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Abstract 

Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, and there is 
an urgent need to discover reliable biomarkers for early diagnosis. Here, we established an effective urine 
multi-omics platform and integrated metabolomics and peptidomics to investigate the biological changes 
during DKD pathogenesis. 
Methods: Totally 766 volunteers (221 HC, 198 T2DM, 175 early DKD, 125 overt DKD, and 47 
grey-zone T2DM patients with abnormal urinary mALB concentration) were included in this study. 
Non-targeted metabolic fingerprints of urine samples were acquired on matrix-free LDI-MS platform by 
the tip-contact extraction method using fluorinated ethylene propylene coated silicon nanowires chips 
(FEP@SiNWs), while peptide profiles hidden in urine samples were uncovered by MALDI-TOF MS after 
capturing urine peptides by porous silicon microparticles. 
Results: After multivariate analysis, ten metabolites and six peptides were verified to be stepwise 
regulated in different DKD stages. The altered metabolic pathways and biological processes associated 
with the DKD pathogenesis were concentrated in amino acid metabolism and cellular protein metabolic 
process, which were supported by renal transcriptomics. Interestingly, multi-omics significantly increased 
the diagnostic accuracy for both early DKD diagnosis and DKD status discrimination. Combined with 
machine learning, a stepwise prediction model was constructed and 89.9% of HC, 75.5% of T2DM, 69.6% 
of early DKD and 75.7% of overt DKD subjects in the external validation cohort were correctly classified. 
In addition, 87.5% of grey-zone patients were successfully distinguished from T2DM patients. 
Conclusion: This multi-omics platform displayed a satisfactory ability to explore molecular information 
and provided a new insight for establishing effective DKD management. 

Keywords: Multi-omics; Diabetic kidney disease; Type 2 diabetes; Non-invasive diagnosis; Laser desorption/ionization mass 
spectrometry 

Introduction 
Diabetic kidney disease (DKD) is one of the 

major microvascular complications of diabetes, which 
has become the leading cause of chronic kidney 
disease and end-stage renal disease [1,2]. In recent 

 
Ivyspring  

International Publisher 



Theranostics 2023, Vol. 13, Issue 10 
 

 
https://www.thno.org 

3189 

years, much efforts have been made to build an 
effective diabetes mellitus (DM) management system. 
Nevertheless, it remains a challenge to prevent the 
incidence of DM-related complications, such as 
damage to kidneys and other organs [3,4]. Urinary 
albumin-to-creatinine ratio (UACR) and estimated 
glomerular filtration rate (eGFR) are commonly 
recognized metrics to monitor DKD status [5,6]. 
However, an increasing body of evidence has 
suggested that the progression of renal function 
damage may not accompany the deterioration of 
proteinuria in diabetes, and early progressive renal 
function decline may be observed before the onset of 
microalbuminuria in a considerable proportion of DM 
patients [5,7,8]. A meta-analysis revealed that the 
misclassification rate of accurate DKD diagnosis 
reaches 49.2% if based on clinical information alone 
[9]. Thus, there is an urgent need for more sensitive 
and specific biomarkers that can predict early-stage 
renal injury and assess the DKD progression. On the 
other hand, although several factors have been 
proposed to be involved in the DKD onset such as the 
increased activity of protein kinase C, the underlying 
molecular mechanisms are still debated and not well 
understood [10].  

Compared with genomics, peptidomics and 
metabolomics create a novel window to elucidate 
intermediate and end products of biological path-
ways. Driven by the development of high-throughput 
technologies, peptidomics and metabolomics have 
been rapidly applied to specific clinical settings 
[11,12]. Recent years, the mining of potential 
biomarkers for early DKD diagnosis based on 
peptidomics or metabolomics has been carried out 
successively [13–15]. Notably, a panel consisting of 
273 urinary peptides exhibited high accuracy in the 
cross-sectional classification of eGFR status and 
predicted rapid progression of eGFR better than 
albumin excretion rate [16,17]. Besides, several 
metabolites were identified to be associated with 
kidney function decline, such as aconitic acid, citric 
acid, and uracil [15]. An increasing body of evidence 
has suggested that a panel composed of multiple 
biomarkers exhibits great priorities in improving 
accuracy, enhancing diagnosis, and reducing 
misclassifications [18,19]. Therefore, we hypothesized 
that integrative omics may provide an unprecedented 
view of understanding DKD mechanisms and 
discovering potential biomarkers that enable effective 
early DKD diagnosis.  

In contrast with other methods such as NMR 
spectroscopy, mass spectrometry (MS) exhibits 
priorities in detecting hundreds of substances 
simultaneously without labeling or preselection [20]. 
MALDI-TOF MS has been widely regarded as a 

high-throughput platform for profiling biological 
samples, which can meet the requirements for 
large-scale clinical diagnosis [21,22]. To acquire the 
unique peptide information in biofluids, our group 
has reported porous silicon-based MALDI-MS 
technology to capture peptides and exclude abundant 
proteins in serum samples [23,24]. The structural 
information of differential peptides was obtained by 
nano-LC-ESI MS/MS analysis. Besides, our previous 
work has established a tip-contact extraction (TCE) 
method coupled with LDI-MS platform, which is 
applicable for ultrasensitive and reproducible detect-
ion of urinary metabolites [25,26]. For significantly 
perturbed metabolites, identifications were achieved 
by matching exact mass and high-resolution MS/MS 
spectra to databases and standard samples. On the 
basis of these works, we intend to construct a urine 
multi-omics platform to identify potential biomarkers 
associated with DKD progression, understand the 
pathogenesis mechanism, and achieve non-invasive 
diagnosis in the population. 

