.49E-03 AMY1A 0.665(0.542-0.815) 8.76E-05 
ACACB 0.875(0.687-1.114) 2.79E-01 SGMS2 1.174(0.976-1.412) 8.94E-02 

IDO2 0.791(0.676-0.924) 3.23E-03 ACHE 0.762(0.689-0.842) 1.03E-07 
HPD 1.02(0.905-1.15) 7.45E-01 GPX3 1.114(0.982-1.264) 9.46E-02 
CA1 1.209(1.055-1.386) 6.34E-03 DHDH 0.902(0.836-0.974) 8.20E-03 

PLA2G2D 0.889(0.837-0.944) 1.30E-04 MIOX 1.304(1.127-1.51) 3.61E-04 
CES1 1.013(0.884-1.162) 8.51E-01 PLCG2 1.168(0.984-1.387) 7.64E-02 
AK5 1.032(0.891-1.194) 6.77E-01 CYP4A22 0.949(0.824-1.092) 4.65E-01 

MARS2 0.918(0.853-0.987) 2.08E-02 PLA2G6 1.038(0.871-1.236) 6.80E-01 
PLA2G2A 1.119(1.042-1.203) 2.05E-03 ACY3 1.032(0.883-1.207) 6.94E-01 

CKMT2 1.377(1.141-1.662) 8.47E-04 UGT8 1.269(1.15-1.4) 2.00E-06 

  



Table S3 Coefficients of genetic prognostic signature based on all genes. 

Genes Coefficients Hazard ration (95%CI) p value 

RNF112 -0.35301 0.703 (0.587-0.841) 0.000125 
CHRNA5 0.260173 1.297 (1.062-1.585) 0.010836 
PTMAP1 -0.11417 0.892 (0.831-0.958) 0.001596 

SKA1 0.123819 1.132 (0.981-1.305) 0.089003 
OMP -0.13861 0.871 (0.807-0.940) 0.000373 

ZYG11A 0.120345 1.128 (1.010-1.260) 0.032928 
ALX3 0.085981 1.090 (1.003-1.184) 0.041121 
GP2 1.314878 3.724 (1.618-8.571) 0.001988 

KRT78 1.280171 3.597 (1.354-9.560) 0.01026 
EDN2 -0.36395 0.695 (0.493-0.979) 0.037599 

TRBVB 0.181696 1.199 (1.001-1.436) 0.04847 
TERT 0.270956 1.311 (1.181-1.455) 3.49E-07 

SHROOM3 0.284615 1.329 (1.064-1.661) 0.012263 
FOLR1 0.246598 1.280 (1.073-1.526) 0.00608 
ULBP2 -0.14238 0.867 (0.749-1.004) 0.056971 
CCKBR 0.291523 1.338 (1.120-1.599) 0.001339 
GPR31 -0.08326 0.920 (0.851-0.995) 0.037634 
RAC3 0.38123 1.464 (1.153-1.858) 0.001728 

HIST1H2BM 0.073953 1.077 (0.992-1.169) 0.076397 
FBXO43 0.356414 1.428 (1.179-1.730) 0.000272 
ECEL1 -0.20408 0.815 (0.736-0.903) 9.58E-05 
FA2H 0.323697 1.382 (1.026-1.861) 0.033061 

PLA2G16 0.356639 1.429 (1.162-1.756) 0.000699 
OR13C2 -0.08398 0.919 (0.843-1.003) 0.057964 

ARSF -0.19853 0.820 (0.689-0.975) 0.024772 

  



