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Abstract 

Rationale: Accumulating evidence illustrated that the reprogramming of the super-enhancers (SEs) 
landscape could promote the acquisition of metastatic features in pancreatic cancer (PC). Given the 
anatomy-based TNM staging is limited by the heterogeneous clinical outcomes in treatment, it is of great 
clinical significance to tailor individual stratification and to develop alternative therapeutic strategies for 
metastatic PC patients based on SEs. 
Methods: In our study, ChIP-Seq analysis for H3K27ac was performed in primary pancreatic tumors 
(PTs) and hepatic metastases (HMs). Bootstrapping and univariate Cox analysis were implemented to 
screen prognostic HM-acquired, SE-associated genes (HM-SE genes). Then, based on 1705 PC patients 
from 14 multicenter cohorts, 188 machine-learning (ML) algorithm integrations were utilized to develop 
a comprehensive super-enhancer-related metastatic (SEMet) classifier. 
Results: We established a novel SEMet classifier based on 38 prognostic HM-SE genes. Compared to 
other clinical traits and 33 published signatures, the SEMet classifier possessed robust and powerful 
performance in predicting prognosis. In addition, patients in the SEMetlow subgroup owned dismal survival 
rates, more frequent genomic alterations, and more activated cancer immunity cycle as well as better 
benefits in immunotherapy. Remarkably, there existed a tight correlation between the SEMetlow subgroup 
and metastatic phenotypes of PC. Among 18 SEMet genes, we demonstrated that E2F7 may promote PC 
metastasis through the upregulation of TGM2 and DKK1. Finally, after in silico screening of potential 
compounds targeted SEMet classifier, results revealed that flumethasone could enhance the sensitivity of 
metastatic PC to routine gemcitabine chemotherapy.  
Conclusion: Overall, our study provided new insights into personalized treatment approaches in the 
clinical management of metastatic PC patients. 
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Introduction 
Metastasis is a major cause of mortality and 

morbidity, which poses a great threat to the clinical 
management of cancer, especially in pancreatic cancer 
(PC). Most PC patients followed with the systemic 
disease at the time of diagnosis, and only 8% of 
patients survived more than five years after diagnosis 
[1]. Moreover, 50% of newly identified PC patients 
tend to be diagnosed with metastasis, of which liver 
metastasis ranks first as the leading cause of death [2]. 
Although surgical resection of the primary tumor 
remains the most effective strategy for prolonging 
patient survival, 85-90% of patients are incurable due 
to the systemic nature of the disease and the failure to 
detect the disease at an early stage [3, 4]. Over the past 
decades, immunotherapy and molecular target 
therapy have revolutionized the therapeutic outcomes 
in most solid tumors. Unfortunately, due to the high 
heterogeneity and complicated immune microen-
vironment, few metastatic PC patients could benefit 
from these novel therapies [5, 6]. Thus, in the era of 
personalized treatment, early intervention of 
“pro-metastatic” PC patients and identification of 
sensitive drugs is imperative. 

Super-enhancers (SEs) are exceptionally huge 
clusters of enhancers that have been reported in 
multiple cell types [7, 8]. Compared to typical 
enhancers, SEs collectively bind a larger number of 
transcription factors to facilitate the transcription of 
many target genes. H3K27ac (acetylation of the lysine 
residue at N-terminal position 27 of the histone H3 
protein) is correlated with higher transcription 
activation and is therefore characterized as one of the 
frequently-used indicators for SEs [9]. Research on 
super-enhancers has provided insights into the 
mechanisms that regulate gene expression and cell 
identity, and therefore the screening and identifi-
cation of hub genes driven by SEs have suggested 
new strategies for the exploration of underlying 
biological processes [10, 11]. Otherwise, elevated SE 
activities are reported to be involved in the metastasis 
of multiple cancers. SE was found to recruit transcrip-
tion factors FOXA2 and HNF1A and upregulated the 
liver-specific gene transcription, thereby driving 
colorectal cancer (CRC) liver metastasis [12]. By 
hijacking super-enhancers and subverting anti-tumor 
immunity, BAF155 methylation drives metastasis in 
triple-negative breast cancer [13]. Dong J [14] also 
revealed that disrupting SEs by BET inhibitors is an 
effective approach to suppress the growth and 
metastasis of human head and neck squamous cell 
carcinoma (HNSCC) by eliminating cancer stem cells. 
Through SEs of ENO2 and SRC, METTL14 was 
demonstrated to drive metastasis and glycolytic 
reprogramming in the renal cell carcinoma (RCC) 

[15]. Notably, reprogramming of the enhancer 
landscape was also proved to promote the acquisition 
of metastatic traits in PC [16, 17], but solid evidence 
validating the association between PC metastasis and 
SEs is lacking. With the help of multiple powerful 
machine-learning (ML) algorithms and multicenter 
cohorts, we can accurately characterize cancer 
metastasis and identify pro-metastasis modules at the 
resolution of SE level to better investigate the impacts 
of metastasis on PC. 

In this study, based on 38 prognostic hepatic 
metastasis-acquired, super-enhancer-related (HM-SE) 
genes derived from SE profilings through ChIP-Seq 
analysis of primary pancreatic tumors (PTs) and 
hepatic metastases (HMs), we developed a super- 
enhancer-related metastatic (SEMet) classifier via 188 
ML algorithm integrations in multicenter datasets. 
The prognostic and predictive value of the SEMet 
classifier was further explored and validated through 
a comprehensive analysis of 1 training cohort, 10 
testing cohorts and 3 validation cohorts. Subgroup 
analysis demonstrated that the SEMetlow subgroup 
characterized the “pro-metastasis” status in PC. 
Additionally, the functional analysis demonstrated 
the correlation among 3 hub SEMet genes (DKK1, 
TGM2 and E2F7). At last, we screened out and 
confirmed that flumethasone might enhance the 
efficacy of gemcitabine in the treatment of metastatic 
PC, which would shed light on the novel personalized 
strategies for PC patients with metastasis. The overall 
workflow of our study is shown in Graphical 
Abstract. 

Materials and methods 
Sampling preparation and organoid 
establishment 

For identifying the HM-SE genes, 2 patients with 
PT and 2 patients with HM were enrolled for 
H3K27ac ChIP-Seq analysis (Table S1). The samples 
were obtained from Ruijin Hospital, Shanghai 
Jiaotong University School of Medicine. The study 
protocol was approved by the Research Ethics 
Committee of Ruijin Hospital, School of Medicine, 
Shanghai Jiao Tong University. All enrolled partici-
pants consented to attend this cohort study and 
signed written informed consent. To create the 
metastatic patient-derived organoids (MDO), the 
fresh ccPDAC tissues were enzymatically digested 
and then treated for 1 hour at 37°C with 200 U/ml of 
deoxyribonuclease I (Roche) and collagenase type IV 
(SigmaAldrich) (Table S1). The cells plated in 
Basement Membrane (OuMel, #WM-MG-01) were 
filtered using a 70-m nylon mesh and and cultured by 
DMEM/F12 media containing 2% B27, N-acetyl-l- 
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cysteine (SigmaAldrich, 1.25 mM), EGF (Gibco, 50 
ng/mL), A83-01 (SigmaAldrich, 200 nM), Noggin 
(SigmaAldrich, 100 ng/mL), R-spondin 1 (Sigma-
Aldrich, 500 ng/mL), Y-27632 (MedChemExpress, 10 
mM), and dihydrotestosterone (SigmaAldrich, 1 nM). 

Cell culture and transfection 
Pan02 cells (a murine pancreatic adenocarci-

noma cell line) and human PC cell lines (Capan-2, 
CFPAC, Patu 8988t) were purchased from American 
Type Culture Collection (ATCC). The cells were 
cultured at 37°C in an atmosphere of 5% CO2 and 
respectively maintained in IMDM or DMEM medium 
supplemented with 10-15% FBS with 100 U/mL 
penicillin and 100 μg/mL streptomycin. Transient 
transfections were performed using lipofectamine 
3000 (Invitrogen) following the instructions from 
ATCC guidelines. 

Chromatin immunoprecipitation (ChIP) and 
ChIP-qPCR experiments 

The following three antibodies were used for 
ChIP experiments: H3K27ac (Abcam, #AB4729), E2F7 
Polyclonal Antibody (ThermoFisher Scientific, 
#A303-037A-T) and Rabbit Control IgG (Abclonal, 
#AC005). ChIP assay was performed with 2 × 107 
adherent cells lysed to prepare nuclear extracts. 
Firstly, cells were treated with 1% formaldehyde to 
crosslink DNA. After chromatin shearing by sonica-
tion, the nuclear lysates were treated at 4°C overnight 
with protein A Dynabeads (Invitrogen, USA) 
combined with 3-5 g of antibody to prepare each 
sample. The beads were then retrieved with a magnet 
and cleaned. The DNA was then decrosslinked for 4 
hours at 55°C, and purified by QIAquick PCR 
Purification Kit (QIAGEN, USA). 5-10 ng of pure ChIP 
DNA was utilized as input material for subsequent 
detection in each sample. At last, DNA collected from 
the experiments was examined by qRT-PCR assays. 