Methods 
Participant recruitment 

Participants were recruited consecutively in the 
diabetes center from Zhejiang Provincial People's 
Hospital between 2020 and 2022. Volunteers were 
excluded when renal impairment was likely caused 
by other diseases such as polycystic kidney disease, 
presence of overt hematuria, or history of glomerulo-
nephritis. The following groups were defined 
according to the albuminuria category classified by 
the Kidney Disease: Improving Global Outcomes 
(KDIGO) Diabetes Work Group [27]: HC with 
negative urine routine results and no abnormal renal 
biochemistry; T2DM patients without micro- or 
macroalbuminuria (mALB < 30 mg/g, UACR < 
3 mg/mmol, and eGFR ≥ 60 ml/min per 1.73 m2) and 
abnormal renal biochemistry; early DKD patients 
with microalbuminuria (3 ≤ UACR < 30 mg/mmol, 
and eGFR ≥ 60 ml/min per 1.73 m2), overt DKD 
patients with macroalbuminuria and typical diabetic 
glomerulopathy on renal biopsy (UACR ≥ 
30 mg/mmol or eGFR < ml/min per 1.73 m2), 
grey-zone T2DM patients with abnormal urinary 
microalbumin concentration (mALB ≥ 30 mg/g, 
UACR < 3 mg/mmol, and eGFR ≥ ml/min per 
1.73 m2). Volunteers with a history of urinary diseases 
or other metabolic disorders were excluded in study. 
Totally, 221 HC, 198 T2DM, 175 early DKD, 125 overt 
DKD, and 47 grey-zone patients were selected in 
terms of matched gender, age, body mass index 
(BMI), and smoking status. The clinical characteristics 
of all participants are shown in Table S1. 
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Sample collection and preparation 
Urine specimens were collected at the midstream 

of first morning urine on an empty stomach at around 
7:00 to 9:00 a.m. Cell debris and insoluble residues 
were removed by centrifugation (8000 g for 10 min at 
4 °C) and the final supernatant was stored in a 
refrigerator at −80 °C until use. Prior to MS analysis, 
urine samples were thawed at 4 °C. Metabolite 
extraction was performed by tip−contact sampling 
process using FEP@SiNWs chips and the detailed 
extraction procedure has been described in our 
previous work [25]. Briefly, 20 μL of urine samples 
were dropped onto ITO glass and then a FEP@SiNWs 
chip (4 mm × 4 mm) was attached to the surface of 
droplet. After retaining for 20 min, metabolites in 
urine samples were extracted onto the substrate and 
the excess urine was removed by N2 stream. Effective 
peptide capture and protease exclusion were achieved 
by Si microparticles with suitable pore size. In detail, 
urine samples were diluted with ultrapure water (v/v 
1:1) and then added to 96-well plates loaded with 
porous Si microparticles. After shaking at 1350 rpm 
for 15 min, the suspension was centrifuged at 2220 g 
for 2 min and the supernatant was removed from the 
microparticles. Subsequently, the particles were 
re-suspended in ultrapure water and isolated by 
centrifugation at 2220 g for 2 min to eliminate salt 
interference. 

Urine peptidomic and metabolomic profiling 
on LDI-MS platform 

Metabolic fingerprints of urine samples were 
recorded by ultrafleXtreme MALDI-TOF/TOF 
instrument (Bruker Daltonics Co.) equipped with a 
355 nm Nd:YAG laser beam. After metabolite 
extraction, FEP@SiNW chips were stuck onto the 
custom-made aluminum plate and then inserted into 
the instrument. The relative laser pulse energy was set 
at 57% of the total energy to conduct data acquisition 
in reflecting negative ion mode. The lens was set at 
8.50 kV and the voltage of ion source 1, ion source 2, 
reflector 1 and reflector 2 was set at 20.00, 17.75, 21.10 
and 10.70 kV, respectively. The pulsed ion extraction 
time for urine detection was optimized to 120 ns and 
the laser parameter was set at 4_large. The m/z range 
was set at 20-350 Da with 2000 accumulation laser 
shots per sample. For urine metabolomic profiling, 
three replicates were performed in all cases. 

For peptidomics analysis, the mass spectra of 
captured peptides were obtained on ClinMS-Plat I 
MALDI-TOF/TOF mass spectrometer (Well-health-
care Technologies Co.) equipped with a 337 nm 
nitrogen laser. The microparticles were suspended in 
a solution of ultrapure water, acetonitrile and TFA 
(v/v 50:50:0.1) and then spotted onto the MALDI 

plate. After drying, 1 μL of α-cyano-4-hydroxy-
cinnamic acid (CHCA) dissolved in a mixture of 
ultrapure water, acetonitrile and TFA (v/v 50:50:0.1) 
was added to each spot and the samples were 
air-dried before insertion into the instrument. MS 
spectra were acquired at an m/z range of 
600-20000 Da in linear positive ion mode. The voltage 
of detector, repeller, extractor and focus lens was set 
at 2.77, 20.00, 1.95, and 7.00 kV, respectively. The 
frequency was 60 Hz and the delay time was set at 
250 ns. The laser pulse energy was 41.8 μJ and 800 
laser shots were averaged for each mass spectrum. For 
urine peptidomic profiling, three replicates were 
performed in all cases. 

Identification of the dysregulated metabolites 
and peptides 

The structural identification of differential 
metabolites was performed by matching the mass 
spectra with the Human Metabolome Database 
(HMDB, http://www.hmdb.ca/) and commercial 
standard reagents. Firstly, UPLC-MS/MS analysis of 
pooled urine samples provided the exact mass and 
fragment profile, which were utilized to identify 
metabolites through database searching. The relative 
error of the exact m/z value was limited to 30 ppm 
and a possible list of differential metabolites was 
acquired. Subsequently, the initially identified 
metabolites were verified by matching the exact mass 
and MS/MS spectra from urine samples with the 
purchased standard reagents on MALDI-TOF/TOF 
tandem mass spectrometry. The detailed experi-
mental parameters of UPLC-MS analysis were 
provided in ESI†. 

