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Abstract 

DNA methylation is the most stable epigenetic modification. In mammals, it usually occurs at the cytosine of 
CpG dinucleotides. DNA methylation is essential for many physiological and pathological processes. Aberrant 
DNA methylation has been observed in human diseases, particularly cancer. Notably, conventional DNA 
methylation profiling technologies require a large amount of DNA, often from a heterogeneous cell population, 
and provide an average methylation level of many cells. It is often not realistic to collect sufficient numbers of 
cells, such as rare cells and circulating tumor cells in peripheral blood, for bulk sequencing assays. It is therefore 
essential to develop sequencing technologies that can accurately profile DNA methylation using small numbers 
of cells or even single cells. Excitingly, many single-cell DNA methylation sequencing and single-cell omics 
sequencing technologies have been developed, and applications of these methods have greatly expanded our 
understanding of the molecular mechanism of DNA methylation. Here, we summaries single-cell DNA 
methylation and multi-omics sequencing methods, delineate their applications in biomedical sciences, discuss 
technical challenges, and present our perspective on future research directions. 
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Introduction 
DNA methylation refers to the phenomenon in 

which a methyl group (CH3) from S-adenosyl-
methionine is transferred to the C-5 position of 
cytosine by DNA methyltransferases (DNMTs) [1, 2]. 
DNA methylation is the most stable epigenetic 
modification. Another type of DNA methylation in 
mammals occurs at the N-6 position of adenine, 
although its functions are still under extensive 
investigation [3, 4]. The 5-methylcytosine (5mC) is the 
dominant type of DNA modification, accounting for 
approximately 1% of the human genome [5]. It occurs 
almost exclusively in the form of 5'-3' cytosine- 
phosphate-guanine (CpG) dinucleotides, and 
approximately 70-80% of CpGs are methylated in 
mammals [6, 7]. CpGs are not randomly distributed 
across the genome, but exhibit widely scattered and 
locally clustered distributions [8]. The CpG-rich 

regions, where the C+G content exceeds 50% and the 
observed to expected CpG ratio is equal to or greater 
than 0.6, are called CpG islands (CGIs). CGIs are 
typically 300-3,000 bp in length and overlap with 60% 
of human gene promoters and almost 100% of 
housekeeping gene promoters [9-12]. Like CGIs, most 
CpG-rich regions show low levels of methylation, 
whereas CpG-poor regions are generally hyper-
methylated in mammals [13, 14]. Remarkably, gene 
regulatory elements, including enhancers and 
transcription-factor binding sites, exhibit dynamic 
DNA methylation across tissues and cell types [15]. 

DNA methylation plays a critical role at the 
molecular, biological, and pathological levels [6, 13, 
14, 16]. Promoter hypermethylation is often associated 
with gene silencing and has been frequently observed 
in cancer [17]. The repressive role of 5mC at gene 
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promoters can be caused by directly preventing 
transcription factors (TFs) from binding to the 
corresponding elements, thereby blocking gene 
transcription. Alternatively, 5mC attracts methyl- 
CpG-binding domain (MBD) proteins to attach to 
promoter regions, consequently blocking TF binding 
to regulatory elements [14, 18]. However, DNA 
methylation in the gene bodies shows complicated 
correlations with transcription: most low and highly- 
expressed genes exhibit low levels of methylation in 
the gene bodies, whereas moderately expressed genes 
show the highest levels of methylation [19]. DNA 
methylation is also associated with increased levels of 
C-to-T mutations [8, 15, 20]. Repetitive elements, 
which comprise more than 55% of the human 
genome, consist mainly of retrotransposons and are 
the primary targets of DNA methylation [21]. Loss of 
DNA methylation in repetitive elements contributes 
to genome instability and global hypomethylation, 
which are considered hallmarks of cancer [14, 16, 17, 
22, 23]. Notably, the mammalian genome undergoes 
two waves of global demethylation and remethylation 
during development. In the first wave, primordial 
germ cells undergo genome-wide DNA 
demethylation, forming identical hermaphroditic 
epigenomes and ultimately developing new 
sex-specific epigenetic modifications [24, 25]. The 
second wave occurs immediately after fertilization, 
initially erasing the methylation profiles of the 
gametes and later rewriting the methylation markers 
of the embryos [26]. Mammalian development is also 
characterized by X chromosome inactivation (XCI) 
and genomic imprinting, resulting in monoallelic 
gene expression [27-29]. 