SE analysis 
ROSE (Rank Ordering of Super-Enhancers) [18] 

was utilized to define the calling of SE with 
parameters (stitching distance=12.5 kb, TSS exclusive 
zone= +/- 2 kb) based on the ChIP-Seq peaks for 
H3K27ac according to a proximity rule as described in 
[10, 11]. Then, we implemented GREAT (version 3.0.0) 
online tool to assign regulatory elements identified in 
ChIP-Seq to their putative target genes based on the 
association rule: basal plus extension, proximal 1kb 
upstream and 1kb downstream, plus distal up to 
1000kb. 

RNA-seq data collection and processing 
Totally, 1711 PC patients from 15 independent 

public cohorts were retracted from The Cancer 

Genome Atlas (TCGA, http://portal.gdc.cancer 
.gov/), International Cancer Genome Consortium 
(ICGC, http://dcc.icgc.org/), ArrayExpress (https:// 
www.ebi.ac.uk/arrayexpress/), Clinical Proteomic 
Tumor Analysis Consortium (CPTAC, https://cptac- 
data-portal.georgetown.edu/) and Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/ 
geo/). Among them, ICGC-AU-Array (n=267), 
TCGA-PAAD (n=176), ICGC-AU-Seq (n=81), 
ICGC-CA-Seq (n=182), E-MTAB-6134 (n=288), 
GSE62452 (n=65), GSE28735 (n=42), GSE78229 (n=49), 
GSE79668 (n=51), GSE85916 (n=79) and CPTAC- 
PDAC (n=135) with complete survival data were 
obtained for the establishment and validation of our 
classifier. Three cohorts, GSE21501 (n=102), GSE57495 
(n=63) and GSE71729 (n=125) comprising entire OS 
information were selected as external validation 
cohorts. In addition, GSE151580, containing 6 paired 
PTs, HMs and tumor-adjacent normal pancreatic 
tissues (Ns), was also collected. The Fragments Per 
Kilobase of exon model per Million mapped 
fragments (FPKM) data of RNA-Seq in TCGA was 
downloaded from the UCSC Xena portal (https:// 
xenabrowser.net/datapages/) and transformed into 
log2(TPM+1) format. The normalized expression 
profile of ICGC, ArrayExpress, CPTAC and GEO 
were downloaded from their portal. Otherwise, by 
removing the batch effects via the sva R package, 
Meta-cohort (n=1295) was combined from ICGC-AU- 
Array, TCGA-PAAD, ICGC-AU-Seq, ICGC-CA-Seq, 
E-MTAB-6134, GSE62452, GSE28735, GSE78229, 
GSE79668, GSE85916 and CPTAC-PDAC datasets. 
The z-score normalization of the expression matrix 
was applied across all datasets. The detailed clinical 
information of the enrolled 15 datasets was listed in 
Table S2. 

SEMet classifier generated from integrative 
machine learning algorithms 

To establish a comprehensive prognosis 
classifier in PC, we combined 10 ML algorithms and 
generated 188 integrations based on those prognostic 
HM-SE genes. These enrolled algorithms incorpo-
rated random survival forest (RSF), elastic network 
(Enet), Lasso (Enet alpha=1), Ridge (Enet alpha=0), 
stepwise Cox, CoxBoost, partial least squares 
regression for Cox (plsRcox), supervised principal 
components (SuperPC), generalized boosted regres-
sion modeling (GBM), and survival support vector 
machine (survival-SVM). Then, 188 algorithm 
integrations were implemented to fit prediction 
classifiers based on 10-fold cross-validation in the 
ICGC-AU-Array training cohort. Finally, 10 testing 
cohorts (TCGA-PAAD, ICGC-AU-Seq, ICGC-CA-Seq, 
E-MTAB-6134, GSE62452, GSE28735, GSE78229, 
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GSE79668, GSE85916 and CPTAC-PDAC) were 
applied to calculate the concordance index (C-index) 
value and the classifier possessed highest average 
C-index was deemed as optimal SEMet classifier. 
Detailed information is provided in Supplementary 
Methods.  

To validate the prognostic and predictive value 
of the SEMet classifier, we categorized PC patients 
into SEMethigh and SEMetlow subgroups according to 
the median scores which were calculated by the 
optimal algorithm integration mentioned above. 
Kaplan–Meier curve and multivariate Cox regression 
analysis were performed to evaluate the prognostic 
value of the SEMet classifier. Otherwise, we utilized 
the calibration plot and receiver-operator character-
istic (ROC) to appraise the predictive performance of 
the SEMet classifier. 

Tumor immune microenvironment (TIME) 
evaluation and response to immunotherapy 

Gene set variation analysis (GSVA) score was 
calculated based on TIME signatures established by 
Kobayashi [19] and Bagaev [20] to assess the 
differences in TIME between SEMethigh and SEMetlow 
subgroups. The cancer immunity cycle was also 
measured by GSVA analysis [21, 22]. Several 
immunotherapy predictors, including the interferon γ 
(IFN-γ) [23], immunophenoscore (IPS) and the Tumor 
Immune Dysfunction and Exclusion (TIDE) [24] score 
were obtained to predict response to immune 
checkpoint blockages (ICBs). On the other hand, the 
subclass mapping algorithm was performed to 
evaluate the expression similarity between SEMethigh 
and SEMetlow subgroups, and speculate the 
immunotherapy efficacy of anti-PD-1 and 
anti-CTLA-4 [25]. 

Genomic alteration landscape 
To delve into the genomic characteristics 

between SEMethigh and SEMetlow subgroups, we 
implemented an extensive investigation in somatic 
mutation and copy number alteration (CNA) data in 
the TCGA-PAAD cohort. The maftools R package was 
employed to exhibit the mutation frequencies of the 
top 15 genes and we evaluated the mutational 
signatures through the R package deconstructSigs with 
parameters by default. Four mutational signatures 
showed a significant correlation with PC were 
inferred, namely, mutational signature 1 (age-related), 
mutational signature 2 (APOBEC activity-related), 
mutational signature 6 (DNA MMR-related) and 
mutational signature 15 [26]. Additionally, recurrent 
focal somatic CNAs were detected and localized by 
GISTIC2.0 through GenePattern (https://www 
.genepattern.org/), with the thresholds of copy 

number amplifications/deletions being equal to ±0.3 
(q-value < 0.05). Regions with CNA frequency > 20% 
were acquired for visualization. For detecting the 
methylation-driven events, we adhered to the 
pipeline launched by Liu Z [27] and screened out key 
methylation-driven genes (MDGs) for PC patients. 
Then, we analyzed the discrepancies in methylation 
level and mRNA expression level between SEMethigh 
and SEMetlow subgroups, and further assessed the 
correlation between distinct methylation status and 
prognosis in the two subgroups. 

Annotation of metastasis-related 
characteristics for SEMet 

To explore the association between biological 
characteristics and our SEMet score, we first 
determined significant metastatic and metabolic 
pathways from literature [28, 29]. Then, we calculated 
the NES values (GSVA) of those vital pathways, and 
Spearman coefficients were computed to measure the 
similarity between those pathways and the SEMet 
score. Human Cancer Metastasis Database (HCMDB, 
http://hcmdb.i-sanger.com/index), a database deve-
loped to archive metastatic data in pan-cancer, was 
applied to explore the difference in expression of 
metastasis-related genes of PC between SEMethigh and 
SEMetlow subgroups. The ROC curve was plotted to 
validate the predictive performance of the SEMet 
score in distinguishing advanced tumors from 
early-stage tumors. 

Identification of the potential compounds 
Drug sensitivity data of human cancer cell lines 

(CCLs) were extracted from the Cancer Therapeutics 
Response Portal (CTRP v.2.0, https://portals 
.broadinstitute.org/ctrp) and PRISM Repurposing 
dataset (19Q4, https://depmap.org/portal/prism/). 
The area under the curve (AUC) value represents the 
drug sensitivity in those two datasets, and lower AUC 
levels indicate escalated sensitivity to the treatment of 
distinct compounds. After imputing missing values 
via the K-nearest neighbor (k-NN) algorithm, 
compounds with more than 20% of missing data were 
omitted. Then, we identified the potential therapeutic 
compounds following the pipeline in Supplementary 
Methods. 

Statistical analysis 
All statistical tests were performed in R software 

(v 4.2.2). A chi-square test was performed to compare 
the count data. For the measurement data that 
conformed to the normal distribution, the Student-t 
test was applied; the Wilcox test was applied for 
non-normal distribution data between independent 
subgroups. Spearman analysis was applied to 
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estimate the correlations between two variables that 
are not linearly related. The Kaplan–Meier test was 
utilized to validate the fraction of PC patients living 
for a certain survival time via the survival package and 
the log-rank test was conducted to compare the 
significance of the difference. The timeROC package 
was used to plot the ROC curve and calibration curve. 
DESeq2 package was used to call differentially 
expressed genes (DEGs) between two groups. Unless 
specifically stated, a two-tailed p-value of less than 
0.05 was deemed statistically significant. See 
Supplementary Methods for fully detailed methods of 
other experiments included in our study. 