Table S4 Dysregulated pathways between MPS-I and MPS-II NBL 

Pathways 
Training cohort Test cohort 

log2FC p-value log2FC p-value 
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0.157953 6.06E-08 0.211855 6.88E-10 
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 0.210444 6.20E-07 0.279816 4.14E-10 
KEGG_GALACTOSE_METABOLISM 0.246784 0.000211 0.353769 3.19E-07 
KEGG_ASCORBATE_AND_ALDARATE_METABOLISM 0.143018 1.19E-05 0.183875 1.32E-07 
KEGG_FATTY_ACID_METABOLISM 0.069631 0.039824 0.108408 0.015817 
KEGG_PURINE_METABOLISM 0.131546 6.61E-16 0.151351 4.86E-16 
KEGG_PYRIMIDINE_METABOLISM 0.144599 3.67E-17 0.164042 7.88E-18 
KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 0.07133 3.49E-05 0.106139 8.00E-09 
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 0.182945 2.81E-11 0.24382 1.50E-16 
KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 0.157645 2.51E-15 0.184298 3.26E-16 
KEGG_ARGININE_AND_PROLINE_METABOLISM 0.109048 4.37E-06 0.16039 5.55E-10 
KEGG_HISTIDINE_METABOLISM 0.032918 0.009636 0.044871 0.008952 
KEGG_TYROSINE_METABOLISM 0.033974 0.021163 0.038263 0.041415 
KEGG_TRYPTOPHAN_METABOLISM 0.067595 0.019518 0.110578 9.07E-05 
KEGG_BETA_ALANINE_METABOLISM 0.042425 0.028213 0.067803 0.000915 
KEGG_SELENOAMINO_ACID_METABOLISM 0.088657 2.27E-06 0.111369 2.12E-09 
KEGG_GLUTATHIONE_METABOLISM 0.115313 1.45E-07 0.16032 1.60E-11 
KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0.173223 1.09E-05 0.258307 4.70E-11 
KEGG_GLYCEROLIPID_METABOLISM 0.107567 0.030849 0.165982 4.60E-05 
KEGG_PYRUVATE_METABOLISM 0.060979 0.000278 0.084408 2.24E-05 
KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 0.113132 3.43E-06 0.146818 3.00E-09 
KEGG_PROPANOATE_METABOLISM 0.117283 2.53E-07 0.150817 2.94E-07 
KEGG_BUTANOATE_METABOLISM 0.049278 8.27E-06 0.047147 1.81E-05 
KEGG_RIBOFLAVIN_METABOLISM 0.146445 0.002252 0.201661 2.56E-05 
KEGG_SULFUR_METABOLISM -0.08488 5.74E-06 -0.05354 0.001129 
KEGG_DRUG_METABOLISM_OTHER_ENZYMES 0.05867 0.0054 0.118372 6.96E-06 

  



Table S5 Biological processes, cell components and molecular functions overrepresented by 

aberrantly expressed MGs. 

Ontology Description p-value FDR Count 

BP 

Organic hydroxy compound metabolic process 1.70E-36 3.03E-33 47 
Alcohol metabolic process 1.28E-29 1.14E-26 36 
Small molecule catabolic process 4.27E-19 1.52E-16 29 
Ammonium ion metabolic process 3.30E-20 1.47E-17 23 
Primary alcohol metabolic process 1.02E-24 6.07E-22 20 
Alpha-amino acid metabolic process 3.55E-16 7.04E-14 20 
Isoprenoid metabolic process 2.04E-16 4.55E-14 17 
Retinoid metabolic process 3.93E-17 1.17E-14 16 
Diterpenoid metabolic process 1.15E-16 2.92E-14 16 
Terpenoid metabolic process 5.01E-16 8.93E-14 16 

     

CC 

Organelle outer membrane 2.31E-05 2.29E-03 9 
Outer membrane 2.50E-05 2.29E-03 9 
Mitochondrial matrix 6.35E-05 3.87E-03 13 
Mitochondrial outer membrane 4.04E-04 1.85E-02 7 

     

MF 

Cofactor binding 1.52E-19 4.08E-17 31 
Oxidoreductase activity, acting on CH-OH 
group of donors 

4.26E-16 5.71E-14 17 

Coenzyme binding 1.23E-10 3.65E-09 17 
Oxidoreductase activity, acting on the CH-OH 
group of donors, NAD or NADP as acceptor 