The peptides captured in porous Si micro-
particles were identified by nano-LC-ESI MS/MS 
analysis with a 10 kDa ultrafiltration centrifuge tube. 
The obtained exact mass and MS/MS spectra were 
searched against the Swiss-Prot database with the 
open pFind3 search engine, in which no enzyme was 
selected in the digestion section. The max missing 
cleavage number was set as 3 and the error margin of 
exact mass and fragment peaks was set as 20 ppm. 
Oxidation [M] and oxidation [P] were set as variable 
modifications and no fixed modification was added. 
Automated filtering was performed and peptides 
scoring with q-values (false discovery rate filter) ≤ 
0.01 were retained. The detailed experimental 
parameters of nano-LC-ESI MS/MS analysis were 
provided in ESI†. 

Statistical analysis  
Metabolomics and peptidomics data were 

processed by FlexAnalysis (Bruker Daltonics Co.) and 
ClinMS Analyzer (Zhejiang Huijian AIMS Technology 
Co.), respectively. Peaks with S/N > 3 were picked for 
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subsequent statistical analysis. After normalizing the 
obtained mass spectra with the cubic spline method in 
R 3.5.2 software, differential metabolites and peptides 
were sorted out by student’s t-test using MATLAB 
software and the false discovery rate (FDR) value is 
calculated by the R function p.adjust based on the 
Benjamini-Hochberg method. To evaluate the 
molecular distinctions between groups, orthogonal 
partial least squares discriminant analysis (OPLS-DA) 
was performed by SIMCA software. To construct an 
effective diagnostic model, seven machine learning 
algorithms were established in MATLAB software via 
cross-validation (10-folds) and externally validated on 
the held-out 10% test set, including support vector 
machine (SVM), decision trees (DT), naïve Bayesian 
classifier (NB), logistic regression (Logi), linear 
discriminant analysis (LDA), nearest neighbor 
classifier (KNN), and LASSO regression. Accuracy, 
F-measure, kappa coefficient and precision were 
utilized to evaluate the model performances of the 
different classification methods. Besides, receiver 
operating curve (ROC) analysis was conducted to 
measure diagnostic metrics, including the area under 
the curve (AUC), specificity, and sensitivity. What’s 
more, the classification results for the training and 
validation datasets were displayed in confusion 
matrix. The disturbed metabolic pathways were 
pictured by MetaboAnalyst and intersection analysis 
of enriched pathways was carried out with TBtools. 
To highlight the potential functional relationships 
between dysregulated metabolites, network analysis 
was performed using MetaboAnalyst. The biological 
processes involved in the attributed proteins were 
annotated by GO database and the significantly 
enriched biological processes for each stage were 
identified using Biological Networks Gene Ontology. 
Besides, differentially expressed peptides and meta-
bolites were utilized as input into MetaboAnalyst to 
perform joint-pathway analysis. What’s more, a 
compound-reaction-enzyme-gene network was built 
by MetScape to acquire related metabolic enzyme 
genes and pathways. To investigate the molecular 
mechanisms during DKD pathogenesis, RNASeq data 
in glomeruli from human kidneys with DKD and 
morphologically normal kidneys were downloaded 
from the publicly available database (GSE1009). The 
detailed procedure of transcriptome analysis was 
provided in ESI†. 

Study approval 
Urine samples were obtained from Zhejiang 

Provincial People's Hospital. The Ethical Committee 
of the Zhejiang Provincial People's Hospital approved 
the protocol (No. 2021KY020) and the study was 
performed in accordance with the ethical standards 

laid down in the 1964 Declaration of Helsinki and its 
later amendments. Written informed consent from 
each patient was achieved. 

Results 
Multi-omics Platform and quality control 
assessment 

The procedure of the multi-omics analysis of 
urine samples to identify DKD-related biomarkers is 
presented in Scheme 1. In this study, non-targeted 
metabolic profiles of urine samples were acquired by 
TCE method based on FEP@SiNWs chip coupled with 
LDI-MS detection [25], while peptide profiles in urine 
samples was uncovered by MALDI-TOF MS after 
capturing urine peptides by porous silicon micro-
particles [23]. A pooled quality control (QC) sample 
was prepared by pooling equal aliquots from all 
samples and further utilized to ensure the quality of 
acquired mass spectra. As shown in Figure S1, the 
metabolic and peptide profiles of the QC samples and 
healthy controls collected in each independent batch 
of experiments were clustered together, indicating the 
reliability of collective data. In addition, we observed 
acceptable reproducibility for the QC sample in the 
repeated measurements. As shown in Figure S2, 
spearman coefficients for metabolite and peptide 
abundance detected in QC samples from two 
technical replicates were 0.884 and 0.955, respectively. 
The medium RSD of intra-batch measurements for 
metabolites and peptides is 10.17% and 7.55%, 
respectively. As to the inter-batch stability, the 
medium RSD for metabolite and peptide is 18.74% 
and 9.37%, respectively. To check the stability of the 
obtained metabolic fingerprints, the peak ratios of two 
internal standards (2-chlorophenylalanine, keto-
profen) spiked in urine samples were evaluated. 
Figure S3 displayed that the ratios of two internal 
standard behaved quite stable in each independent 
measurement, with the RSD being less than 25%. 
Notably, we have reviewed current guidelines of the 
US Food Drug Administration with respect to 
requirements for defining assay performance and 
provided standard curve, accuracy, precision, 
recovery, stability (extraction stability, freeze-thaw 
stability, and long-term stability), dilution effect, and 
repeatability within and between batches as required 
(Figure S4-S13). Furthermore, data-driven normali-
zation for urine samples have been screened 
according to the methods proposed in our previous 
work [25]. The cubic spline normalization method 
was chosen for subsequent analysis. These results 
gave us confidence that the established multi-omics 
platform has robust performance for acquiring 
reproducible MS profiles.  
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Scheme 1. The workflow of urine multi-omics analysis. (A) Mining metabolite and peptide information in urine samples based on porous Si microparticles and FEP@SiNWs 
chips. (B) Establishing effective DKD diagnostic model and investigating molecular mechanism. 

