1	Figure S1. Cluster defining gene signatures in global landscape. (A) t-SNE plot of 43 clusters.
2	Each point is a single cell colored by raw cluster assignment. (B) Heatmap showing the expression
3	of top ten marker genes for each cluster. (C) t-SNE plot, color-coded for expression (gray to red)
4	of immune cell marker gene (PTPRC/CD45). (D) t-SNE plot of all clusters. Each point is a single
5	cell colored by patients. (E) Bar plot showing the fraction of immune cells belonging to each
6	cluster for each patient. (F) t-SNE plot of all clusters for each patient. Each point is a single cell
7	colored by raw cluster assignment.
8	
9	Figure S2. Cluster characterization of cancer cells. (A) and (B) t-SNE plot of cancer cells. Each
10	point is a single cell colored by raw cluster (A) and cluster assignment (B). (C) Heatmap showing
11	the expression of top ten marker genes for each cluster. (D) Bar plot showing the fraction of cells
12	belonging to each patient for each subpopulation. (E) The hierarchical heatmap showing large-
13	scale CNVs of all chromosomes (columns) in cancer cell subsets.
14	
15	Figure S3. Multi-color immunofluorescence staining of CD24, CD47 and ICAM1 in clinical
16	specimen.
17	
18	Figure S4. S100A11 knockdown efficiency and spheroid forming efficiency. S4RT-qPCR was
19	performed for S100A11 in NTC and S100A11-knockdown cells for PLC/PRF/5 and CLC7 cell
20	lines (mean \pm SD).
21	
22	Figure S5. CSCs-TAM crosstalk in HCC. (A) Heatmap showing the number of potential ligand-
23	receptor pairs between TAMs subsets and cancer cells subsets (TAMs as receptors and cancer cells

as ligands). (B) Violin plots overview of M1/M2 canonical marker genes expression. (C) Box plot 24 showing M1/M2 signature in subpopulations of macrophage. Boxplots represent the 25th and 75th 25 percentiles, with midlines indicating the median values. The P-value was calculated using 26 Wilcoxon's rank-sum test and shown at the top of each panel. * represents P-value < 0.05. (D) Pie 27 chart showing relative proportion of macrophage subsets defined by marker genes. (E) Bar plot 28 29 shows compositions of macrophage in each sample. Right Y axis shows the sum of the macrophage in each sample. (F) t-SNE plots highlight the distribution of LGMN⁺/SPP1⁺ TAMs and cancer cell 30 cluster C6. Each dot corresponds to a single cell, colored according to cell type. (G) Venn diagrams 31 32 of the ligand-receptor pairs between TAMs and cancer cells. (H) Bar plot depicts the top five enriched GO terms of ligand-receptor pairs. Y-axis represents the GO term, and the X-axis 33 represents the enrichment significance $(-\log 10 (p-value))$. (I) Box plot showing M2 signature of 34 each sample. Boxplots represent the 25th and 75th percentiles, with midlines indicating the median 35 values. 36

37

Figure S6. Co-culture assays of macrophages and cancer cells, with siRNA knockdown of
individual ligands on (A) cancer cells and (B) macrophages and examined the M1/M2
markers and liver cancer stem cell markers respectively, by qPCR.

41

Figure S7. qPCR revealed that knockdown of GAS6, ADAM9 and ANXA1 could result in
downregulation of S100A11 in HCC cells.

44

Figure S8. In vivo S100A11 knockdown orthotopic liver injection mouse model and
examination of tumor infiltrating macrophages.

2

47

Figure S9. Co-culture of macrophages with PLC/PRF/5 cells. (A), (C) and (E) For the coculture assay, the components of macrophage M0/M1/M2 were measured by toluidine blue staining after co-cultured with PLC/PRF/5 cells for three days. (B), (D) and (F) Bar plots shows migration level of M0/M1/M2 under different condition.

52

Figure S10. Authentication of cell lines used in this study. (A) Short tandem repeat (STR) DNA profiling of MHCC97L and CLC7 cells. (B) PCR confirmation of absence of murine contamination in PLC/PRF/5 and MHCC97L cells. Hepa1-6 is a mouse HCC cell line. Together with human (Hu) HCC samples, they were used as respective controls for testing human and mouse cell lines.