1.56E-15 1.40E-13 16 

Carboxylic ester hydrolase activity 8.71E-15 5.84E-13 16 
Iron ion binding 2.49E-12 9.52E-11 15 
Monooxygenase activity 5.94E-13 3.19E-11 13 
Oxidoreductase activity, acting on the aldehyde 
or oxo group of donors 

1.10E-12 4.91E-11 10 

Aldo-keto reductase (NADP) activity 1.35E-11 4.54E-10 8 
Oxidoreductase activity, acting on the aldehyde 
or oxo group of donors, NAD or NADP as 
acceptor 

4.62E-10 1.24E-08 8 

FDR represents a p-value corrected by FDR method, only top 10 GO terms in each aspect were 
shown. 
Abbreviations: biological processes (BP); cell components (CC); molecular functions (MF);  

  



Table S6 Pathways overrepresented by aberrantly expressed MGs. 
 

Description p-value FDR Count 

Retinol metabolism 1.07E-16 1.02E-14 18 
Chemical carcinogenesis 8.66E-14 5.51E-12 17 
Metabolism of xenobiotics by cytochrome 
P450 

3.75E-13 1.79E-11 16 

Purine metabolism 1.79E-09 4.27E-08 16 
Tyrosine metabolism 2.13E-17 4.07E-15 15 
Drug metabolism - cytochrome P450 2.50E-12 9.55E-11 15 
Arachidonic acid metabolism 8.80E-11 2.80E-09 13 
Glycolysis / Gluconeogenesis 2.43E-10 6.64E-09 13 
Glycerolipid metabolism 1.19E-08 2.27E-07 11 
Phenylalanine metabolism 1.11E-08 2.27E-07 7 

FDR represents a p-value corrected by FDR method, only top 10 pathways were shown. 
  



Table S7 Biological processes and molecular functions overrepresented by kPMGs. 

  Description FDR 

Biological 
Process 

drug metabolic process 4.62E-09 
small molecule metabolic process 2.38E-05 
drug catabolic process 1.20E-04 
small molecule biosynthetic process 2.30E-03 
midgut development 4.00E-03 
cellular metabolic process 7.40E-03 
purine nucleobase metabolic process 8.00E-03 
cellular response to xenobiotic stimulus 8.70E-03 
organic substance metabolic process 8.70E-03 
oxidation-reduction process 9.10E-03 
cellular lipid metabolic process 9.30E-03 
organophosphate metabolic process 9.80E-03 
hormone metabolic process 9.80E-03 
cellular catabolic process 9.80E-03 
lipid biosynthetic process 1.11E-02 
biosynthetic process 1.11E-02 
nucleotide metabolic process 1.11E-02 
antibiotic catabolic process 1.11E-02 
cellular aldehyde metabolic process 1.79E-02 
organonitrogen compound metabolic process 1.79E-02 
primary alcohol metabolic process 1.93E-02 
sphingolipid biosynthetic process 2.85E-02 
pyrimidine-containing compound metabolic process 3.27E-02 
cellular biosynthetic process 3.62E-02 
organic acid metabolic process 3.84E-02 
xenobiotic metabolic process 3.84E-02 
nucleoside phosphate catabolic process 3.84E-02 
organic substance biosynthetic process 3.84E-02 
organic hydroxy compound metabolic process 3.84E-02 
vitamin metabolic process 4.05E-02 
liver development 4.34E-02 
response to estradiol 4.34E-02 
cellular response to chemical stimulus 4.34E-02 
purine-containing compound metabolic process 4.34E-02 
granulocyte activation 4.42E-02 
myeloid cell activation involved in immune response 4.51E-02 
sphingolipid metabolic process 4.51E-02 
fatty acid derivative metabolic process 4.63E-02 
protein tetramerization 4.90E-02 



Molecular 
Function 

catalytic activity 3.51E-05 
3-chloroallyl aldehyde dehydrogenase activity 4.20E-04 
aldehyde dehydrogenase (NAD) activity 1.70E-03 
oxidoreductase activity 1.70E-03 
monooxygenase activity 2.44E-02 
oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 

4.04E-02 

ligase activity 4.04E-02 
heme binding 4.04E-02 
cofactor binding 4.04E-02 

 

  



Table S8 KEGG pathways analyses for kPMGs. 