 

Metabolomic landscape and peptide pattern of 
DKD and controls 

To obtain the comprehensive metabolomic 
landscape of urine samples, untargeted metabolic 
profiling was conducted. The detailed demographic 
information of collected urine cases for model 
establishment (152 HC,149 T2DM, 106 early DKD, 55 
overt DKD, and 39 grey-zone patients) is shown in 
Table S1. The discovery and validation sets were 
retrospectively and randomly created in 2:1 
proportion. Through untargeted LDI-MS analysis, 
around 227 metabolite peaks and 206 peptide peaks 
could be reliably detected across all samples. As 
shown in Figure S14, MS spectra obtained from HC, 
T2DM and DKD patients with different stages 
displayed distinct metabolome and peptidome 
landscapes. Venn diagram showed the overlap of 
differential metabolites and peptides in pairwise 
analysis between groups (Figure 1A-B, Table S2-S4). 
Notably, 10 metabolites and 6 peptides with adjusted 
p value < 0.05 were found to be significantly altered 
across all DKD groups, which might be intimately 
associated with DKD occurrence (Figure S15). The 
distribution of these differentially expressed features 
among the samples in the discovery set was presented 
in Figure 1C. In this study, we observed a pheno-
menon that most metabolites in the T2DM/DKD 
group were downregulated. Perturbations of meta-
bolites involved in amino acid metabolic pathways 
might mediate the occurrence and development of 

diabetes associated with insulin resistance and 
dysfunction of pancreatic islet β-cells [28,29]. 
Compared to HC, a majority of peptides displayed an 
up-regulation in patients, which may be explained by 
the reduction of glomerular filtration rate [30,31]. 
Besides, Figure 1D-G displayed the top up- and 
down-regulated stepwise metabolites and peptides, 
including 5-Methylfuran-2-carboxylic acid, L- 
threonine, pep_2520.43_SERPINA1, and pep_ 
1912.08_UMOD. The detailed information for the 
identification of biomarker candidates is described in 
Table S5-S7. The log2-transformed fold change of 
certain molecules and clinical factors with 
corresponding p value in pairwise analysis were 
visualized in Figure S16. As shown in the Figure, 
eGFR changes were related with DKD progression, 
and UACR levels were significantly different between 
early DKD and T2DM controls. However, the current 
clinical biochemical indexes cannot clearly separate 
the three groups of T2DM, early DKD and overt DKD. 
In contrast, OPLS-DA based on metabolomics or 
peptidomics data achieved a certain separation 
between the three groups. especially for T2DM and 
overt DKD patients (Figure S17A-B). Interestingly, 
there was less overlap between T2DM and early DKD 
patients in the pattern recognition when integrating 
metabolomics and peptidomics (Figure S17C). To 
assess the impact caused by demographic character-
istics within cohorts, we examined the discrimination 
outcomes across groups with different gender, age 
and BMI using both discovery and validation 
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datasets. The PCA plots illustrated no significant 
differences in mass spectra of males and females from 
different subgroups and the interference caused by 
age and BMI variation could be ignored (Figure S18, 
S19).  

Multi-omics reveals dysregulated biological 
pathways in different disease stages 

The dysregulated biological pathways in 
different disease stages were further investigated by 
inputting those signatures into the open-source 

platforms as well as literature mining. As shown in 
Figure 2A, the altered urinary peptide-attributed 
proteins were mapped by the Human Protein Altas 
according to their expression in renal tissues. The 
differential excretion of tubular proteins such as 
UMOD suggests that the tubular compartment is an 
important site of early injury. Attributed proteins 
such as VDAC2 and ALB are localized in the 
glomerulus and proximal tubules, which may reflect 
impaired glomerular permselectivity and proximal 
tubular reabsorption. Biological function analysis 

 

 
Figure 1. Multi-omics landscapes of urine samples from T2DM, DKD patients and healthy controls. (A) Venn diagrams represent differential metabolites and (B) peptides 
discovered in pairwise analysis, respectively. (C) Heatmap displays the distribution of differentially expressed features across three groups in the discovery set. Each row 
represents a signature whereas each column represents a sample. (D) Representative box plots of top up- or down-regulated metabolites and (G) peptides. 
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indicated that the occurrence of early DKD may be 
related to cellular protein metabolic process, platelet 
alpha granule lumen, and serine-type endopeptidase 
inhibitor activity (Figure S20). Ten common biological 
processes were identified to be dysregulated across 

three groups by intersection pathway analysis (Figure 
S21) and the relative enrichment scores and 
significance of these processes between two groups 
were visualized in Figure 2B.  

 