Results 
Genome-wide screening of SE and 
identification of HM-SE genes in PC 

To explore the implications of SE alteration in 
metastatic pancreatic cancer, we compared the SE 
landscapes among 2 PT samples, 2 PT cell lines 
(Capan-2 and PANC-1), 2 HM samples and 2 HM cell 
lines (Capan-1 and PaTu 8988t) based on H3K27ac 
ChIP-Seq data. For cell lines, H3K27ac ChIP-Seq data 
of PANC-1 and Capan-1 were obtained from public 
datasets (GSE149103). According to the H3K27ac 
signal, enhancers localized within 12.5kb were 
stitched and ranked. Specific enhancers that occurred 
above the inflection point of the H3K27ac signal were 
determined as SEs, and those were then annotated 
with genes (SE-associated genes) across all enrolled 
samples and cell lines (Figure 1A, Table S4-11). As is 
shown in Figure 1A, we converged the SE-associated 
genes in 2 PT samples, 2 PT cell lines, 2 HM samples 
and 2 HM cell lines and acquired 233, 442, 597 and 379 
SE-associated genes, respectively. To systematically 
investigate the alterations of SE landscape during 
metastasis in PC, we compared the common SE- 
associated genes between PT and HM by merging the 
SE-associated genes obtained from 2 PT samples/cell 
lines and 2 HM samples/cell lines separately. A total 
of 425 HM-SE genes were identified. Then, we first 
characterized the functions of these HM-SE genes. 
Pathway enrichment analysis revealed significant 
enrichment in transcriptional regulation (Figure 1B) 
and multiple biological mechanisms that are vital for 
cancer sustainability (Figure 1C). We further 
inspected the expression of the 425 HM-SE genes in 
HMs, the result showed that the expression level of 
these genes was considerably higher than those of 
other genes (Figure 1D). Our results revealed that the 
HM-SE genes not only correlated with the regulation 
of SE but also related to the oncogenesis of PC. 

Integrative construction of SEMet classifier 
Based on the expression profile of 425 HM-SE 

genes, univariate Cox analysis combined with the 
bootstrapping method determined 38 prognostic 
HM-SE genes that were validated in most of the 
datasets in our study (Figure S1A). Next, these 38 
prognostic HM-SE genes were subjected to integrative 
ML models to construct the SEMet classifier. 
ICGC-AU-Array dataset, which served as the training 
set, was applied to fit the 188 algorithm integrations 
based on 10-fold cross-validation and computed the 
average C-index in 10 testing datasets. The integration 
of Enet and survival-SVM which achieved the highest 
average C-index (0.6718) was identified as the optimal 
classifier (Figure 2A, Table S12). Moreover, the SEMet 
score of each sample was calculated in all 14 training 
and testing cohorts on the basis of 18 SEMet genes 
incorporated in the SEMet classifier (Figure 2B, Table 
S13). 

Prognostic performance of SEMet classifier 
In order to assess the prognostic efficiency of the 

SEMet classifier, all enrolled patients were 
categorized into SEMethigh and SEMetlow subgroups 
according to the median value of the SEMet score. As 
is shown in Figure 2C-F, the SEMetlow subgroup had 
considerably miserable overall survival (OS) and 
relapse-free survival (RFS) compared with the 
SEMethigh subgroup in ICGC-AU-Array and Meta- 
cohort. Interestingly, in the TCGA-LIHC dataset, 
Kaplan-Meier curves demonstrated a similar 
tendency in the survival rate of HCCs (Figure 2G), 
suggesting that the SEMet classifier constructed in PC 
also has comprehensive prospects in HCC. 
Additionally, multivariate Cox analysis based on 
clinicopathological characteristics demonstrated that 
the SEMet classifier was an independent prognostic 
factor in PACA-AU-Array and Meta-cohort (all p < 
0.05, Figure S2). 

In the other 10 testing cohorts, the survival 
analysis consistently revealed a markedly prolonged 
OS time in the SEMethigh subgroup than those in the 
SEMetlow subgroup (all p < 0.05, Figure S3). Likewise, 
the Kaplan-Meier analysis also demonstrated that 
patients in the SEMetlow subgroup had an unfavorable 
RFS in TCGA-PAAD, ICGC-CA-Seq and E-MTAB- 
6134 datasets (all p < 0.05, Figure S3). Similarly, after 
adapting for obtained clinicopathologic information, 
multivariate Cox analysis confirmed that the SEMet 
classifier was a protective factor for OS (all p < 0.05, 
Figure S2). Consistently, the SEMet classifier 
remained statistically significant for RSF in TCGA- 
PAAD, ICGC-CA-Seq and E-MTAB-613 cohorts (all p 
< 0.05, Figure S2). Given the results mentioned above, 
our SEMet classifier holds a robust level of prognostic 
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performance and was an independent prognostic 
factor in PC. 

Predictive value of SEMet classifier 
ROC curves were plotted to evaluate the 

sensitivity in the prediction of the SEMet classifier 
(Figure 3A, C and Figure S4). The calibration plots of 
the ICGC-AU-Array training set, Meta-cohort and 10 
testing cohorts also confirmed that the SEMet 
classifier obtained an excellent value of prediction 
(Figure 3B, D and Figure S5). All these proofs 
exhibited that the SEMet classifier had a certain 
efficiency in multicenter cohorts. Numerous studies 

have confirmed that clinical traits and genetic 
alterations predict the prognosis of PC. Hence, we 
compared the predicted efficacy of the SEMet 
classifier with other clinical variables in 9 cohorts with 
completed clinical information. As is shown in Figure 
2H-P, the C-index of the SEMet classifier had superior 
accuracy than other variables. Additionally, to further 
validate the classifier more scrupulously, we assessed 
the predictive capacity of the SEMet classifier in 3 
validation datasets. Patients in the SEMetlow subgroup 
owned decreased survival rates in GSE21501, 
GSE57495 and GSE71729 cohorts (all p < 0.05, Figure 
S3). The AUC and calibration curve also determined 

 

 
Figure 1. Identification of HM-SE genes in PC. (A) A total of 425 HM-SE genes were acquired from PT cell lines/samples and HM cell lines/samples in PC. (B) The Gene 
Ontology (GO) enrichment analysis demonstrated that 425 HM-SE genes were significantly associated with transcriptional regulations. (C) The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis illustrated that HM-SE genes were correlated with cancer sustainability. (D) RNA-seq results of 6 HMs suggested that the expression of 
the 425 HM-SE genes was higher than other genes. 
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the consistent predictive performance of the SEMet 
classifier (Figure S4-5). In summary, according to 
survival analysis, multivariate Cox analysis, ROC 
curve, calibration plot and C-index comparison, our 
SEMet classifier achieved sufficient to excellent 

performance in 1 training cohort, 10 testing cohorts 
and 3 validation cohorts. These results led us to 
deduce that the SEMet classifier may stress its 
potential as a predictive tool in the clinical 
management of PC. 

 

 
Figure 2. Establishment and testing of the SEMet classifier. (A) The C-indexes of the top 80 ML algorithm integrations in 10 testing cohorts. (B) The 18 SEMet genes. 
Survival analysis for OS (C) and RSF (D) between SEMethigh and SEMetlow subgroup in the ICGC-AU-Array. Survival analysis for OS (E) and RSF (F) between SEMethigh and 
SEMetlow subgroup in the Meta-cohort. (G) Kaplan-Meier curve for OS in the TCGA-LIHC. The predictive value of the SEMet classifier compared with clinical features in 
ICGC-AU-Array (H), TCGA-PAAD (I), ICGC-AU-Seq (J), ICGC-CA-Seq (K), E-MTAB-6134 (L), GSE62452 (M), GSE78229 (N), GSE79668 (O) and CPTAC-PDAC (P). 
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Figure 3. Predictive performance of SEMet classifier. Calibration plot for predicting 1-, 2- and 3-year OS in ICGC-AU-Array (A) and Meta-cohort (C). ROC curve for 
predicting 1-, 2- and 3-year OS in ICGC-AU-Array (B) and Meta-cohort (D). (E) Univariate Cox analysis of SEMet classifier and 33 published signatures of PC. (F) Comparison 
of C-index and 33 published signatures in ICGC-AU-Array, TCGA-PAAD, ICGC-AU-Seq, ICGC-CA-Seq, E-MTAB-6134, GSE62452, GSE28735, GSE78229, GSE79668, 
GSE85916, CPTAC-PDAC, GSE21501, GSE57495 and GSE71729. 

 

Comparison of multiple prognostic signatures 
in PC 

The development of next-generation sequencing 
witnessed the construction of extensive prognostic 
signatures and classifiers based on various ML 
algorithms. We compared the performance of the 

SEMet classifier with 33 previous well-established 
predictive gene signatures related to a variety of 
biological characteristics such as immune microen-
vironment, ferroptosis, hypoxia, etc (Table S14). First 
of all, we conducted the univariate Cox analysis, and 
only our SEMet classifier had consistent significance 
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across 14 independent cohorts (Figure 3E). Then, the 
C-index was also calculated to compare with all 
enrolled signatures. SEMet classifier revealed 
superior efficiency in each dataset than almost all 
signatures (ranked first in 9/14 datasets, Figure 3F). 
Notably, most of the signatures achieved higher 
stability in their training dataset but performed far 
from satisfactory in other external cohorts, which may 
be thanks to the poor generalisability and overfitting. 
Via integration and permutations of ML algorithms, 
our final optimal classifier was proved to reduce 
redundancy significantly and performed well. 