Description FDR 
Metabolic pathways 9.44E-08 
Drug metabolism - cytochrome P450 1.30E-04 
Tyrosine metabolism 2.20E-03 
Retinol metabolism 4.80E-03 
Metabolism of xenobiotics by cytochrome P450 4.80E-03 
Purine metabolism 2.31E-02 

 

  



Table S9 Univariable Cox regression for ALDH1A2. 
 

Cohort Hazard ratio (95% CI) p-value Factor 

Train 1.26 (1.15-1.38) 5.07E-07 Hazardous factor 
Test 1.25(1.14-1.36) 9.50E-07 Hazardous factor 

Abbreviation: confidence interval (CI) 

  



Table S10 Regulation network of transcription factors and kPMGs. 

TFs kPMGs Correlation coefficient p-value Regulation 
AFF4 ALDH3B1 0.453367 1.26E-17 positive 
AFF4 ASS1 0.727443 5.92E-54 positive 
AFF4 ALDH1A2 0.507778 2.24E-22 positive 
AFF4 CYP2B6 -0.47562 1.82E-19 negative 

ARNTL ASS1 0.604341 3.04E-33 positive 
ARNTL ALDH1A2 0.407858 2.95E-14 positive 
ASCL1 ASS1 -0.49236 6.07E-21 negative 
CBX2 ASS1 -0.57458 1.66E-29 negative 
CBX2 ACHE -0.43204 5.53E-16 negative 
EGR2 ASS1 0.475754 1.77E-19 positive 
ELF1 ALDH3B1 0.433403 4.38E-16 positive 
ELF1 ASS1 0.663736 5.26E-42 positive 
ELF1 ALDH1A2 0.420051 4.13E-15 positive 
IRF5 ALDH3B1 0.486779 1.92E-20 positive 
IRF5 ASS1 0.654389 1.70E-40 positive 
IRF5 ALDH1A2 0.452395 1.50E-17 positive 
KLF5 ASS1 0.401592 7.86E-14 positive 
LIN9 ASS1 -0.56789 1.02E-28 negative 
LIN9 ACHE -0.42109 3.48E-15 negative 
MXI1 ALDH3B1 0.435142 3.24E-16 positive 
MXI1 ASS1 0.698005 4.85E-48 positive 
MXI1 ALDH1A2 0.465068 1.41E-18 positive 
MXI1 CYP2B6 -0.44673 4.20E-17 negative 

MYBL2 ASS1 0.46906 6.55E-19 positive 
MYBL2 ALDH1A2 0.463221 2.00E-18 positive 
MYBL2 CYP2B6 -0.44217 9.48E-17 negative 
NCAPG FMO2 -0.43324 4.50E-16 negative 
NCAPG ACHE -0.42182 3.08E-15 negative 
NR3C1 ALDH3B1 0.410918 1.82E-14 positive 
NR3C1 ASS1 0.695792 1.26E-47 positive 
NR3C1 ALDH1A2 0.453272 1.28E-17 positive 
NR3C1 CYP2B6 -0.41179 1.58E-14 negative 
PAX5 ASS1 0.489496 1.10E-20 positive 
PAX6 ALDH3B1 0.465993 1.18E-18 positive 
PAX6 ASS1 0.700221 1.84E-48 positive 
PAX6 ALDH1A2 0.500515 1.08E-21 positive 
PAX6 CYP2B6 -0.49079 8.41E-21 negative 

PPARG ASS1 0.519274 1.71E-23 positive 
RARG ALDH3B1 0.453614 1.20E-17 positive 
RARG ASS1 0.686515 6.34E-46 positive 
RARG ALDH1A2 0.440089 1.37E-16 positive 
RFX2 ALDH3B1 0.446457 4.42E-17 positive 