 
Figure 2. Dysregulated biological pathways in different disease stages. (A) Localization of assigned proteins in different nephron segments. (B) Common biological processes in 
different disease stages. The circle colors represent JG scores of certain dysregulated processes between two groups. The circle size is proportional to the log10(p) value. (C) 
Chord plot of top 10 ranked assigned proteins and associated biological pathways. (D) Comparison of enriched biological processes in different disease stages. As shown in the 
figure legend, biological processes enriched in early DKD compared to T2DM controls appear as blue clustered nodes, while purple node represents biological processes 
enriched in different DKD stages. (E) Common metabolic pathways in different disease stages. (F) Network analysis of identified metabolites shows the disturbance in amino acid 
metabolism. (G) Relative enrichment of the major metabolic pathways in pairwise analysis, represented by JG score. Blue, green and purple represent pairwise analysis between 
T2DM and early DKD, early DKD and overt DKD, T2DM and overt DKD, respectively. 
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The associations between these source proteins 
and the corresponding pathways are shown in Figure 
2C. To compare the enriched biological processes 
during DKD onset and development, an enrichment 
network analysis was carried out. As shown in Figure 
2D, the majority of processes involved in the DKD 
occurrence were also differ between two DKD stages, 
including regulation of wound healing, metabolic 
process, response to organic substance, and regulation 
of gene expression. To explore the impact of 
metabolite alterations in response to different stages 
of DKD, pathway and network analyses were 
performed on the basis of the differently expressed 
metabolites. Intersection pathway analysis confirmed 
that 11 common metabolic pathways were disturbed 
across three groups (Figure S22) and Figure 2E 
revealed that aminoacyl-tRNA biosynthesis, valine, 
leucine, and isoleucine biosynthesis, and 
pantothenate and CoA biosynthesis were ranked at 
the top. Besides, network analysis displayed the 
metabolite-metabolite associations among early 
DKD-related metabolites (Figure S23) and the 
significantly altered pathways in the network were 
presented in Figure 2F. To measure the perturbation 
of certain metabolic pathway category in different 
DKD stages, JG score was calculated and displayed in 
bar plot. As shown in Figure 2G, most metabolic 
processes are hindered as kidney damage progresses, 
which has been observed in numerous works [11]. 
Finally, integrative pathway analysis was achieved by 
combining the metabolomics and peptidomics results. 
Heterogeneous molecular network was constructed to 
assess the variations of metabolite-peptide interact-
ions, which may reflect the molecular compensatory 
mechanisms in different groups (Figure 3A). Here, we 
noticed that peptide_1938.08_UMOD showed a 
negative association with aspartic acid in the early 
DKD group, which disappeared in T2DM and overt 
DKD. Instead, peptide_1938.08_UMOD showed a 
negative and positive association with histidine and 
methionine in T2DM and overt DKD, suggesting the 
influence of disease-specific regulation mechanisms. 
Besides, the joint-pathway analysis revealed that 
differential metabolites and attributed proteins were 
involved in integrated pathways such as protein 
digestion and absorption (Figure S24A). A bar plot 
was pictured to display the representative perturbed 
processes (p < 0.05) enriched in metabolites, source 
proteins of the peptides or their combinations in 
different disease stages. As shown in Figure S24B, 
amino acid metabolism and complement as well as 
coagulation cascades were determined to be 
associated with the DKD phenotype. To validate the 
molecular mechanisms identified from urine samples, 
transcriptome analysis was performed based on 

RNASeq data from human kidneys with DKD and 
morphologically normal kidneys. As expected, 366 
upregulated genes and 510 downregulated genes 
were differentially expressed in the DKD group, 
suggesting that there exists a dramatic molecular 
change during DKD pathogenesis (Figure S25). KEGG 
functional enrichment analysis revealed that the 
altered metabolic pathways were mainly focused on 
amino acid metabolism including protein digestion 
and absorption, biosynthesis of amino acids, 
tryptophan metabolism, arginine and proline 
metabolism, and so on (Figure S26A). Furthermore, 
Gene Ontology (GO) enrichment analysis indicated 
that dysregulated biological processes were 
concentrated in cellular protein metabolic process, 
platelet alpha granule lumen and so on (Figure S26B). 
Intriguingly, the disturbed metabolic pathways and 
biological processes observed in transcriptomics have 
been reflected in urine metabolomics and peptidomics 
in this work. What’s more, mRNA expression analysis 
identified four metabolite-related genes were 
up-regulated in DKD patients, including ACY1, 
OPLAH, SDS and TYR (Figure S27). Finally, a 
pathway map was drawn to exhibit the perturbations 
of biomarker candidates and related genes during 
renal injury in diabetic patients (Figure 3B).  

Integrating peptidomics and metabolomics 
improves the diagnostic outcomes 

To determine whether combining peptidomics 
and metabolomics could enhance the accuracy of 
DKD diagnosis, pairwise predictions were performed. 
As shown in Figure 4A, the correlations between 
differentially expressed signatures and clinical 
parameters were systematically analyzed. Impres-
sively, we found that 20 out of 62 potential 
biomarkers were associated with eGFR (| r | > 0.3) 
and UACR (| r | > 0.3) in patients. With the assistance 
of machine learning, prediction models were 
constructed on the basis of potential peptide markers 
alone, metabolite markers alone, and their 
combinations. Seven machine learning algorithms 
were investigated in this study, including SVM, DT, 
NB, Logi, LDA, KNN, and LASSO regression. 
Histograms were completed with the mean of 
accuracy from seven machine learning models and the 
results clearly indicated that the combined model 
significantly improved the average accuracy of early 
DKD diagnosis from 70.5% to 79.0% when compared 
to single-omics (Figure 4B, Figure S28A). Further-
more, enhanced diagnostic outcomes from the 
well-trained multi-omics models were also observed 
in overt DKD diagnosis with an average accuracy of 
92.6% (Figure 4B). For the separation of early DKD 
and overt DKD group, nearly 76.3% of patients in the 
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validation cohort were successfully predicted using 
peptidomics data alone, whereas the combined model 

increased the average prediction accuracy to 87.6% 
(Figure 4B).  

 

 
Figure 3. (A) Significant associations between differential metabolites and peptides in the T2DM, early DKD and overt DKD groups (absolute value of the correlation coefficient 
> 0.3, p < 0.05). The associations were estimated by biweight midcorrelations, and the corresponding Student p-values were calculated. The node colors represent the molecular 
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types and the solid and dashed lines represent positive and negative correlations, respectively. The bottom-left bar plot summarizes the positive and negative edge numbers in 
different groups. (B) Pathway map of the differential metabolites and peptides. The levels of perturbed features in the three groups are visualized in color, and differentially 
expressed genes are marked with red circles. 