Immune characteristics and immune response 
prediction of SEMet classifier 

TIME is confirmed to play an indispensable role 
in metastatic PC by molding pre-metastatic sites into 
an immunosuppressive environment. According to 
two TIME signatures, the SEMetlow subgroup was 
associated with higher levels of MDSCs, CAFs, 
granulocytes, angiogenesis, tumor-related features by 
Bagaev (Figure 4A, C) and glycolysis, proliferation, 
recognition of tumor cells, INF-γ response, inhibitory 
molecules, priming & activation by Kobayashi (Figure 
4B, D) in TCGA-PAAD dataset. To further detect the 
character of the SEMet classifier in response to 
immunotherapy, we first calculated the cancer 
immunity cycle which represents the state of 
checkpoints and inhibitors in the immune response. 
Extraordinary, most steps of the cancer immunity 
cycle were more activated in the SEMetlow subgroup 
in the TCGA-PAAD dataset (Figure 4E). In addition, 
the SEMetlow subgroup had higher expression levels 
of ICBs (Figure 4F). Furthermore, the association 
between the SEMet classifier and immunotherapy 
indicators was explored. A lower SEMet score was 
more correlated with a higher IFN-γ level (Figure 4G), 
a higher IPS score (Figure 4H) and a lower TIDE score 
(Figure 4I), all of which were predictors of superior 
immunotherapy response. Besides, the Submap 
algorithm confirmed that the SEMetlow subgroup 
tended to benefit from immunotherapy responses 
(Figure 4J-K). 

Genomic landscape of SEMet classifier 
To inspect the genomic landscape between 

SEMethigh and SEMetlow subgroups, we implemented a 
broad analysis of somatic mutations and CNA. As is 
shown in Figure 5A, the SEMetlow subgroup exhibited 
a higher tumor mutation burden (TMB) level than the 
SEMethigh subgroup. In the analysis of mutation 
signatures in PC, we found that mutation signature 1 
(age-related) was abundant in the SEMetlow subgroup. 
In contrast, mutation signature 6 (DNA MMR-related) 
was enriched in the SEMethigh subgroup. Accumu-

lating evidence has demonstrated that the tumor 
oncogene/suppressor gene mutation plays a critical 
role in initiating and maintaining PC and its related 
signaling network. Herein, we further assessed the 
mutation rate of genes in 10 classical oncogenic 
pathways in TCGA [30]. Of note, the SEMetlow 
subgroup possessed significant mutation of tumor 
suppressor genes (TP53 and CDKN2A) and oncogene 
(KRAS), while the SEMethigh subgroup did the 
opposite (Figure 5B). Additionally, we explored the 
CNV characteristics between two subgroups. 
Compared to the SEMethigh subgroup, the SEMetlow 
subgroup obtained higher amplification of 8q24.21 
(oncogene MYC located), 8q24.22, 8q24.12 and 
deletion of 18q21.2 (suppressor gene CDKN2A/B 
located), 9p21.3 (suppressor gene SMAD4 located), 
17p12. Overall, we could hypothesize that the 
alterations of tumor oncogene/suppressor gene in the 
genomic landscape lead to the distinct features 
between SEMethigh and SEMetlow subgroups. 

Furthermore, we investigated the MDGs to 
unveil the methylation-driven events in PC based on 
our SEMet classifier. Results showed that four MDGs 
(XDH, PPARG, PLEK2 and CELSR1) gained lower 
methylation levels and higher mRNA expression 
levels in the SEMetlow subgroup compared to the 
SEMethigh subgroup (Figure 5C-D). In survival 
analysis, we concluded that the lower methylation 
level group achieved significantly shorter overall 
survival in four identified MDGs (Figure 5E), which 
implies methylation also plays an essential part in the 
SEMet classifier. 

Correlation between the SEMet classifier and 
published PC classifications 

Next, we compared the SEMet classifier with 
reported molecular subtypes in PC. The signature 
genes of Bailey’s classification, Collisson’s classifi-
cation, Moffitt’s tumor classification and Moffitt’s 
stromal classification were utilized to cluster PC 
patients in the TCGA-PAAD cohort (Figure S6A-D, 
Table S15), and Puleo’s classification was predicted 
followed the pipeline in Supplementary Methods 
(Table S15). Results illustrated that there was no 
significant difference between Collisson’s classifica-
tion and SEMet classifier (p = 0.45, Table S16), while 
Bailey’s classification (p < 0.0001), Moffitt’s tumor 
classification (p < 0.0001), Moffitt’s stromal 
classification (p < 0.0001) and Puleo’s classification (p 
< 0.0001) exhibited considerable correlations (Table 
S16). For the combination of Bailey’s classification, we 
found that the proportion of squamous subtype was 
higher and the percentage of other subtypes was 
lower in SEMetlow subgroup versus SEMethigh 
subgroup (55.68% vs 5.68%, 21.59% vs 34.09%, 11.36% 
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vs 27.27%, 11.36% vs 32.95%, p < 0.0001). With regard 
to Moffitt’s tumor classification, we observed that 
SEMetlow subgroup was composed of a more 
basal-like subtype and a less classical subtype 
compared to SEMethigh subgroup (68.18% vs 25.00%, 
31.82% vs 75.00%, p < 0.0001). For Moffitt’s stromal 
classification, results demonstrated that the SEMetlow 
subgroup possessed a more activated subtype and 
less normal subtype than SEMethigh subgroup (57.95% 
vs 15.91%, 37.50% vs 68.18%, p < 0.0001). With respect 
to Puleo’s classification, the frequency of desmo-
plastic and immune classical was lower within 
SEMetlow subgroup (6.82% vs 26.14%, 18.18% vs 
1.14%, p < 0.0001). On the contrary, we also found a 
higher frequency of pure basal-like and stroma 

activated subtypes in SEMetlow subgroup versus 
SEMethigh subgroup (19.32% vs 0.00%, 23.86% vs 
3.41%, p < 0.0001). The alluvial plot exhibited that the 
SEMet classifier had a robust relationship with other 
molecular classifications (Figure 6A). Furthermore, 
the similarity between the SEMet classifier and other 
published classifications was quantified by Cramer’s 
V (Figure 6B). We observed that the SEMet classifier 
had the highest correlation with Puleo’s classification 
(Cramer’s V value = 0.553) and the lowest relationship 
with Collisson’s classification (Cramer’s V value = 
0.095). In conclusion, it was demonstrated that the 
SEMet classifier was significantly correlated with 
other PC classifications and the prognosis of PC 
patients. 

 

 
Figure 4. The immune landscape between SEMethigh and SEMetlow subgroup. Heatmap of GSVA score based on Kobayashi (A) and Bagaev (B) TIME signatures. The 
radar chart revealed the differences in TIME signatures developed by Kobayashi (C) and Bagaev (D) between SEMethigh and SEMetlow subgroups. (E) Boxplot displayed the cancer 
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immunity cycle differences between SEMethigh and SEMetlow subgroups. (F) Boxplot of expression of 27 ICBs between SEMethigh and SEMetlow subgroups. Boxplot illustrated the 
IFN-γ (G), IPS (H) and TIDE score (I) between SEMethigh and SEMetlow subgroups. (J) Contingency table between immunotherapy responses (anti-PD-1 and anti-CTLA-4) and 
SEMet groups based on SubMap analysis. (K) Percentage of immune responses between SEMethigh and SEMetlow subgroups. 

 
Figure 5. Muti-omics analysis based on mutation, CNV and methylation. (A) Comparison of somatic mutation and CNV between SEMethigh and SEMetlow subgroups. 
(B) Mutation landscape in 10 canonical oncogenic pathways between SEMethigh and SEMetlow subgroups. Boxplot of methylation level (C) and expression of 4 MDGs (D). (E) 
Survival analysis between high and low methylation groups in 4 MDGs. 

 

SEMetlow subgroup is associated with pro- 
metastasis functions 

Since the development of the SEMet classifier is 
based on the SE profile of HMs, we assumed that 
there were differences in biological functions related 

to metastasis at different levels of SEMet scores. 
Hence, based on basic molecular hallmarks, we 
studied the dynamic regulation pattern of gene 
expression across SEMethigh and SEMetlow subgroups. 
As is shown in Figure 6C, the SEMetlow subgroup was 
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significantly enriched in biological processes such as 
cancer-associated inflammation, metabolism repro-
gramming, dysregulated signaling pathway and ECM 
remodeling, while the SEMethigh subgroup possessed 
more pancreatic phenotype. In consistency, GSEA 
further validated that the SEMetlow subgroup owned a 
more malignant phenotype (Figure S7A). Interest-
ingly, we also observed that the SEMet score had a 
significant negative correlation with the glycolysis 
pathway and metabolic activity of metabolites, such 
as glycogen and retinoids (Figure S7B), suggesting 
that the SEMetlow subgroup adopts a distinct metabo-
lism fashion as those in the SEMethigh subgroup. To 
further explore the metastatic features between two 
subgroups, we found that all of the SEMet genes were 
enrolled in the HCMDB dataset and most of the 
SEMet genes (13/18, 72%) were upregulated in the 

SEMetlow subgroup, implying that the SEMetlow 
subgroup possessed more metastatic characteristics in 
PC (Figure 6D). Thus, based on the above results, we 
deduced that the SEMetlow subgroup might represent 
the “pro-metastasis” status, and the SEMethigh 
subgroup might stand for the “pre-metastasis” 
environment in PC. To validate this hypothesis, 
subgroup analysis was performed in ICGC-AU-Array 
and GSE62452 datasets, and we observed that patients 
in the SEMetlow subgroup gained more advanced 
stages, which might result in dismal OS (Figure 6E-F). 
Regarding the metastasis prediction of SEMet score, 
AUC reached 0.728 in ICGC-AU-Array cohorts and 
0.634 in GSE62452 cohorts (Figure 6E-F). While the 
AUC of GSE62452 was not satisfactory, it is probably 
due to the limited sample size. 