The biochemical processes of methylation and 
demethylation are beginning to be elucidated. De novo 
methylation is catalyzed by DNMT3A, 3B, and 3L, 
while the methylation profiles of dividing cells are 
maintained by DNMT1 [26]. On the other hand, 
demethylation is the result of an active enzymatic 
process and passive replication-dependent dilution. 
Specifically, 5mC is first converted to 5-hydroxy-
methylcytosine (5hmC), then to 5-formylcytosine 
(5fC), and finally to 5-carboxylcytosine (5caC) under 
the catalysis of ten-eleven translocation enzymes 
(TET1, 2, 3) [30-33]. These oxidized derivatives of 5mC 
are diluted during DNA replication. Alternatively, 
5fC and 5caC are actively removed by thymine DNA 
glycosylase (TDG) and subsequently replaced by 
cytosine through base excision repair (BER) [34]. The 
dynamic nature of DNA methylation is attracting 
scientists to develop epigenetic drugs. Among them, 
DNA methyltransferase inhibitors, 5-azacytidine 
(Azacytidine, Vidaza®) and 5-aza-2'-deoxycytidine 
(Decitabine, Dacogen®), are the most successful 

epigenetic drugs. These drugs have been approved by 
the FDA and are widely used to treat patients with 
myelodysplastic syndrome (MDS) [35, 36].  

DNA methylation analysis is essential to dissect 
its role in the development and human diseases, such 
as cancer. Methods for DNA methylation detection, 
including the principles and applications, have been 
described in the literature [8, 37-42]. Next-generation 
sequencing (NGS)-based assays combined with the 
sodium bisulfite treatment are widely adopted due to 
their high reproducibility and accuracy at the single 
base level [37]. In particular, whole-genome bisulfite 
sequencing (WGBS) is considered as the gold 
standard; however, the high sequencing costs and a 
significant amount of non-CpG reads make it less 
efficient for DNA methylation detection [8, 38]. 
Reduced representation bisulfite sequencing (RRBS) 
enriches CpG-rich fragments using restriction 
endonucleases, such as MspI (C|CGG) and HaeIII 
(GG|CC), and gel-based size selection. It therefore 
significantly reduces sequencing costs while still 
covering most CpG islands and promoters, a good 
representation of other genomic features, including 
enhancers and CpG island shores [43-45]. Conven-
tional NGS-based methods, such as WGBS and RRBS, 
require a large amount of DNA, mainly measure the 
average DNA methylation level of many cells, and 
cannot identify the methylation status of individual 
cells [37]. Yet, cellular heterogeneity is a pervasive 
phenomenon in multicellular organisms, suggesting 
that the NGS-based measurements may not reflect the 
actual methylation status. The accessibility of certain 
rare cells, such as embryonic stem cells in early 
development and cancer stem cells, also limits the 
application of bulk sequencing methods [46]. There-
fore, DNA methylation profiling at the single-cell 
level is essential, and many such technologies have 
been reported recently [47]. 

In this review, we summarize single-cell sequen-
cing methods for the assessment of DNA methylation 
alone or in combination with other omics, outline the 
applications, and present with our perspective on 
these technologies. 

Single-cell isolation 
Isolating intact individual cells is crucial for 

single-cell sequencing, and various methods have 
been documented and summarized in Table 1 [48]. 
The limiting dilution method is characterized by low 
cost and low throughput (Figure 1A). Micromani-
pulators utilize automated pipetting under micro-
scopic observation, allowing operators to isolate 
single cells efficiently and accurately (Figure 1B). 
Laser capture microdissection (LCM) also allows 
targeted cell collection under microscopic visuali-
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zation. The difference is that LCM focuses on isolating 
single cells from stained tissue and is, therefore, able 
to collect single cells with specific histological 
characteristics (Figure 1C). 

Many single-cell isolation platforms use flow 
cytometry or microfluidic devices to automatically 
sort single cells with high throughput. The most 
common platform is the fluorescence-activated cell 
sorting (FACS) system (Figure 1D), and one of its 
main advantages is the throughput, which enables the 
isolation of hundreds of single cells within 30 minutes 
[49]. Secondly, the platform can sort cells according to 
their functional properties using fluorescent staining, 
thus targeting individual cells of interest [50]. Most 
commercial single-cell sorting platforms are based on 
microfluidic technology, such as the C1™ Single-Cell 
Auto Prep System (Figure 1E), the BD Rhapsody™ 
Single-Cell Analysis System (Figure 1F), and the 10× 
Chromium Single Cell Gene Expression Solution 

(Figure 1G) [51, 52]. Commercial platforms can 
simultaneously perform cell sorting and barcode each 
cell, improving sequencing throughput and reducing 
sequencing costs. 

Single-cell DNA methylation sequencing 
The advent of single-cell isolation technologies 

and the optimization of methylation sequencing 
technologies are accelerating the development of 
single-cell DNA methylation sequencing. Most, if not 
all, single-cell sequencing methods are based on the 
corresponding bulk-based assays. Here we focus 
mainly on the most common types of single-cell DNA 
methylation sequencing technologies based on either 
restriction digestion (including methylation- 
insensitive and methylation-sensitive restriction 
endonucleases) or post-bisulfite adapter tagging 
(PBAT) (Figure 2).  