 

 
Figure 4. Pairwise predictions based on the differential signatures. (A) Heatmap visualizes the correlation of each feature with clinical baseline information. (B) The bar graph 
exhibits the average accuracy of the pairwise prediction models built on seven types of machine learning algorithms. (C) Heatmap of prediction accuracy for early DKD diagnosis 
and (D) DKD status discrimination based on metabolomics only (left), peptidomics (middle), and their combinations (right). (E) Performance of different machine learning 
algorithms for pairwise prediction in the validation dataset, evaluated by Kappa statistic, accuracy, F-measure, and precision for T2DM vs. early DKD, (F) early DKD vs. overt 
DKD and (G) T2DM vs. overt DKD. (H) Predicted scores of the LASSO regression model for early DKD diagnosis, (I) DKD status discrimination and (J) overt DKD diagnosis, 
respectively. (K) Confusion matrix for pairwise predictions based on LASSO regression model for T2DM vs. early DKD, (L) early DKD vs. overt DKD and (M) T2DM vs. overt 
DKD. 

 
Taking the LASSO regression model results as an 

example, heatmaps of the predicted ratios observed a 
significant reduction in the proportion of 
misclassification for both early DKD diagnosis and 
DKD status discrimination (Figure 4C-D, Figure 
S28B-C). These results suggested that multi-omics 
prediction holds greater potentials than peptidomics 
and metabolomics alone, especially for early DKD 
diagnosis. Noteworthy, four aspects were taken into 
consideration to unbiasedly evaluate the model 
performances of different classification methods, 
including accuracy, F-measure, kappa coefficient and 
precision. As shown in Figure 4E-G and Figure 

S28D-F, the LASSO regression model exhibited fairly 
good performance in early DKD diagnosis and DKD 
status prediction in both training and validation 
cohorts compared to other algorithms. Meanwhile, a 
prediction score can be calculated for disease 
assessment using the established LASSO regression 
formula. Therefore, we finally employed the LASSO 
regression algorithm to reduce data dimensions and 
dig out predictive biomarker candidates. The binary 
prediction outcomes of LASSO regression model for 
the discovery and validation cohorts were displayed 
in Figure 4H-M.  
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Stepwise diagnostic model for diabetic kidney 
disease 

To address the challenges of early DKD 
diagnosis in high-risk diabetic populations and 
achieve DKD status prediction, a three-step diagnostic 
model was established using the altered metabolites 
and peptides. Schematic overviews of the machine 
learning approach and stepwise diagnostic model 
were illustrated in Figure 5A-B. Particularly, various 
classification and regression models have been 
systematically evaluated and the LASSO regression 
model was finally selected. For the first layer of 
predictive model, a biomarker panel consisting of 22 
predictive marker candidates was established to 
distinguish healthy controls from patients with T2DM 
or diabetic kidney disease, including malonic acid, 
pep_1047.36_COL1A1 and so on. As shown in Figure 
5C-D and Figure S29A, the model achieved an 
excellent diagnostic performance for disease group, 
with a sensitivity of 98.28% and specificity of 82.35% 
in validation sets. Subsequently, the samples diag-
nosed as diseases were input into the second-layer 
model to conduct an accurate diagnosis, distin-
guishing DKD (grey-zone, early DKD and overt DKD) 
from T2DM controls. A biomarker panel consisting of 
23 differential features related to the DKD phenotype 
was established and the prediction scores for the 
discovery cohort of 229 cases and the validation 
cohort of 114 cases were provided in Figure 5E. Only 
10.42% of T2DM subjects in the discovery set were 
misclassified, while 87.69% of DKD samples in the 
verification set were successfully picked out (Figure 
5F, Figure S29B). Finally, DKD patients were input 
into the third-layer LASSO regression model for 
status classification. The combination of 3-hydroxy-
anthranilic acid, histidine, malonic acid, proline, 
proline betaine, uracil, pep_1103.99_OAF, pep_ 
1912.08_UMOD, pep_2176.33_VDAC1, pep_2386.21_ 
AMBP, and pep_2520.43_SERPINA1 was defined as 
the ideal biomarker panel to distinguish early DKD 
patients from grey-zone and overt DKD patients. The 
prediction scores and confusion matrix for DKD 
status classification in the training and validation 
cohorts were provided in Figure 5G, H and Figure 
S29C-D. In the verification dataset, the AUC values 
for the first-, second- and third-layer predictions were 
0.978, 0.879, and 0.929, respectively (Figure 5I). In 
addition, the ratios of the predicted outcomes to 
actual cases were visualized in Figure 5J and Figure 
S29E. The results indicated that the subjects in the 
verification batch were classified with accuracy of 
82.4% for HC, 80.0% for T2DM, 76.9% for grey-zone, 
85.7% for early DKD and 66.7% for overt DKD (Figure 
5J). Surprisingly, we found the multi-omics model 
could effectively identify grey-zone patients with an 

abnormal urinary microalbumin concentration in the 
UACR-negative population. 92.3% of grey-zone 
patients were distinguished from T2DM patients, 
indicating the possibility of applying the multi-omics 
technology in diabetes health management (Figure 
6A). If using the well-trained single metabolomics 
model with a cutoff value of 0.596, the prediction 
accuracy for grey-zone patients was only 53.8%. As to 
the peptidomics model with a cutoff value of 0.633, 
the prediction accuracy for grey-zone samples was 
61.5%. the diagnostic outcomes were further 
compared with recognized clinical indexes. To verify 
the reliability of established model, another 
independent external cohort was tested, which 
included 69 HC, 49 T2DM, 69 early DKD, 70 overt 
DKD and 8 grey-zone subjects (Table S1). As shown in 
Figure 6B-D and Figure S30, 90.31% of individuals 
diagnosed with disease were correctly picked out and 
94.81% DKD patients were successfully identified by 
the stepwise diagnostic model. Overall, the subjects in 
the independent external cohort were classified with 
correction rates of 89.9% for HC, 75.5% for T2DM, 
75.0% for grey-zone, 69.6% for early DKD and 75.7% 
for overt DKD (Figure 6E). As shown in Figure 6F, 
AUC values from the ROC curves that differentiate 
disease from HC, T2DM from DKD, and early DKD 
from others were 0.966, 0.968, and 0.946, showing 
excellent diagnostic performance. Nearly 87.5% of 
grey-zone patients in the external validation cohort 
were distinguished from controls and 94.96% 
UACR-positive patients had enough high predicted 
scores to separate from T2DM group (Figure 6G, H). 
For the DKD group of external validation dataset, 
only 15.65% of patients had an eGFR value less than 
60 ml/min per 1.73 m2. As shown in Figure 6I, 
compared with eGFR index, the prediction results 
based on multi-omics model display significant 
improved diagnostic accuracy for DKD patients.  