58

Supplementary Figures

D

Ε

D

F

M0 Macrophages co-cultured with PLC/PRF/5

С

M1 Macrophages co-cultured with PLC/PRF/5

Ε

M2 Macrophages co-cultured with PLC/PRF/5

M1 macrophage

M2 macrophage

DNA Marker		MHCC97L		
	MHCC97L	(L-171218744P)		
AMEL	Х, Ү	X, Y		
CSF1PO	11, 13	11, 13		
D13S317	8	8		
D16S539	12	12		
D5S818	12, 13	12, 13		
D7S820	10	10		
TH01	9	9		
TPOX	8	8		
vWA	14	14		
D18551		13, 22		
D21S11		31.2		
D3S1358		15, 16		
D8S1179		12, 13		
FGA		21, 24		
Penta D		8, 9		
Penta E		11, 17		
Number of sl	12			
Total number of alleles in the refer	12			
Percent match 100%				

DNA Marker	CLC7 ⁴	CLC7(HCC) (L-230828748P)
AMEL	Х	Х
CSF1PO	13	13
D13S317	12	12
D16S539	9, 11	9, 11
D5S818	11, 13	11, 13
D7S820	10, 12	10, 12
TH01	7, 9	7
TPOX	8	8
vWA	14, 17	14, 17
D18S51		13, 14
D21S11		30, 33.2
D3S1358		15, 16
D8S1179		13
FGA		23
Penta D		9
Penta E		14,16
Number of sl	13	
Total number of alleles in the refe	14	
Pe	93%	

Supplementary Information

Supplementary Tables

Table S1. Demographic and clinical characteristics of the patients.

	P1	P2	P3	P4	P5	P6	P7	P8	P9
Gender	М	М	М	М	М	F	М	М	М
Age (years)	74	45	77	54	61	73	55	61	65
No. of tumor nodules	1	1	1	1	1	1	1	2	1
Tumor size (cm)	10	13	4.8	3.6	5	9	17	2	2.2
Cellular differentiation (Edmondson grading)	III	III-IV	II-III	III-IV	III-IV	III-IV	III	III-IV	III
Venous invasion	Present	Present	Absent	Present	Present	Present	Present	Present	Absent
Tumor microsatellite	Absent	Present	Absent	Present	Present	Present	Absent	Present	Absent
Liver invasion	Present	Present	Present	Absent	Present	Present	Present	Present	Present
Background liver	Chronic hepatitis	Chronic hepatitis	Cirrhosis	Cirrhosis	Cirrhosis	Chronic hepatitis	Chronic hepatitis	Cirrhosis	Chronic hepatitis
HBV status	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
HCV status	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative
HBV DNA (IU/ml)	6.89 x 10 ³	2.4 x 10 ⁵	8.54 x 10 ⁵	1700	1.9 x 10 ⁶	<10	6.35 x 10 ⁶	<10	3470
Hyperlipidemia	No	No	Unknown	No	No	Yes	No	No	No
Diabetes	Yes	No	No	No	No	Yes	No	No	No
Alcoholism	No	No	No	No	No	No	No	No	No

Table S2. Sequences for the oligos for cloning the shRNA constructs for establishing stable

knockdown.

shRNAs	Oligos
shS100A11 #1	Sense: CCGGCAGCTAGATTTCTCAGAAATTTCTCGAGAAATTCTGAGAAATCTAGCTGTTTTTG Antisense: AATTCAAAAACAGCTAGATTTCTCAGAAATTCTCGAGAAATTCTGAGAAATCTAGCTG
shS100A11 #2	Sense: CCGGGATTGCTGTCTTCCAGAAGTACTCGAGTACTTCTGGAAGACAGCAATCTTTTG Antisense: AATTCAAAAAGATTGCTGTCTTCCAGAAGTACTCGAGTACTTCTGGAAGAAGACAGCAATC

Target gene		Sequence
Human S100A11	Forward	GTGCATCGAGTCCCTGATTG
	Reverse	AGCTAGGCCACCAATCAGAT
Human ICAM1	Forward	AGCGGCTGACGTGTGCAGTAAT
	Reverse	TCTGAGACCTCTGGCTTCGTCA
Human CD24	Forward	GCTCCTACCCACGCAGATTT
	Reverse	GAGACCACGAAGAGACTGGC
Human CD47	Forward	CAATCACGTAAGGGTCTCATAGG
	Reverse	GATGGACTCCGATTTGGAGA
Human EPCAM	Forward	CCATGTGCTGGTGTGTGTGAAC
	Reverse	ACGCGTTGTGATCTCCTTCT
Human CD68	Forward	ATTCACCAGTTCTGCCCACC
	Reverse	GCTTCCCTGGACCTTGGTTT
Human CD80	Forward	TGCTGGCTGGTCTTTCTCAC
	Reverse	GTCCGGTTCTTGTACTCGGG
Human CD86	Forward	CCCCAGTGCACTATGGGAC
	Reverse	CAGGGTCCAACTGTCCGAAT
Human CD204	Forward	CGAAAGTTCGACTGGTCGGT
	Reverse	TGTCCCCCATTGCCGAATTT
Human CD206	Forward	CATCAGGGTGCAAGGAAGGT
	Reverse	TCCATCCGTCCAAAGGAACG
Human CD163	Forward	TCCTTGTGGGATTGTCCTGC
	Reverse	ATGGGAATTTTCTGCAAGCCG
Human HPRT	Forward	CTTTGCTGACCTGCTGGATT
	Reverse	CTGCATTGTTTTGCCAGTGT

 Table S3. Primer sequences used for qRT-PCR analysis.