 

Table 1. Advantages and disadvantages of single-cell isolation methods 

Isolation methods Advantages Disadvantages 
Random limiting dilution Easy to operate, no special equipment required Less efficient 
Mouth pipetting Low cost and virtually no cell damage Difficult to operate 
Micromanipulation Cost-effective and accurate single cell access Difficult to operate 
Laser microdissection Retention of spatiotemporal information Low throughput 
Microfluidic devices High-throughput cell sorting based on cell surface markers Expensive consumables 
Flow cytometry High throughput, cell sorting using antibodies and fluorescent markers Requires large number of cells, high cost, harmful to cells 

 
 

 
Figure 1. Schematic of single-cell isolation technologies. (A) Random limiting dilution; (B) Micromanipulation; (C) Laser capture microdissection; (D) Fluorescence activated cell 
sorting; (E) Microfluidic devices based on hydrodynamic cell traps; (F) Microwell-based microfluidics; (G) Droplet-based microfluidics. 
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Figure 2. Timeline of single-cell DNA methylation sequencing technologies. Yellow-highlighting: RRBS-based single-cell DNA methylation methods; Green-highlighting: 
MSRE-based single-cell DNA methylation methods; Purple-highlighting: PBAT-based single-cell DNA methylation methods. Dotted line square: conventional bulk sequencing 
assays, including RRBS, WGBS, and PBAT. 

 

Restriction digestion-based DNA methylation 
profiling methods 

Methods in this category rely on restriction 
endonucleases that recognize and cleave double- 
stranded DNA at specific sites. Combined with DNA 
size selection, these techniques allow analysis of the 
methylation status of targeted CpG sites with reduced 

sequencing costs. Assays based on methylation- 
insensitive endonucleases typically require the 
treatment of adapter-equipped DNA with sodium 
bisulfite, which converts unmethylated cytosine (C) to 
uracil and leaves methylated C unchanged. Therefore, 
unmethylated and methylated Cs can be accurately 
inferred from sequencing analysis [43]. Conversely, 
the methylation-sensitive methods bypass the sodium 
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bisulfite treatment. It only profiles unmethylated 
CpGs at cleavage sites, while the corresponding CpGs 
missed in the sequencing data are inferred as 
methylated [53]. The characteristics of the two types 
of methods are summarized in Table 2. 

Single-cell methylation sequencing method based on 
methylation-insensitive restriction enzyme 

RRBS is the first NGS-based method for DNA 
methylation profiling [54]. It relies on 
methylation-insensitive endonucleases, such as MspI 
(C|CGG), and size selection to cleave and enrich 
CpG-dense DNA fragments [55, 56]. Several groups 
have published modified RRBS protocols by 
streamlining library processing, barcoding library 
DNA fragments to remove duplicates, or reducing 
genomic DNA inputs from microgram to picogram 
(single cell) levels [57-59]. For example, Q-RRBS 
introduces 6-bp barcodes to the 5'- and 3'-ends of 
library DNA inserts, guaranteeing 4,096 adapter 
combinations and thus attempting to eliminate PCR- 
related duplicates [58]. Microfluidic diffusion-based 
RRBS (MID-RRBS) uses a microfluidic device that 
allows DNA bisulfite treatment and subsequent 
purification steps to be performed in tiny chambers 
(240 or 480 nl). The modification minimizes DNA loss 

and allows profiling of DNA methylation changes 
with nanograms of DNA input or even with DNA 
from single cells [60]. However, the method only 
captures about 35-231K CpGs in the mouse genome.  

To generate single-cell RRBS (scRRBS) libraries, 
Guo and colleagues minimized the library DNA loss 
by performing five consecutive reactions from cell 
lysis, MspI digestion, end-repair, A-tailing to adapter 
ligation and the bisulfite conversion in one tube 
(Figure 3A). After two rounds of PCR enrichment, the 
amplified scRRBS libraries were pair-ended 
sequenced and the sequencing data indicated that 
scRRBS was capable of covering up to 1.5 million 
CpGs [57, 61]. Using scRRBS to profile mouse sperm, 
oocytes, and zygotes reveals fine demethylation 
landscapes after fertilization [57]. However, scRRBS 
can only process a limited number of single cells 
manually. The multiplexed single-cell RRBS 
(MscRRBS) is performed in a 96- or 384-well PCR 
plate and can be processed automatically [59, 62]. By 
prefixing each cell with an inline barcode, dozens of 
adapter-equipped libraries can be pooled, 
dramatically reducing the subsequent workload and 
archiving coverage of up to 2 million unique CpGs for 
single human cells [62]. 