RFX2 ASS1 0.660479 1.79E-41 positive 
RFX2 ALDH1A2 0.4158 8.28E-15 positive 

SMAD3 ALDH3B1 0.48881 1.27E-20 positive 
SMAD3 ASS1 0.757038 9.79E-61 positive 
SMAD3 ALDH1A2 0.450962 1.96E-17 positive 

SOX4 ALDH3B1 -0.50865 1.85E-22 negative 
SOX4 ASS1 -0.7115 1.17E-50 negative 
SOX4 ALDH1A2 -0.49086 8.30E-21 negative 
SOX4 CYP2B6 0.421345 3.34E-15 positive 

STAT6 ASS1 0.606905 1.39E-33 positive 
TCF7L1 ASS1 0.603849 3.53E-33 positive 
TCF7L2 ASS1 0.478731 9.80E-20 positive 
TEAD4 ALDH3B1 0.508358 1.97E-22 positive 
TEAD4 ASS1 0.695834 1.24E-47 positive 

WWTR1 ALDH3B1 0.417539 6.24E-15 positive 
WWTR1 ASS1 0.633475 2.65E-37 positive 

 

  



Table S11 Dysregulated immune cellular components between MPS-I and MPS-II NBL. 

 

Immune cellular 
components 

Training cohort Test cohort 
log2FC p-value log2FC p-value 

APC co-stimulation -0.274 7.26E-13 -0.27478 4.59E-12 
CCR -0.12972 9.99E-13 -0.11903 3.15E-10 

Check-point -0.10625 5.57E-07 -0.08085 0.000153 
Cytolytic activity -0.17838 1.67E-05 -0.19619 6.63E-05 

DCs -0.30848 1.29E-07 -0.27287 3.19E-06 
iDCs -0.11308 0.002849 0.077968 0.039349 

Inflammation-
promoting -0.151 1.95E-05 -0.13196 0.000762 
Mast cells -0.21276 0.04006 -0.19652 0.014358 

Neutrophils -0.08698 2.80E-08 -0.07581 2.84E-06 
T cell co-inhibition -0.1052 9.94E-05 -0.08029 0.001504 

T cell co-stimulation -0.21422 2.97E-09 -0.22057 9.77E-09 
Th1 cells -0.15116 7.08E-05 -0.19037 7.67E-06 
Th2 cells -0.08322 0.001607 -0.0868 0.000411 

TIL -0.12699 2.48E-06 -0.09884 0.000173 

  



Table S12 Dysregulated inflammatory components between MPS-I and MPS-II NBL. 

 

GO 
Accession 

Training cohort Test cohort 

log2FC p-value log2FC p-value 
GO:0002349 0.150354 3.84E-06 0.1927 1.65E-10 
GO:0002438 -0.12744 5.45E-09 -0.07909 0.000294 
GO:0002536 0.09041 0.000115 0.138653 7E-09 
GO:0002544 -0.08713 6.23E-05 -0.08006 0.000247 
GO:0002673 -0.0965 6.15E-08 -0.07251 8.65E-05 
GO:0002675 -0.0824 0.000212 -0.05503 0.017238 
GO:0002676 -0.20808 3.38E-12 -0.20587 4.93E-11 
GO:0002677 -0.19176 5.92E-06 -0.1862 1.5E-05 
GO:0002861 -0.10478 1.59E-07 -0.06625 0.001252 
GO:0002862 -0.16528 6.41E-13 -0.13284 2.67E-08 
GO:0002865 -0.3498 1.06E-09 -0.29473 4.66E-06 
GO:0044546 0.081589 0.00057 0.093742 0.000145 
GO:0060266 0.093534 0.000416 0.148498 6.71E-08 
GO:0106014 0.095634 0.001428 0.175741 5.71E-08 
GO:0150078 -0.13232 2.06E-06 -0.0945 0.000846 
GO:1900227 0.073134 0.000399 0.05206 0.016377 
GO:0072557 -0.16204 9.33E-12 -0.10831 8.45E-06 
GO:0097169 -0.09003 0.032236 0.09094 0.039518 

 

 