With the aid of computer technology, we 
envisioned that this well-trained LASSO regression 
model could return automatic, real-time prediction 
results of DKD diagnosis. Therefore, a simulation for 
the complete workflow from data acquisition to the 
final prediction was performed using a batch sample 
containing 96 cases. Figure S31A showed the file 
conversion, peak read and data normalization can be 
completed within a few seconds. Afterward, the 
nearly real-time prediction was carried out by the 
pre-deployed stepwise LASSO regression model in 
Simulink (Figure S31B). Figure 6J and Figure S31C 
displayed the simulated real-time diagnosis processes 
for each step predictions, which only takes average 
0.2s per sample. Collectively, the multi-omics model 
may serve as a promising and robust approach for 
early DKD screening and DKD status classification. 
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Figure 5. Three-step predictive model for DKD diagnosis. (A) Schematic overview of machine learning approach used to develop and validate the stepwise diagnostic model. (B) 
Concept of three-step predictive model. (C) Predicted scores for the first-layer diagnosis. (D) Confusion matrix for disease diagnosis in the validation set. (E) Predicted scores 
and (F) confusion matrix for the second-layer DKD diagnosis in the validation set, respectively. (G) Predicted scores for DKD status discrimination. (H) Confusion matrix for the 
third-layer prediction and (I) Receiver operating curves for the stepwise prediction in the validation set, respectively. (J) Heatmap displays the ratios of predicted cases to true 
cases in the verification cohort. 

 
Discussion 

Diabetic kidney disease has attracted wide-
spread attention as the leading cause of kidney failure 
worldwide. Unfortunately, the “gold standard” histo-
pathological examination has not been established 
due to the reluctance of practitioners to biopsy 
patients with diabetes. Currently, UACR is widely 
accepted in clinical practice to reflect the DKD 
progression. Nevertheless, no significant increase in 
UACR levels was observed in 20% of T2DM patients 
with reduced glomerular filtration rate [8]. In 
addition, common comorbidities of T2DM such as 

hypertension or obesity may also impair the 
glomerular filtration barrier, resulting in insufficient 
sensitivity and specificity of microalbuminuria in 
DKD diagnosis [32]. Estimated GFR is recognized as 
the predictor of chronic kidney disease, but its 
application is limited by the difficulty of obtaining a 
patient’s baseline GFR and the fact that GFR changes 
often appear in the late stages of renal insufficiency 
[33]. Therefore, mining new biomarkers for DKD 
diagnosis is of great significance for early treatment 
and improved prognosis.  
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Figure 6. Diagnostic performance of the stepwise prediction model. (A) Prediction results of grey-zone samples based on single-omics and their combinations. (B) Predicted 
scores for the first, (C) second, and (D) third-layer classification, respectively. (E) The ratios of predicted cases to true cases for different groups and (F) receiver operating curves 
for the stepwise prediction in the external validation cohort, respectively. (G) Predicted scores for UACR-negative and (H) positive patients by multi-omics model, respectively. 
(I) 2D coordinate plot visualizes diagnostic results for each sample based on eGFR levels and established model. (J) The simulated process for the second-layer real-time DKD 
diagnosis. The simulation batch used here consists of 96 cases. 

 
Driven by the development of high-throughput 

technologies, peptidomics and metabolomics have 
been rapidly applied to specific clinical settings. An 
increasing body of evidence has suggested that a 
panel composed of multiple biomarkers exhibits great 
priorities in improving accuracy, enhancing 
diagnosis, and reducing misclassifications [18,19]. 
Analysis of native or endogenous peptides in 
biological fluids can provide valuable insights into 
disease mechanisms. In addition, significant peptides 
can be served as potential biomarkers for the 
non-invasive monitoring of various diseases such as 
renal injury. It is well known that diabetic kidney 
disease is a complex metabolic disease with no 
specific clinical symptoms in the early stage. 
Metabolomic analysis in clinical studies and animal 
models have revealed that metabolic pathways such 
as amino acid metabolism and tricarboxylic acid cycle 
have been altered in the early DKD [11,34,35]. 

Therefore, integrative omics is expected to provide an 
unprecedented view of understanding DKD mecha-
nisms and discovering potential biomarkers that 
enable effective early DKD diagnosis. 