 
 

Table 2. Single-cell DNA methylation profiling method based on restriction endonuclease digestion 

Method Strategies Coverage per cell* Throughput Advantages Disadvantages Applications Ref 
scRRBS One-tube enzymatic 

reactions 
～1.0M CpGs 
(mouse, mean 
coverage) 

10s of cells High promoter/CGI 
coverage 

Sequence bias due to 
two rounds of PCR 
application 

DNAm dynamics in development 
and disease 

[57] 

Q-RRBS Unique molecular 
identifiers 

0.5-1M CpGs 
(human)  

1-100 cells Eliminate PCR-derived 
duplication; detect 
allele-specific methylation 

Low CpGs coverage  DNAm dynamics in development 
and disease 

[58] 

MscRRBS Inline barcode, 
one-well enzymatic 
reactions 

～0.9M CpGs 
(human, mean 
coverage) 

384 cells High-throughput and easy 
set-up with automation 

Low CpGs coverage  DNAm dynamics in development 
and disease 

[62] 

scXRBS Unphosphorylated 
adapter, a random 
hexamer to add the 
second adapter  

up to 3.4M CpGs 
(human) 

96 cells Extended CpG coverage for 
regulatory elements 

Complicated library 
preparation  

CNV and DNAm changes across 
single cells 

[63] 

MID-RRBS Reactions in a 
microfluidic device 

35k–231K CpGs 
(mouse) 

96 cells Efficient bisulfite conversion 
with increased DNA recovery 

Low CpG coverage for 
single cells; requires 
non-commercial 
instrumentation 

Cell type-specific epigenetic drug 
screening and drug-methylome 
interaction studies 

[60] 

RSMA Reactions in a 
multi-well PCR slide 

10-20 CpGs 
(human) 

48 cells Cost-effective  Unable to confirm 
heterozygous 
methylation 

CpG methylation status in many 
single cells 

[66] 

SCRAM PCR using two 
forward primers and 
one reverse primer 

up to 24 CpGs 
(mouse) 

48 cells High reliability and accuracy Not suitable for 
genome-wide 
screening DNAm 

Targeted CpG methylation changes  [67] 

scCGI-seq Two rounds of MSRE 
digestion, MDA 

～21K CpGIs 
(human) 

10-100 cells High and consistent CpGI 
coverage  

Low CpGs coverage, 
low-throughput 

DNAm heterogeneity in 
development, differentiation and 
cancer 

[68] 

scMspJI-seq Enrich methylated 
CpGs with MspJI  

212-977K CpGs 
(mouse) 

384 cells Cost-effective Difficult to map 
allele-specific DNA 
methylation 

Strand-specific DNAm; investigation 
of mechanisms regulating 
demethylation dynamics 

[70] 

scTAM-seq Tapestri platform; 
gene-specific primers 

650 CpGs  
(human) 

up to 10k 
cells 

High-throughput; 
automation 

Low CpG coverage Targeted CpG methylation changes 
in development and disease 

[69] 

Notes: *Description in parentheses indicates sample source for assay development. DNAm--DNA methylation; MDA--Multiple Displacement Amplification. 
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Extended-representation bisulfite sequencing 
(XRBS) deliberately uses Illumina adapters with 
unphosphorylated bottom strands. After the sodium 
bisulfite treatment, the converted DNA fragments 
have only a 5'-terminal adapter, and the 3'-terminal 
adapter sequences are introduced using random 
hexamer-tagged PCR primers. As a result, XRBS 
captures more CpG sites within two MspI cleavage 
sites [63]. The single-cell XRBS (scXRBS) also barcodes 
each DNA sample prior to bisulfite conversion and 
PCR amplification. The modifications allow each 
scXRBS library to cover up to 3.43 million CpGs with 
less than 2 million reads and can identify PCR 
duplicates [63]. 

Single-cell methylation sequencing method based on 
methylation-sensitive restriction enzymes (MSREs) 

MSREs are a group of restriction endonucleases 
that cannot cleave DNA if their recognition sites 
contain methylated cytosines. Interestingly, some 
have isoschizomers with identical recognition 
sequences but are insensitive to methylation. MSRE- 
based assays can use multiple enzymes to extend 
genomic coverage, and the missed CpG sites in the 
enzyme binding sites are methylated and inferred 
from the sequencing analysis [64]. In contrast, 
Methyl-seq, which uses paired methylation-sensitive 
and methylation-insensitive isoschizomers MspI and 
HapII, can directly identify the methylation status of 
CpGs in their binding sites [65]; however, this strategy 
is unsuitable for single-cell sequencing. 

The first MSRE-based single-cell DNA methyla-
tion assay was described in 2011, and the method, 
restriction enzyme-based single-cell methylation 
assay (RSMA) (Figure 3C), can only detect a limited 
number of CpGs [66]. The sequential reactions, 
including single-cell lysis, methylation-sensitive 
restriction digestion, and PCR amplification, are all 
performed on an AmpliGrid slide containing 48 
microreactors for water-in-oil emulsions. The enzyme 
cleavage sites are located between the two forward 
primers so that the CpG methylation of the cleavage 
sites can be inferred either from the size of the PCR 
products or by pyrosequencing of the PCR product 
pool [66]. Subsequently, Cheow et al. developed 
another MSRE-based single-cell methylation method 
called single-cell restriction analysis of methylation 
(SCRAM) by combining MSRE digestion and 
multiplex PCR amplification [67]. The method applies 
a microfluidic qPCR chip and can detect the DNA 
methylation levels of 24 loci in up to 48 cells per assay. 
SCRAM is cost-effective but detects far fewer CpG 
sites than NGS-based single-cell DNA methylation 
assays. The method cannot distinguish between 
heterozygous methylated alleles and homozygous 

methylated alleles either. The single-cell CpG island 
methylation assay (scCGI-seq) is based on one round 
of MSRE digestion followed by multiplexed 
displacement amplification (MDA) and a second 
round of MSRE digestion [68]. The method enables 
genome-wide measurement of CGI methylation levels 
from single cells (covering 76% of CGIs in the human 
genome). Although the coverage of CpG sites is lower 
than that of scWGBS, scCGI-seq shows good 
reproducibility across multiple single cells. 