 

 
Figure 6. The biological function of the SEMetlow subgroup. (A) The alluvial plot displayed the relationship between the SEMet classifier and other molecular 
classifications. (B) Heatmap of Cramer’s V statistic reflected the corrections between six PC molecular classifications. (C) The dynamic regulation pattern of gene expression 
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across SEMethigh and SEMetlow subgroups based on basic molecular hallmarks. (D) The expression of metastasis-related genes of PC in HCMDB. ROC curve for predicting 
advanced tumors of SEMet classifier in ICGC-AU-Array (E) and GSE62452 (F). 

 

Prognostic performance of 18 SEMet genes 
To examine the prognostic performance of 18 

SEMet genes, we performed the univariate Cox 
analysis based on the SEMet classifier and its 18 
SEMet genes in comprehensive multicenter cohorts (1 
training set, 10 testing sets and 3 validation sets). As 
illustrated in Figure S8, the SEMet classifier was an 
independent protective factor across all 14 cohorts, 
while SEMet genes performed hardly well in several 
datasets. Besides, we established 19 classifiers by 10 
ML algorithms based on the expression of 18 SEMet 
genes in ICGC-AU-Seq cohorts. Then, the classifier 
constructed by survival-SVM, namely our SEMet 
classifier, ranked first across 19 classifiers among the 
average C-index of 13 cohorts (Figure S1B). In other 
words, our SEMet classifier, which was developed by 
combining Enet in dimensionality reduction and 
survival-SVM in feature selection, was the optimal 
integration and performed the best prognostic value. 

DDK1 and TGM2 act in PC as a pro-metastasis 
factor targeted by E2F7 

Differential analysis revealed that three SEMet 
genes (TGM2, DKK1 and E2F7) were significantly 
upregulated in HMs and PTs compared to Ns by 
criteria of logFC > 3 and FDR < 0.01 (Figure 7A). In the 
meantime, survival analysis demonstrated that the 
expression of TGM2, DKK1 and E2F7 were negatively 
correlated with the survival rate (Figure 7B). To 
further confirm the efficacy of SEMet genes in 
pancreatic cancer metastasis, we examined the protein 
expression of EMT markers after TGM2 or DKK1 
knockdown in two metastasis lesion-originated cell 
lines, CFPAC-1 and Patu 8988t. The epithelial marker, 
E-cadherin, was overexpressed after the knockdown 
of TGM2 or DKK1. On the contrary, mesenchymal 
markers including N-cadherin and Vimentin were 
down-regulated (Figure 7C-D, Figure S9). Among 
these three SEMet genes, E2F7 was reported to 
function as a transcriptional regulator that promotes 
cell proliferation and metastasis in multiple cancers 
[31-33]. Therefore, we speculated that E2F7 binds to 
the promoter region of TGM2 and DKK1, and actively 
promoted them which was then demonstrated by 
RT-qPCR (Figure 7E-F) and E2F7 targeted ChIP-qPCR 
experiments (Figure 7G). Besides, in vitro and in vivo 
experiments were conducted to assess the impacts of 
E2F7 on the metastasis of PC. Transwell assays 
validated the pro-metastatic efficacy of E2F7 in 
CFAPC-1 and Patu 8988t cell lines (Figure 7H). Also, 
stable luciferase-labeled Pan02 PC cells, with or 
without E2F7 knockdown were established. Then, we 

injected them into the spleen vein of C57 mice. After 
21 days, we observed that E2F7 knockdown 
remarkably decreased the metastatic capacity of PC 
cells into the liver compared to the control group, as 
measured by bioluminescence imaging (BLI) of HMs 
(Figure 7I). In collaboration, all results implied that 
E2F7 may contribute to PC metastasis by upregulating 
TGM2 and DKK1. 

Identification and validation of potential 
therapeutic compounds for metastatic PCs 
based on SEMet classifier 

Now that the SEMetlow subgroup could 
effectively symbolize the “pro-metastasis” status in 
PC, comprehensive approaches were adopted to 
screen out candidate therapeutic compounds target-
ing SEMetlow subgroup patients. Based on the drug 
sensitivity data in CTRP and PRISM, the oncopredict R 
package was utilized to predict the drug response 
data of patients in the TCGA-PAAD cohort. Before 
processing further, we demonstrated that the result of 
predicted drug response data was reliable. PTBP3, 
PTB protein 3, was first identified as an essential 
RNA-binding protein in 1999. A recent study revealed 
that PTBP3 increases PC proliferation in response to 
hypoxic stress, contributing to gemcitabine resistance 
[34]. We thus categorized patients into two groups 
according to the median expression of BTBP3. The 
result revealed that patients in the PTBP3_high group 
showed significantly higher estimated AUC values of 
gemcitabine, which is consistent with the previous 
experiment data (Figure S10A).  

Then two methods were conducted to identify 
the potential compounds via CTRP and PRISM 
databases (Supplementary Methods). As is shown in 
Figure 8A-B, we generated 6 CTRP-derived com-
pounds (Neratinib, RITA, BRD8899, ML203, Alisertib 
and ML210) and 6 PRISM-derived compounds 
(EMD53998, Paclitaxel, Temocapril, Flumethasone, 
Butamben and Canertinib). Although these 12 
compounds possessed a higher drug sensitivity in the 
SEMetlow subgroup, the above analyses could hardly 
support the conclusion that these compounds had an 
effective clinical application on metastatic PCs. Hence, 
we first search the literature in PubMed (https:// 
www.ncbi.nlm.nih.gov/pubmed/) to discover the 
clinical and experimental proofs of these candidate 
compounds. Secondly, differences in mRNA 
expression of candidates’ drug targets were measured 
by fold changes between HMs and PTs. The higher 
value of fold-change represented a considerable 
potential of candidates in treating metastatic PCs. 
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Thirdly, the CMap analysis was performed to explore 
the sensitive compounds based on the differential 
genes between HMs and PTs (Table S17). Taking all 
the results into consideration, Flumethasone, which 

has robust evidence, may hold the most promising 
and novel potential in the treatment of metastatic PCs, 
although other routine candidates have already been 
in clinical trials (Figure 8C-D).  

 

 
Figure 7. E2F7 targets TGM2 and DKK1 to promote the proliferation of PC. (A) Volcano plot illustrated that TGM2, DKK1 and E2F7 were the top 3 genes 
upregulated in PTs and HMs compared to Ns. (B) Survival analysis demonstrated that the higher expression of TGM2, DKK1 and E2F7 led to a dismal survival rate in the 
TCGA-PAAD dataset. The protein expression of EMT markers in CFPAC-1 and Patu 8988t after knockdown of TGM2 (C) and DKK1 (D). Expression of TGM2 and DKK1 in 
control and sh-E2F7 CFPAC-1 (E) and Patu 8988t (F). (G) Binding of E2F7 at the promoter regions of TGM2 and DKK1 in CFPAC-1 based on ChIP-qPCR. (H) Transwell assays 
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validated the pro-metastatic efficacy of E2F7 in CFAPC-1 and Patu 8988t. (I) BLI demonstrated that E2F7 knockdown remarkably decreased the metastatic ability of PDAC cells 
into the liver compared to that of the control group. 

 
Figure 8. FLM served as an adjuvant sensitizer to increase the efficacy of gemcitabine in metastatic PC. The results of Spearman’s correlation analysis and 
differential drug response of six CTRP-derived (A) and six PRISM-derived (B) candidate compounds. (C-D) Identification of the most reliable compound based on evidence from 
multiple sources. (E) Establishment of a PC MDO (scale bars, 100 µm). (F) The growth rate of tumors in response to the treatment of saline, gemcitabine (6mg/kg) , flumethasone 
(0.1mg/kg) and combined administration (n=5/group). (G) Representative images of subcutaneous PC tumors (scale bars, 5 mm) and Ki-67 staining (scale bars, 200 µm) of tumor 
tissues of mice treated with saline, gemcitabine (6mg/kg), flumethasone (0.1mg/kg) and combined administration (n=5/group). 

 
Flumethasone (FLM), a glucocorticoid with 

anti-inflammatory, vasoconstrictive and anti-hyper-
plasia properties, was merely confirmed to enhance 
the efficacy of chemotherapeutic management in lung 
cancer [35]. Since the chemoresistance of gemcitabine 
still leads to poor clinical outcomes in metastatic PCs 
[36], which was also demonstrated based on our 
estimated drug sensitivity (Figure S10B), we hypothe-
sized that FLM might be served as an adjuvant 
sensitizer to increase the efficacy of gemcitabine in 
metastatic PCs. Currently, patient-derived organoids 
are considered one of the most suitable pre-clinical 
models to exhibit similarity to original tumors. Thus, 
we established a PC MDO model (Figure 8E) to 
further demonstrate the efficacy of Flumethasone 
combined with gemcitabine in metastatic PC 
treatment. Firstly, the subcutaneous xenograft model 
was generated using MDO in Balb/c nude mice, with 
2*10^6 organoid crypts for each injected tumor. 