In this work, six peptides and ten metabolites 
were verified to be stepwise regulated in different 
DKD stages. Here, we elucidated the role of the 
corresponding proteins and metabolites in the DKD 
mechanisms through literature surveys and database 
searches. AMBP belongs to the lipoprotein transporter 
superfamily, the increased urinary AMBP levels were 
assumed to correspond to proximal tubular dysfunc-
tion, which has been confirmed in numerous earlier 
studies [30,36]. IGF2 plays important physiological 
roles in cell proliferation, energy maintenance and 
metabolic homeostasis. It has been reported that the 
expression of IGF2 and IGF2BP2 genes is markedly 
altered in DKD [37]. SERPINC1 and SERPINA1 are 
regulators of serine protease activity, and their 
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marked upregulation may be associated with 
dysregulation of many biological processes during 
DKD pathogenesis, such as hemagglutination, 
complement activation, and inflammation [38]. 
UMOD is exclusively synthesized in the kidney, 
which participates in ion transport, electrolyte 
balance, kidney innate immunity and so on [39]. 
Consistently, our study also indicated that lower 
UMOD fragments levels are strongly connected with 
kidney damage in diabetic patients. VDACs constitute 
the major gateway for substance transport between 
the cytoplasm and mitochondria. Studies have 
indicated that the increased levels of VDACs proteins 
under hyperglycemic conditions would result in cell 
death due to energy starvation, which ultimately 
leads to organ complications such as cardiovascular 
disease, kidney disease, and stroke [40]. The 
intersection of pairwise analysis also revealed 
differential metabolites associated with DKD 
pathogenesis and development, including malonic 
acid, serine, hydroquinone, cytosine, uracil, proline, 
valine, threonine, 5-methylfuran-2-carboxylic acid 
and imidazolepropionic acid. These metabolic 
perturbations may be explained by absolute nephron 
loss, which is reflected in increased blood urea and 
creatinine levels. The decreased levels of malonic acid 
were assumed to correspond to the disorder of fatty 
acid biosynthesis. Several compounds related to 
pyrimidine biosynthesis were significantly 
dysregulated in the DKD group, including cytosine 
and uracil [41]. Furthermore, we observed that most 
amino acids are decreased during renal injury, which 
has been confirmed in numerous works [41,42]. 
What’s more, the intersection of enriched pathways 
revealed that 14 common metabolic pathways are 
disturbed in different DKD stages, mainly focusing on 
amino acid metabolism. Surprisingly, renal transcrip-
tomics confirmed perturbations in amino acid 
biosynthesis and amino acid metabolism found in 
urine metabolomics, such as arginine biosynthesis 
and glycine, serine and threonine metabolism. 
Joint-pathway analysis suggested that differential 
metabolites and attributed proteins are jointly 
involved in the DKD-related biological changes such 
as protein digestion and absorption, which provides a 
new direction for us to further understand the DKD 
mechanism.  

Impressively, integrative omics resulted in 
improved outcomes in early DKD diagnosis and DKD 
status discrimination compared to single omics. To 
verify our original hypothesis that the combination of 
potential peptide and metabolite biomarkers may 
hold potential in monitoring the onset of early-stage 
DKD, we screened different machine learning 
algorithms and the LASSO regression algorithm was 

finally taken into consideration. Interestingly, the 
multi-omics model for early DKD diagnosis reduced 
the false prediction rate by nearly 10% compared to 
the single omics in the validation cohort. At the same 
time, the combined model built with LASSO regres-
sion algorithm showed considerable advantages in 
DKD status classification, increasing the general 
accuracy from 76.3% to 87.6%. Therefore, a stepwise 
prediction model for DKD diagnosis was constructed 
based on the integration of urine peptidomics and 
metabolomics. With the aid of the well-trained 
prediction model, 89.9%, 75.5%, 69.6%, and 75.7% of 
HC, T2DM, early DKD and overt DKD patients in the 
external verification set were successfully identified, 
respectively. Compared with eGFR (< 60 ml/min per 
1.73 m2), the constructed model improved the 
diagnostic accuracy of DKD patients from 15.65% to 
94.81%. Amazingly, the established model can pick 
out 75% of the grey-zone samples with abnormal 
urinary microalbumin concentration. Compared with 
previous serum multi-omics studies, this stepwise 
model significantly improved the diagnostic accuracy 
of early DKD from 42.6% to 69.6%, demonstrating the 
potential of urine as an "end-product recycler" in the 
DKD diagnosis [19]. Although the diagnostic accuracy 
of our model is not much different from that of the 
reported CKD273 classifier, we believe that this 
multi-omics model based on the LDI-MS platform can 
obtain DKD-related molecular information in a few 
seconds, which is expected to provide a new way for 
rapid screening of large populations in the future [43]. 
What’s more, the possibility of our model returning 
nearly real-time predictions in large-scale populations 
has been explored by the simulation built in Simulink. 

Conclusion 
In general, the novel aspects of this study mainly 

lie in the construction of a high-throughput 
multi-omics platform and the integration of urine 
peptidomics and metabolomics to enhance the DKD 
diagnosis, especially for early-stage DKD. Fairly good 
reproducibility was obtained for urine metabolic 
fingerprints and peptide profiles, which provided a 
basis for subsequent biomarker discovery and disease 
identification. Integrative omics model constructed 
with machine learning algorithm significantly 
increased the diagnostic outcomes for T2DM and all 
stages of DKD. Totally 85.5% of early DKD patients 
were correctly separated from T2DM volunteers and 
healthy controls in the external validation set, 
confirming the feasibility as a diagnostic method for 
early DKD. Besides, 85.71%, 81.36%, and 85.48% of 
grey-zone, early DKD and overt DKD patients were 
successfully identified in the third-layer model, so we 
speculate that the constructed model can assist the 
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current clinical metrics to achieve a more accurate 
DKD status discrimination. Last but not least, 87.5% 
of grey-zone patients missed by UACR and eGFR 
metrics were successfully picked out from T2DM 
patients, illustrating the promise of our strategy to 
enable earlier DKD surveillance. Perturbed metabolic 
pathways such as amino acid metabolism and 
biological processes such as the cellular protein 
metabolic process were validated by renal transcrip-
tomics. The four metabolite-related candidate genes 
identified in this work are expected to become 
potential drug targets, including ACY1, OPLAH, SDS 
and TYR. Based on the above results, we are confident 
that this integrative approach may provide a new 
choice for personalized DKD care in the future. 
Despite these promising results, the current study has 
several limitations: 1) Renal damage may have 
occurred in T2DM patients with normal microalbu-
minuria, and subsequent follow-up in T2DM group 
will help us to discover valuable signatures for early 
DKD prediction. 2) Urine samples from non-diabetic 
chronic kidney disease were not included in this 
study. Therefore, whether metabolite or peptide 
perturbations in DKD patients are owing to renal 
damage or diabetes itself should be evaluated in 
future studies. In the next five years, we will enroll 
subjects from multiple centers and conduct follow-up 
in the T2DM group, hoping to identify valuable 
features for early prediction of DKD. 
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