Supplementary data

Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: Preventing thrombosis and reducing cardiac ischemia/reperfusion injury

without bleeding complications

Yuyang Song^{1,2,*}, Laura A. Bienvenu^{1,2,3,*}, Viktoria Bongcaron^{1,2,4}, Shania A. Prijaya^{1,2,4},

Ana C. Maluenda⁴, Aidan P. G. Walsh¹, James D. McFayden^{2,4}, Geoffrey A. Pietersz^{2,4},

Karlheinz Peter^{2,4,5,#,^}, Xiaowei Wang^{1,2,3,5,#,^}

- ¹ Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- ² Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.
- ³ Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia.
- ⁴ Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- ⁵ Department of Medicine, Monash University, Melbourne, VIC, Australia.

*equally contributing first authors

[#]equally contributing senior authors

[^]Corresponding authors

Supplementary figures

Figure S1

Figure S1. Flow cytometry assay demonstrating platelet-activation markers bound to ADP-activated platelets Bar charts display mean fluorescence intensity (MFI) values of 5 independent experiments. **A.** PAC-1 FITC; and **B.** CD62P PE bound to activated platelets and increased MFI, but not with non-activated platelets. Data analyzed using Welch's t-test.

Figure S2. Targ-HSA-TAP bound specifically to activated human platelets. Flow cytometry assay was conducted using anti-Penta-His AlexaFluor 488 antibody, which bound our constructs. Platelets were either non-activated or activated with ADP. Bar charts display mean fluorescence intensity (MFI) values of 5 independent experiments. No binding was observed in samples with non-targ-HSA-TAP at **A.** 0.5 μ g/ml; **B.** 1 μ g/ml; **C.** 2 μ g/ml; and **D.** 5 μ g/ml. Specific binding to activated platelets was observed in samples with targ-HSA-TAP

at **E.** 0.5 μg/ml; **F.** 1 μg/ml; **G.** 2 μg/ml; and **H.** 5 μg/ml. Data in A–C, G, and H analyzed using Student's t-test. Data in D–F analyzed using Welch's t-test.

Figure S3. Targ-HSA-TAP and PAC-1 targeted activated glycoprotein IIb/IIIa receptors competitively. Bar charts show mean fluorescence intensity (MFI) values of 5 independent experiments. PAC1-FITC bound to activated platelets when incubated with PBS (without constructs) or non-targ-HSA-TAP (2 μ g/mL). After incubating activated platelets with a small dose of targ-HSA-TAP (2 μ g/mL), most binding sites were blocked, resulting in less binding with PAC1-FITC. Finding is concentration-dependent. Data analyzed using one-way ANOVA with Tukey's post-test analysis.

Figure S4. Baseline echocardiography data were similar across all groups. Cardiac parameters were measured from parasternal long-axis B-mode images. A. Fractional shortening; B. Cardiac output (CO); C. Systolic volume; and D. Diastolic volume, all n = 8– 10. Numerical results shown as mean \pm SD. Data in A–C analyzed using one-way ANOVA with Tukey's post-test analysis. Data in D analyzed using Brown–Forsythe's ANOVA test with Dunnett's T3 multiple comparisons.

Figure S5

Figure S5. Systemic diagram showing left ventricle of mouse heart in parasternal longaxis view. To obtain strain analysis data, left ventricle is divided into six sections and colored lines correlate to each section. Strain analysis calculated by tracking six anatomical locations: Anterior (Ant.) Base, Ant. Mid, Ant. Apex, Posterior (Pos.) Apex, Pos. Mid, and Pos. Base.

Video legends

Video S1: *In vivo* echocardiographic examination of a naïve mouse. The video was imaged from a parasternal long-axis view via B-mode and shows normal wall movement and cardiac contractility at Week 4.

Video S2: *In vivo* echocardiographic examination of a PBS-treated mouse. The video was imaged from a parasternal long-axis view via B-mode and shows impaired wall movement and reduced cardiac contractility at Week 4 post-MI.

Video S3: *In vivo* echocardiographic examination of a non-targ-HSA-TAP treated mouse.

The video was imaged from a parasternal long-axis view via B-mode and shows impaired wall movement and reduced cardiac contractility at Week 4 post-MI.

Video S4: *In vivo* echocardiographic examination of a targ-HSA-TAP treated mouse. The video was imaged from a parasternal long-axis view via B-mode and shows normal wall movement and preserved cardiac contractility at Week 4 post-MI.