Single-cell targeted analysis of the methylome 
(scTAM-seq) is another MSRE-based sequencing 
technology [69]. It can detect 650 CpG sites in up to 
10,000 cells simultaneously. The assay uses a 
commercial microfluidic droplet device, the Mission 
Bio Tapestri platform, to mix individual cell lysate 
with barcoded beads tagged to gene-specific primers. 
Following methylation-sensitive restriction digestion 
and targeted PCR application in a thermal cycler, only 
targeted and methylated CpGs within the enzyme 
binding sites are amplified and sequenced. The 
application of scTAM-seq reveals the dynamic 
methylation status during B-cell differentiation in 
peripheral blood and bone marrow [69]. Despite low 
coverage, scTAM-seq achieves an excellent high 
throughput and low false-positive rates of less than 
0.2% [49, 69]. 

In contrast to MSRE-based assays, which 
generally detect symmetric DNA methylation on both 
the plus and minus strands, single-cell MspJⅠ- 
dependent sequencing (scMspJI-seq) is designed to 
assess strand-specific 5mC [70]. The modification- 
dependent endonuclease MspJI targets mCNNR sites 
and cleaves downstream genomic DNA at approxi-
mately 9-13 bp. After the incorporation of double- 
stranded adapters containing T7 promoter, Illumina 
adapter, and unique molecular identifier sequences, 
DNA libraries are generated by in vitro transcription 
and PCR application of transcribed RNAs. Thus, 
scMspJI-seq specifically enriches methylated sites and 
has been used to study the dynamics of DNA 
demethylation in early development [70]. 

PBAT-based single-cell WGBS 
In conventional bisulfite-based sequencing 

methods, fragmented DNA is typically tagged by 
methylated adapters prior to bisulfite conversion. 
PBAT implements an initial bisulfite treatment 
protocol and then uses random primers to amplify 
bisulfite-converted DNA fragments, allowing more 
DNA fragments to be subsequently amplified and 
sequenced [71]. Single-cell WGBS methods based on 
PBAT are summarized in Table 3. 
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Figure 3. Schematic comparison of single-cell DNA methylation profiling methods: sc-RRBS (A), scBS-seq (B), and RSMA (C). 

 

Table 3. Single-cell DNA methylation profiling methods based on PBAT 

Method Strategies Coverage per 
cell* 

Throughput Advantages Disadvantages Applications Ref 

scBS-seq Two rounds of random priming ～3.7 M CpGs 
(mouse, mean 
coverage) 

96 cells Genome-wide CpG 
coverage 

Difficult to detect 
allele-specific 
methylation 

DNAme in rare cells and 
heterogeneous 
populations 

[72] 

scWGBS Integration of sequencing adapters 
using tagged random hexamers and 
terminal tagging 

～1.0 M CpGs  
(mouse, mean 
coverage) 

96 cells Fast, cost-effective Low library 
complexity 

DNAm dynamics in 
development and disease 

[74] 

scPBAT Targeting DNAm at repetitive 
elements 

0.7%–6.6% 
(mouse) 

1-100 cells Low sequencing costs 
and low PCR bias 

Low mappability of 
sequencing reads  

Role of intergenic DNAm 
in mammals and other 
vertebrates 

[75] 

snmC-seq Adapter sequence incorporation using 
random primers and adaptase 

 22.2 ± 5.7% 
(mouse) 

384 cells Improved mappability High levels of 
adapter dimer 
sequences 

Role of DNAm in disease, 
drug screening and 
cognition 

[78] 

snmC-seq2 Adapter sequence incorporation using 
degenerate random primers and 
adaptase 

 30.8 ± 7.5% 
(mouse) 

384 cells Increased throughput, 
reduced artificial reads 
and improved library 
complexity 

Adapter dimer 
sequences of about 
10% 

Role of DNAm in disease, 
drug screening and 
cognition 

[79] 

sci-MET Transposase tagmentation, linear 
amplification, indexed PCR 
enrichment  

0.05-7%  
(human)  

96 cells High-throughput 
potential and improved 
mappability 

Low coverage, 
custom sequencing 
recipe & primers 

DNAm alterations in 
cancer and neurological 
disorders 

[76] 

sciMETv2.LA Indexed tagmentation, streamlined 
linear amplification, and indexed PCR 
amplification 

～2.2 M CpGs 
(human, mean 
coverage) 

96 cells High-coverage DNA libraries with 
short-inserts, read 
pairs not fully 
overlapped 

DNAm alterations in 
cancer and neurological 
disorders 

[77] 

sciMETv2.SL Indexed tagmentation, splint ligation 
to add the TruSeq I5 adapter, and 
indexed PCR amplification 

～0.3 M CpGs 
(human, mean 
coverage) 

96 cells Low cost and less 
processing time 

Low-coverage DNAm alterations in 
cancer and neurological 
disorders 

[77] 

Notes: *Description in parentheses indicates the sample source for assay development. DNAm--DNA methylation; MDA--Multiple displacement amplification. 
 