Mouse were divided into four groups and were 
treated with saline, gemcitabine (6mg/kg), flume-
thasone (0.1mg/kg) [35] or combined administration 
(n=5/group). After 14 days, it was found that 
combined administration of gemcitabine and flume-
thasone remarkably suppressed in vivo MDO tumor 
size and ki-67 expression (Figure 8F-G, Figure S11). 
These data suggested the potential clinical usage of 
flumethasone combined with routine gemcitabine 
chemotherapy in metastatic or progressive PC 
patients. 

Discussion 
Pancreatic cancer is one of the most devastating 

malignancies and is predicted to surpass prostate, 
breast, and colorectal cancers to become the second 
leading cause of cancer death by 2030 [37]. Identifying 
novel biomarkers and establishing stratified treatment 
is essential for improving the prognosis of PC, 
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especially in metastatic disease. Over the past 
decades, a vast number of studies have demonstrated 
that dysregulated epigenetic control of cancer cells is 
strictly correlated with malignant transformation and 
metastasis [38, 39]. The super-enhancer concept is 
significantly critical in cancer research, and the 
acquisition of SEs around oncogene drivers is widely 
observed during the process of tumorigenesis in PC 
[40-42]. However, the biological meaning of SE in 
metastatic PC remains unclear, and it is useful to 
screen out critical SEs and associated genes that are 
required for the metastasis of PC. 

In our study, a total of 425 HM-SE genes were 
identified based on the ChIP-Seq profiling among PTs 
and HMs. Strikingly, these genes were acquired for 
the formation of SE and PC progression. Based on the 
expression of these genes, we constructed a compre-
hensive guideline to establish the SEMet classifier. To 
sum up, 188 integrations of models were fitted to the 
training set via the 10-fold cross-validation. Then, 
based on 10 independent testing cohorts, the 
integration of Enet (α = 0.1) and survival-SVM was 
determined as the optimal model. After minimizing 
redundant noise by Enet, we finally obtained an 
18-gene classifier termed SEMet classifier via 
survival-SVM. This novel computational framework 
to develop a consensus SEMet classifier could 
effectively reduce the overfitting encountered by ML 
algorithms. 

Among the 18 SEMet genes identified for the 
SEMet classifier, 12 have been reported. CDA 
regulates the metabolism of epigenetic nucleosides 
revealing a therapeutic window in cancer, especially 
in pancreatic cancer, that has CDA overexpression 
and is resistant to treatment with other cytidine 
analogs [43, 44]. Based on bioinformatics analyses, 
DCBLD2 was confirmed to be a considerably onco-
genic factor in PC with diagnostic, prognostic and 
therapeutic potential [45]. DKK1 could be served as an 
excellent target for cancer immunotherapy, and 
DKK1-CKAP4-PI3K/AKT signal pathway also plays 
a pivotal role in the proliferation of PC [46]. By 
targeting E2F7, miR-26a inhibited the malignant 
behaviors of PC cells [47]. In pancreatic adenosqua-
mous carcinoma, EGFR-associated ligand-receptor 
pairs are activated in cell communications at a 
single-cell transcriptomics level [48]. FAM83A 
regulates Wnt/β-catenin signaling by directly binding 
to β-catenin and suppressing TCF4-mediated 
transcriptional activity, leading to pancreatic 
tumorigenesis [49]. FRZB, coding for modulators of 
the non-canonical WNT signaling pathway, could be 
sustained by adipocytes to maintain the PC 
progression [50]. KRT6A alters the tumor-associated 
macrophage subtypes and indicates an undesirable 

prognosis in PC [51]. MET is regarded as a pancreatic 
cancer-specific RTK, which is significantly related to 
prognosis in PC [52]. PLCB4 correlates with the p53 
status and prognosis of PC patients [53]. Via inhibit-
ing the PRR11, USP34 could promote the proliferation 
and migration in PANC-1 cells [54]. ROS-dependent 
apoptosis could be induced by kaempferol via 
TGM2-mediated Akt/mTOR signaling in PC [55].  

The prognosis and predictive value of the SEMet 
classifier were validated in multicenter cohorts via 
survival analysis, univariate Cox analysis, ROC and 
calibration plot. Results revealed that the SEMet 
classifier was a stable factor of OS and RSF in PC 
patients. Otherwise, 33 established signatures of vital 
functional gene sets were screened out for comparison 
based on C-index. The SEMet classifier exhibited 
significantly excellent performance across almost all 
datasets. We noticed several signatures (e.g. Stratford 
JK, Chen Q, etc.) performed better than the SEMet 
classifier in certain cohorts, but they performed 
weakly in most other validation cohorts, revealing 
their poor universality and generalizability. Our 
classifier was reduced redundant and selected via 
combing two ML algorithms and obtained an 
advanced predictive effect. 

The TIME induced by the interaction between 
PC cells and stromal cells is essential for PC 
metastasis [56]. Dense desmoplasia and extensive 
immunosuppression are two major factors that 
facilitate PC cell proliferation and evasion of immune 
surveillance. Hence, we investigated the immune 
landscape between SEMethigh and SEMetlow subtypes. 
According to two popular TIME signatures, we found 
that SEMetlow subtypes possessed a higher correlation 
with MDSCs and CAFs. MDSCs play an important 
role in the immunosuppression of PC, and PC could 
consistently induce the proliferation and mobility of 
MDSCs within the bone marrow to TIME [57]. In the 
consistent, the contribution of CAFs to the biology of 
PC has generally been held to be tumor-promoting 
[58]. Otherwise, several oncogenic biological proces-
ses were also enriched in SEMetlow subtypes, which 
suggested that the SEMetlow subtype was related to a 
malignant phenotype and therefore obtained a dismal 
prognosis in PC. Cancer immunotherapy imple-
mented by ICBs has revolutionized the clinical 
management of solid tumors, including PC. Our 
results revealed that the expression of common ICBs 
(e.g, CD274 and PDCD1LG2) was upregulated in the 
SEMetlow subtype, implying that patients in the 
SEMetlow subtype may be more likely to benefit from 
ICBs therapy. The following TIDE algorithm and 
Submap analysis consistently confirmed the above- 
mentioned results. In general, our SEMet classifier is 
also a candidate biomarker for selecting PC patients 
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who may be sensitive to immunotherapy. 
Also, the genetic characteristics of the SEMet 

classifier were explored in our study. We found that 
the SEMetlow subtype tends to gain more TMB and 
higher mutation frequency of TP53, CDKN2A and 
KRAS. The mutations of all these three genes were 
widely studied and deemed as a contributor to the 
progression and metastasis of PC [59]. The 
exploration of differences in CNA indicated that the 
amplification of 8q24.21, 8q24.22, 8q24.12 and deletion 
of 18q21.2, 9p21.3, 17p12 were significantly enriched 
in the SEMetlow subtype. 8q24.21 is reported to involve 
numerous cancer vulnerability loci and physically 
interact with oncogene MYC [60, 61]. 18q21.2 harbors 
SMAD4, one of the most recurrently inactivated 
tumor suppressor genes in PC [62]. Most notably, the 
deletion of 9p21.3 could promote metastasis by 
evading adaptive immunity in PC [63]. All this 
evidence demonstrated that the genetic alteration 
between SEMethigh and SEMetlow subtypes, and the 
SEMetlow subtypes were significantly related to the 
proliferation and metastasis of PC. 

For further exploring the underlying biological 
relationship between the SEMetlow subtypes and 
metastasis in PC, the difference in expression of 
marker genes related to biological functions and 
GSEA analysis was investigated. The results indicated 
that the SEMetlow subtype enriched in multiple 
metastasis-related pathways. Of which, metabolic 
reprogramming is an important component in the 
abnormal survival and growth of cancer cells [64], and 
the most common example is enhanced glycolysis. 
Glycolysis in PC cultures the vigorous growth of 
tumor cells by providing large amounts of substrates 
and promoting invasion and migration via the 
interaction of glycolytic enzymes and actin [65]. ECM 
is known as a vital part composed of desmoplasia in 
PC. Continuous ECM remodeling and overexpression 
of matrix components promoted the recruitment of 
bone marrow cells, which are lately polarized to 
support tumor proliferation and invasion [66]. 
Additionally, dysregulation of various tumor-related 
signaling pathways was found in the SEMetlow 
subtype. The predictive value of the SEMet classifier 
in metastatic PC was also validated in 
ICGC-AU-Array and GSE62452. Given the above, the 
SEMetlow subtype possessed metastatic features and 
therefore has been regarded as having “pro- 
metastasis” status in PC. 