 
Single-cell bisulfite sequencing (scBS-seq) is the 

first PBAT-based genome-wide methylation 
sequencing method in which bisulfite-treated DNA is 
subjected to two cycles of random primer extension 
[72, 73] (Figure 3B). Two critical steps, direct bisulfite 
treatment of the single-cell lysate and amplification of 

converted DNA before the purification of synthesized 
first-strand DNA, minimize DNA loss. In addition, 
the use of modified random hexamers eliminates the 
need to trim artificial bases introduced during 
conventional library preparation. On average, 
scBS-seq can detect 3.4 million CpGs per single cell. 
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However, the method often fails to detect methylation 
differences for some alleles due to allele dropout 
caused by bisulfite conversion and enrichment- 
induced bias [49, 72]. 

The scWGBS method developed in the Bock 
laboratory primarily uses a commercial product, the 
EpiGnome™ Methyl-Seq Kit (Epicenter, EGMK81 
312), to generate sequencing libraries [74]. 
Bisulfite-converted genomic DNA is first transcribed 
using tagged random hexamer primers, and then the 
3′-terminal ends of the newly synthesized DNA 
strands are linked to a second specific sequence tag. 
scWGBS does not undergo pre-amplification, 
reducing reagent costs, processing time, and 
amplification bias [74]. However, excessive PCR 
amplification to introduce Illumina-compatible 
sequencing adapters and generate library DNA 
negatively impacts library complexity, resulting in a 
relatively low coverage of approximately 1.4 million 
CpGs per cell. 

Single-cell PBAT (scPBAT) uses a pair of 
primers, the Bio-PEA2-W4N4 primer (5'-biotin- 
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
WWWWNNNN-3') and the PE-index-W4N4 primer 
(5'-CAAGCAGAAGACGGCATACGAGATXXXXXX
XXXGTAAAACGACGGCCAGCAGGAAACAGCTA
TGACWWWWNNNN-3') for the first- and second- 
strand DNA synthesis sequentially. It is noteworthy 
that scPBAT does not undergo PCR-based 
amplification and is tailored for methylation analysis 
of repetitive regions [75]. 

Some single-cell methylation libraries start from 
single-cell lysates, while others utilize single-cell 
nuclei instead, such as single-cell combinatorial 
indexing for methylation analysis (sci-MET), 
sciMETv2 linear amplification (sciMETv2.LA), 
sciMETv2 splint ligation (sciMETv2.SL), and single- 
nucleus methylcytosine sequencing (snmC-seq) 
[76-79]. In the sci-MET assay, each nucleus is indexed 
by transposase tagmentation in a 96-well plate prior 
to pooling for bisulfite treatment, linear amplification 
of the bisulfite-converted DNA, and sequential PCR 

enrichment of the library pools. The sci-MET covers a 
low percentage of CpGs per cell (0.05-7.0%), but is 
capable of sequencing DNA methylation for 
thousands of cells and achieving high alignment rates 
of 60-76% [76]. The optimized versions of sci-MET, 
sciMETv2.LA and sciMETv2.SL, achieve better 
tagmentation efficiency and increased coverage per 
cell, averaging 2.2 million and 325K unique CpGs, 
respectively [77]. The improvement benefits from 
using methylated indexed tagmentation adapters and 
updated nucleosome disruption technology. The two 
sciMETv2 methods can identify cell subtypes in the 
human brain. 

Both snmC-seq and snmC-seq2 rely on barcoded 
random primers to amplify bisulfite-converted DNA 
and on the adaptase (Swift Biosciences) to tag a short 
oligo tail at the 3'-terminal of synthesized DNA. 
Sequencing libraries are generated by PCR using a 
pair of custom indexing primers containing Illumina 
P7 and P5 sequences, respectively. Several modifi-
cations, including the use of a different degenerate 
random primer (RP-H9, H=A, T, C) and the deactiva-
tion of free random primers and dNTP, dramatically 
improve the library qualities of snmC-seq2 compared 
to snmC-seq, such as better mapping rates (64.7±2.6% 
vs. 52.4±4% for the mouse genome), fewer artifactual 
reads (6.1±5.2%) and improved library complexity 
(30.8±7.5% vs. 22.2±5.7) [79].  

Single-cell multi-omics sequencing 
The emergence of single-cell genomic, epige-

nomic, and transcriptomic sequencing methods 
motivates scientists to explore technologies for 
parallel single-cell multi-omics profiling. Remarkably, 
single-cell multi-omics sequencing technologies have 
been reported and are summarized (Table 4). 
Applications of these technologies have greatly imp-
roved our understanding of cellular and molecular 
heterogeneities and the internal correlations within 
multi-omics in development and human disease. 