The prognostic value of 18 SEMet genes was also 
been investigated, and our SEMet classifier was 
demonstrated to the optimal model with outstanding 
prognostic performance. To be noted, we further 
observed that DKK1, TGM2 and E2F7 obtained 
significantly differential expression in PTs and HMs 

compared to Ns, and they have been reported to be 
related to the invasion and proliferation of PC [46, 47, 
55]. These SEMet genes were retrieved from HM-SE 
genes, while cancer cells have been shown to acquire 
SEs at oncogenes through the involvement of 
transcription factors (TFs). Interestingly, we 
demonstrated that E2F7 served as a TF and may 
mediate the transcriptional reprogramming of DKK1 
and TGM2, which in turn contributes to the metastasis 
of PC.  

As one of the main purposes of disease 
stratification, exploring tailored treatment strategies 
for a distinct subgroup is of great significance to 
maximize the therapeutic effect. Except for being 
informative regarding prognosis, the SEMet classifier 
could also be utilized for precise oncology as a 
potential biomarker to guide the treatment of 
metastatic PC. While a few patients benefit from 
targeted strategies and immunotherapy, gemcitabine 
remains the first-line drug for PC treatment. 
However, gemcitabine resistance is common and 
compromises long-term survival. After a comprehen-
sive selection, FLM was screened out as the optimal 
compound which could enhance the efficacy of 
gemcitabine in metastatic PC. Until now, few research 
studies have concentrated on the therapeutic effect of 
FLM on cancer, especially PC [35]. Our experiments 
demonstrated that FLM could significantly sensitize 
the metastatic PC to gemcitabine, highlighting the 
critical role of the SEMet classifier in drug screening. 

SEMet classifier is superior to other methods in 
risk stratification and personalized treatment 
prediction as a classifier particularly developed for 
metastatic PC based on SE profiling. However, several 
limitations should be mentioned in our study. First, 
although the multi-center cohorts have been included 
in our study to construct and validate the SEMet 
classifier, the in-house data should be further added. 
Second, the deeper exploration of mechanisms in 
E2F7 targeting TGM2 and DKK1 was warranted. 
Finally, clinical validations of the SEMet classifier are 
necessary for promoting the translational value of our 
findings. 

Conclusion 
In conclusion, based on HM-SE genes generated 

from H3K27ac ChIP-Seq data, the current study 
developed a consensus classifier (SEMet classifier) via 
188 ML algorithm integrations in multicenter cohorts. 
This classifier not only exhibited robust predictive 
and prognostic performance but also stratified 
patients into distinct statuses at the immune and 
genomic levels. Among 18 SEMet genes in the SEMet 
classifier, DDK1 and TGM2 act in PC as a 
pro-metastasis factor targeted by E2F7. More import-
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antly, we demonstrated that the SEMetlow subgroup 
was significantly correlated with more metastatic 
characteristics and further confirmed that FLM might 
significantly sensitize the metastatic PC to 
gemcitabine, throwing light on integrating tailored 
prognosis prediction with personalized treatment. 

Abbreviations 
ATCC: American Type Culture Collection; AUC: 

area under the curve; CCLs: cancer cell lines; C-index: 
concordance index; CAN: copy number alteration; 
CPTAC: Clinical Proteomic Tumor Analysis 
Consortium; CRC: colorectal cancer; CTRP: Cancer 
Therapeutics Response Portal; DEGs: differentially 
expressed genes; Enet: elastic network; FLM: 
Flumethasone; FPKM: Fragments Per Kilobase of 
exon model per Million mapped fragments; GBM: 
generalized boosted regression modeling; GEO: Gene 
Expression Omnibus; GSVA: Gene set variation 
analysis; HCMDB: Human Cancer Metastasis 
Database; HMs: hepatic metastases; HNSCC: neck 
squamous cell carcinoma; ICBs: immune checkpoint 
blockages; ICGC: International Cancer Genome 
Consortium; IPS: immunophenoscore; k-NN: 
K-nearest neighbor; MDGs: methylation-driven 
genes; MDO: metastatic patient-derived organoids; 
ML: machine-learning; PC: pancreatic cancer; 
plsRcox: partial least squares regression for Cox; PTs: 
primary pancreatic tumors; RCC: renal cell carcinoma; 
ROC: receiver-operator characteristic; RSF: random 
survival forest; SE: super-enhancers; SEMet: super- 
enhancer-related metastatic; SuperPC: supervised 
principal components; survival-SVM: survival 
support vector machine; TCGA: The Cancer Genome 
Atlas; TFs: transcription factors; TIDE: The Tumor 
Immune Dysfunction and Exclusion; TMB: tumor 
mutation burden. 

Acknowledgments 
We would like to exert compelling appreciation 

to the Standardized Clinical Biobank (National 
Facility for Translational Medicine (Shanghai), Ruijin 
Hospital, Shanghai Jiao Tong University School of 
Medicine) for providing the surgical specimens. In 
addition, this project was also funded by the 
Translational Medicine Program of Major National 
Science and Technology Infrastructure (TMSK-2021- 
507, TMSK-2021-502), National Nature Science 
Foundation of China (Grant No. 81802358 and 
81871906), Medical- Engineering Cross Foundation of 
Shanghai Jiao Tong University (Grant No. ZH2018 
ZDA01). Shanghai 2021 “Science and Technology 
Innovation Action Plan” International Science and 
Technology Cooperation Project (No. 214307119000). 
The graphical abstract was created with 

BioRender.com. Otherwise, we would like to express 
our great appreciation to Dr. Zaoqu Liu (Department 
of Interventional Radiology, The First Affiliated 
Hospital of Zhengzhou University, Zhengzhou, P.R. 
China.) for his selfless support throughout the course 
of this study. 

Author contributions 
XD, LJ and BS conceived and supervised the 

study. DC performed the bioinformatics analysis. DC 
and YC analyzed the data. YC and HT conducted the 
experiments. DC and YC wrote the draft. DC, YC, LZ, 
NY, YZ, YJ, SZ, YL, MS, SZ, WW, CW, CP, HC and XD 
revised and validated the manuscript. All authors 
read and approved the final manuscript. 

Availability of data and materials 
Data are available in a public, open-access 

repository. ChIP-Seq data generated in this study are 
deposited at the National Omics Data Encyclopedia 
(NODE) with the accession code OEP004076. Essential 
scripts for integrating multiple ML algorithms and 
model construction are available on the GitHub 
website 
(https://github.com/Dongjie-orange/SEMet). 

Ethics approval and consent to participate 
The study was approved by the Research Ethics 

Committee of Ruijin Hospital, School of Medicine, 
Shanghai Jiao Tong University (2021-161), and 
complied with Helsinki Declaration. All samples were 
collected with documented informed consent from 
the enrolled patients. Cell lines used in this study 
were authenticated by short tandem repeat analysis. 

Supplementary Material  
Supplementary methods, figures and tables. 
https://www.thno.org/v13p3290s1.zip  

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J 

Clin. 2022; 72: 7-33. 
2. Yachida S, Iacobuzio-Donahue CA. The pathology and genetics of metastatic 

pancreatic cancer. Arch Pathol Lab Med. 2009; 133: 413-22. 
3. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. 

Therapeutic developments in pancreatic cancer: current and future 
perspectives. Nat Rev Gastroenterol Hepatol. 2018; 15: 333-48. 

4. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020; 395: 
2008-20. 

5. Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for 
Pancreatic Cancer Immunotherapy. Cancer Cell. 2020; 38: 788-802. 

6. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. 
Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic 
Cancer. N Engl J Med. 2019; 381: 317-27. 

7. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, et al. Discovery 
and characterization of super-enhancer-associated dependencies in diffuse 
large B cell lymphoma. Cancer Cell. 2013; 24: 777-90. 

8. Pott S, Lieb JD. What are super-enhancers? Nat Genet. 2015; 47: 8-12. 



Theranostics 2023, Vol. 13, Issue 10 
 

 
https://www.thno.org 

3308 

9. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et 
al. Histone H3K27ac separates active from poised enhancers and predicts 
developmental state. Proc Natl Acad Sci U S A. 2010; 107: 21931-6. 

10. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. 
Super-enhancers in the control of cell identity and disease. Cell. 2013; 155: 
934-47. 

11. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. 
Master transcription factors and mediator establish super-enhancers at key 
cell identity genes. Cell. 2013; 153: 307-19. 

12. Teng S, Li YE, Yang M, Qi R, Huang Y, Wang Q, et al. Tissue-specific 
transcription reprogramming promotes liver metastasis of colorectal cancer. 
Cell Res. 2020; 30: 34-49. 

13. Kim EJ, Liu P, Zhang S, Donahue K, Wang Y, Schehr JL, et al. BAF155 
methylation drives metastasis by hijacking super-enhancers and subverting 
anti-tumor immunity. Nucleic Acids Res. 2021; 49: 12211-33. 

14. Dong J, Li J, Li Y, Ma Z, Yu Y, Wang CY. Transcriptional super-enhancers 
control cancer stemness and metastasis genes in squamous cell carcinoma. Nat 
Commun. 2021; 12: 3974. 

15. Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, et al. Downregulated METTL14 
accumulates BPTF that reinforces super-enhancers and distal lung metastasis 
via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021; 11: 
3676-93. 

16. Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, et al. 
Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell. 2017; 
170: 875-88.e20. 

17. Zhu X, Zhang T, Zhang Y, Chen H, Shen J, Jin X, et al. A super-enhancer 
controls TGF- β signaling in pancreatic cancer through downregulation of 
TGFBR2. Cell Signal. 2020; 66: 109470. 

18. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective 
inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013; 
153: 320-34. 

19. Kobayashi Y, Kushihara Y, Saito N, Yamaguchi S, Kakimi K. A novel scoring 
method based on RNA-Seq immunograms describing individual 
cancer-immunity interactions. Cancer Sci. 2020; 111: 4031-40. 

20. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. 
Conserved pan-cancer microenvironment subtypes predict response to 
immunotherapy. Cancer Cell. 2021; 39: 845-65.e7. 

21. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity 
cycle. Immunity. 2013; 39: 1-10. 

22. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A Web Server for 
Resolving Tumor Immunophenotype Profiling. Cancer Res. 2018; 78: 6575-80. 

23. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. 
IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin 
Invest. 2017; 127: 2930-40. 

24. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction 
and exclusion predict cancer immunotherapy response. Nat Med. 2018; 24: 
1550-8. 

25. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: 
identifying common subtypes in independent disease data sets. PLoS One. 
2007; 2: e1195. 

26. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, 
et al. Signatures of mutational processes in human cancer. Nature. 2013; 500: 
415-21. 

27. Liu Z, Liu L, Lu T, Wang L, Li Z, Jiao D, et al. Hypoxia Molecular 
Characterization in Hepatocellular Carcinoma Identifies One Risk Signature 
and Two Nomograms for Clinical Management. J Oncol. 2021; 2021: 6664386. 

28. Rosario SR, Long MD, Affronti HC, Rowsam AM, Eng KH, Smiraglia DJ. 
Pan-cancer analysis of transcriptional metabolic dysregulation using The 
Cancer Genome Atlas. Nat Commun. 2018; 9: 5330. 

29. Houg DS, Bijlsma MF. The hepatic pre-metastatic niche in pancreatic ductal 
adenocarcinoma. Mol Cancer. 2018; 17: 95. 

30. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. 
Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018; 173: 
321-37.e10. 

31. Liang R, Xiao G, Wang M, Li X, Li Y, Hui Z, et al. SNHG6 functions as a 
competing endogenous RNA to regulate E2F7 expression by sponging 
miR-26a-5p in lung adenocarcinoma. Biomed Pharmacother. 2018; 107: 
1434-46. 

32. Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, et al. 
MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of 
liver cancer stem cells by targeting the E2F7/AKT axis. J Exp Clin Cancer Res. 
2018; 37: 252. 

33. Saleh AD, Cheng H, Martin SE, Si H, Ormanoglu P, Carlson S, et al. Integrated 
Genomic and Functional microRNA Analysis Identifies miR-30-5p as a Tumor 
Suppressor and Potential Therapeutic Nanomedicine in Head and Neck 
Cancer. Clin Cancer Res. 2019; 25: 2860-73. 

34. Ma J, Weng L, Jia Y, Liu B, Wu S, Xue L, et al. PTBP3 promotes malignancy and 
hypoxia-induced chemoresistance in pancreatic cancer cells by ATG12 
up-regulation. J Cell Mol Med. 2020; 24: 2917-30. 

35. Zhou Y, Zhou Y, Wang K, Li T, Yang M, Wang R, et al. Flumethasone 
enhances the efficacy of chemotherapeutic drugs in lung cancer by inhibiting 
Nrf2 signaling pathway. Cancer Lett. 2020; 474: 94-105. 

36. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance 
in Pancreatic Cancer. Int J Mol Sci. 2019; 20. 

37. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian 
LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of 
thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014; 74: 
2913-21. 

38. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA Methylation in Cancer 
and Aging. Cancer Res. 2016; 76: 3446-50. 

39. Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome 
Biol. 2019; 20: 245. 

40. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of 
KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like 
Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018; 
33: 512-26.e8. 

41. Hamdan FH, Johnsen SA. DeltaNp63-dependent super enhancers define 
molecular identity in pancreatic cancer by an interconnected transcription 
factor network. Proc Natl Acad Sci U S A. 2018; 115: E12343-e52. 

42. Huang CS, You X, Dai C, Xu QC, Li F, Wang L, et al. Targeting 
Super-Enhancers via Nanoparticle-Facilitated BRD4 and CDK7 Inhibitors 
Synergistically Suppresses Pancreatic Ductal Adenocarcinoma. Adv Sci 
(Weinh). 2020; 7: 1902926. 

43. Zauri M, Berridge G, Thézénas ML, Pugh KM, Goldin R, Kessler BM, et al. 
CDA directs metabolism of epigenetic nucleosides revealing a therapeutic 
window in cancer. Nature. 2015; 524: 114-8. 

44. Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, et al. 
nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine 
deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2012; 
2: 260-9. 

45. Feng Z, Li K, Wu Y, Peng C. Transcriptomic Profiling Identifies DCBLD2 as a 
Diagnostic and Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. 
Front Mol Biosci. 2021; 8: 659168. 

46. Igbinigie E, Guo F, Jiang SW, Kelley C, Li J. Dkk1 involvement and its 
potential as a biomarker in pancreatic ductal adenocarcinoma. Clin Chim 
Acta. 2019; 488: 226-34. 

47. Wang L, Li M, Chen F. microRNA-26a represses pancreatic cancer cell 
malignant behaviors by targeting E2F7. Discov Oncol. 2021; 12: 55. 

48. Zhao X, Li H, Lyu S, Zhai J, Ji Z, Zhang Z, et al. Single-cell transcriptomics 
reveals heterogeneous progression and EGFR activation in pancreatic 
adenosquamous carcinoma. Int J Biol Sci. 2021; 17: 2590-605. 

49. Zhou C, Zhu X, Liu N, Dong X, Zhang X, Huang H, et al. B-lymphoid tyrosine 
kinase-mediated FAM83A phosphorylation elevates pancreatic tumorigenesis 
through interacting with β-catenin. Signal Transduct Target Ther. 2023; 8: 66. 

50. Carbone C, Piro G, Gaianigo N, Ligorio F, Santoro R, Merz V, et al. Adipocytes 
sustain pancreatic cancer progression through a non-canonical WNT paracrine 
network inducing ROR2 nuclear shuttling. Int J Obes (Lond). 2018; 42: 334-43. 

51. Zhang J, Sun H, Liu S, Huang W, Gu J, Zhao Z, et al. Alteration of 
tumor-associated macrophage subtypes mediated by KRT6A in pancreatic 
ductal adenocarcinoma. Aging (Albany NY). 2020; 12: 23217-32. 

52. Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 
improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer 
Res. 2021; 40: 279. 

53. Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, et al. 
p53-driven lipidome influences non-cell-autonomous lysophospholipids in 
pancreatic cancer. Biol Direct. 2022; 17: 6. 

54. Lin C, Xia J, Gu Z, Meng Y, Gao D, Wei S. Downregulation of USP34 Inhibits 
the Growth and Migration of Pancreatic Cancer Cells via Inhibiting the PRR11. 
Onco Targets Ther. 2020; 13: 1471-80. 

55. Wang F, Wang L, Qu C, Chen L, Geng Y, Cheng C, et al. Kaempferol induces 
ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated 
Akt/mTOR signaling. BMC Cancer. 2021; 21: 396. 

56. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski 
D, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress 
matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016; 7: 
12630. 

57. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, et al. 
Pancreatic adenocarcinoma induces bone marrow mobilization of 
myeloid-derived suppressor cells which promote primary tumor growth. 
Cancer Immunol Immunother. 2012; 61: 1373-85. 

58. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, et 
al. Cancer-associated stromal fibroblasts promote pancreatic tumor 
progression. Cancer Res. 2008; 68: 918-26. 

59. Hu C, Hart SN, Polley EC, Gnanaolivu R, Shimelis H, Lee KY, et al. 
Association Between Inherited Germline Mutations in Cancer Predisposition 
Genes and Risk of Pancreatic Cancer. Jama. 2018; 319: 2401-9. 

60. Grisanzio C, Freedman ML. Chromosome 8q24-Associated Cancers and MYC. 
Genes Cancer. 2010; 1: 555-9. 

61. Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et 
al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific 
long-range interaction with MYC. Proc Natl Acad Sci U S A. 2010; 107: 9742-6. 

62. Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, et al. 
Identification of genetic alterations in pancreatic cancer by the combined use 
of tissue microdissection and array-based comparative genomic hybridisation. 
Br J Cancer. 2007; 96: 373-82. 

63. Barriga FM, Tsanov KM, Ho YJ, Sohail N, Zhang A, Baslan T, et al. MACHETE 
identifies interferon-encompassing chromosome 9p21.3 deletions as mediators 
of immune evasion and metastasis. Nat Cancer. 2022; 3: 1367-85. 



Theranostics 2023, Vol. 13, Issue 10 
 

 
https://www.thno.org 

3309 

64. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of 
cancer: metabolic reprogramming fuels cell growth and proliferation. Cell 
Metab. 2008; 7: 11-20. 

65. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, 
et al. Epigenomic reprogramming during pancreatic cancer progression links 
anabolic glucose metabolism to distant metastasis. Nat Genet. 2017; 49: 367-76. 

66. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of 
myeloid cells by tumours. Nat Rev Immunol. 2012; 12: 253-68. 

 