 

Table 4. Summary of single-cell multi-omics sequencing technologies 

Name Omics Methodology Ref 
Smart-RRBS Transcriptome, methylome Smart-seq2, MscRRBS [80] 
scMT-seq Smart-seq2, scRRBS [82] 
scM&T-seq Smart-seq2, scBS-seq [81] 
scTrio-seq Transcriptome, methylome, CNVs Smart-seq, scRRBS [83] 
scNMT-seq Transcriptome, methylome, chromatin accessibility Smart-seq2, NOMe-seq [92] 
iscCOOL-seq scCOOL-seq, NOMe-seq [87] 
scNOMeRe-seq scNOMe-seq, MATQ-seq [93] 
scGEM Methylome, transcriptome SCRAM [89] 
epi-gSCAR Methylome, genetic variants MSRE [91] 
scNOMe-seq Methylome, chromatin accessibility NOMe-Seq [85] 
scCOOL-seq Methylome, chromatin accessibility, ploidy  COOL-seq [86] 

 



Theranostics 2023, Vol. 13, Issue 8 
 

 
https://www.thno.org 

2447 

Single-cell transcriptome and methylome 
sequencing allow the simultaneous assessment of 
gene expression and DNA methylation variation and 
the investigation of their correlation. Metho-
dologically, most single-cell transcriptome and 
methylome sequencing assays have been developed 
by combining two types of single-cell sequencing 
methods. For example, Smart-RRBS combines 
Smart-seq2 and Msc-RRBS, scMT-seq is derived from 
scRRBS and Smart-seq2, and scM&T-seq is based on 
Smart-seq2 and scBS-seq [80-82]. Single-cell triple 
omics sequencing (scTrio-seq) combines scRRBS and 
scRNA-seq, and the third layer of omics, copy number 
variation (CNV), is deduced from the scRRBS data 
[83].  

The critical step in parallel RNA and DNA 
methylation sequencing is isolating DNA and mRNA 
from the same cell properly. Two methods are 
commonly used for this purpose. One is to completely 
lyse single-cells and then separate mRNA from DNA 
using oligo-dT-coated magnetic beads. The second 
method is to gently lyse the cell membrane to release 
the cytoplasm and mRNAs, then transfer the 
cytoplasm and mRNAs to a separate tube, leaving the 
genomic DNA in the nucleus for further processing. 
Both scM&T-seq and Smart-RRBS take advantage of 
oligo-dT-coated magnetic beads for DNA and RNA 
separation, while scMT-seq and scTrio-seq benefit 
from the separation of intact nuclei and the cytoplasm 
for subsequent processing [80-82, 84].  

Nucleosome-free regions (NFRs) or accessible 
chromatin regions often overlap with transcriptional 
regulatory elements. Methods capable of simultane-
ously assessing the chromosomal accessibility and 
DNA methylation include single-cell nucleosome 
occupancy and methylation (scNOMe-seq) [85], 
single-cell chromatin overall omic-scale landscape 
sequencing (scCOOL-seq) [86], and improved 
scCOOL-seq (iscCOOL-seq) [87]. scNOMe-seq relies 
on the GpC methyltransferase, M.CviPl, to catalyze 
the cytosine methylation of GpCs in NFRs. After 
bisulfite conversion of the M.CviPl-treated DNA and 
sequencing analysis, NFRs and endogenous DNA 
methylation are inferred according to the methylation 
patterns of regular CpGs and naturally unmethylated 
cytosines at GpC sites [85]. The method is also 
developed from the bulk type NOMe-seq [88]. By 
spiking in a certain amount of lambda DNA as an 
internal control, scCOOL-seq allows the profiling of 
individual cell ploidy [86]. In addition, iscCOOL-seq 
offers a better mapping rate, 74.55% vs. 22.01%, 
compared to scCOOL-seq - the improvement benefits 
from the optimized protocol for constructing 
single-cell PBAT-based methylation libraries [87].  

The single-cell multiple omics assay for 

genotype, gene expression, and methylation profiling 
(sc-GEM) combines the single-cell restriction analysis 
of methylation (SCARM) technique with NGS-based 
single-cell genotyping. Targeted-gene transcripts are 
assessed by qPCR. Most of the experimental 
procedures are performed on the Fluidigm C1 
single-cell auto-prep system [89, 90]. In particular, the 
methylation analysis is based on the digestion of an 
MSRE, HpaII (5'-C|CGG-3'), followed by qPCR 
amplification on the Fluidigm array. The assay covers 
a limited number of genes and gene transcripts; 
however, by performing the test on the Fluidigm 
instrument, hundreds of single cells can be analyzed 
simultaneously [89]. Another assay that can measure 
DNA methylation and identify genetic variants is 
epi-gSCAR (epigenomics and genomics of single cells 
analyzed by restriction) [91]. The method is based on 
Hhal, an MSRE that recognizes 5'-GCG|C-3' and can 
significantly enrich for CGIs and transcription start 
sites (TSSs). Sequencing analysis of epi-gSCAR 
libraries can detect up to half a million CpG sites and 
1.2 million single-nucleotide variants (SNVs) [91].  

Single-cell nucleosome, methylation, and trans-
cription sequencing (scNMT-seq) can concurrently 
evaluate chromatin accessibility, DNA methylation, 
and gene transcription by applying M.CviPI to label 
the open chromatin regions. The method also uses 
oligo-dT-coated magnetic beads to precipitate 
mRNAs for RNA-seq library construction, leaving 
M.CviPI-treated DNA in the lysate for methylation 
analysis [92]. scNMT-seq can detect methylation 
changes in approximately half of the mouse 
promoters, three-quarters of gene bodies, and 
one-quarter of enhancers. Similarly, scNOMeRe-seq 
integrates scNOMe-seq and multiple annealing and 
dC-tailing-based quantitative single-cell RNA 
sequencing (MATQ-seq) to profile chromatin accessi-
bility, DNA methylation, and gene transcription of the 
same cell [93, 94]. Unlike scNMT-seq, in which single 
cells are FACS sorted, scNOMeRe-seq is based on 
manually picking single cells and transferring the 
cytoplasm to another tube for MATQ-seq, leaving the 
nuclei for the GpC methylase treatment followed by 
scBS-seq [77]. scNOMeRe-seq can detect 3.49 million 
CpGs per single cell and more than 1000 gene 
transcripts for 94.8% of single cells [78]. 

Biological applications of single-cell 
DNA methylation sequencing 

Conventional sequencing approaches require 
thousands to millions of cells and provide average 
changes at the genetic, epigenetic, and transcriptional 
levels. However, bulk sequencing technologies cannot 
reveal what is happening in rare cells or 
subpopulations of cells. Single-cell sequencing 
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technologies provide tools to precisely profile DNA 
methylation and other omics for individual cells. 
Applications of single-cell DNA methylation and 
single-cell multi-omics sequencing are primarily 
focused on the development and human disease, 
particularly cancer [95] (Figure 4, Table 5). 

Application of single-cell DNA methylation 
sequencing in developmental biology 

Mammalian life begins at fertilization, where 
both paternal and maternal genomes undergo global 
demethylation, reaching its lowest level at the 
blastocyst stage [14, 96]. Using single-cell PBAT-based 
WGBS, Zhu and colleagues showed that local 
remethylation is interspersed with global demethyla-
tion. The authors further showed that methylation 
levels decrease more rapidly in the paternal genome, 
resulting in the paternal genome having consistently 
lower methylation levels from the two-cell stage to the 
blastocyst stage [97]. The same group further profiled 
DNA methylation and chromosome accessibility of 
early human embryos using scCOOL-seq. The results 
indicate that the chromatin of the paternal genome 
tends to be more open compared to the maternal 
genome shortly after fertilization up to the 4-cell stage 
[98]. 

Mouse is the most commonly used model animal 

to study early mammalian development. Single-cell 
DNA methylation analysis of the paternal and 
maternal genomes in mouse zygotes shows that the 
demethylation process of the genic region is faster 
than that of the intergenic regions [57]. Simultaneous 
profiling of the methylome and transcriptome of 
mouse embryonic stem cells by scM&T reveals novel 
correlations between the methylation patterns of 
regulatory elements and the expression of pluripotent 
genes [81]. Using scNOMeRe-seq, Wang et al. 
mapped the chromatin accessibility, detected DNA 
methylome variation, and profiled the transcriptomes 
of the mouse preimplantation embryos at the 
single-cell level. The authors also constructed genetic 
lineages from zygotes to the 8-cell stage and 
demonstrated that asymmetric cleavage may result 
from the transcriptional heterogeneity of blastomeres 
[93]. 

After blastocyst implantation, DNMT3A and 3B 
catalyze de novo methylation of the genome [14, 96]. 
Single-cell triple omics sequencing reveals that the 
genome remethylation of the primitive endoderm 
(PrE) cells is slower than that of the epiblast and 
trophectoderm cells, despite the fact that PrE and 
epiblast are both derived from the inner cell mass [99]. 
 

 

 
Figure 4. Biological applications of single-cell DNA methylation sequencing and single-cell multi-omics sequencing. 
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Table 5. Biological applications of single-cell DNA methylation sequencing 

Application Method Conclusion Ref 
Developmental 
biology 

scBS-seq, Smart-seq2 Dynamic DNAm during preimplantation with global demethylation and localized remethylation. [97] 
scCOOL-seq Major changes in chromatin state and DNA methylation do not occur simultaneously after fertilization. [98] 
scRRBS Genic regions demethylated faster than intergenic regions in early mouse embryo development. [57] 
scM&T-seq Methylation patterns of distal regulatory regions correlate with gene expression. [81] 
scNOMeRe-seq DNAm remodeling is essential for reconstructing genetic lineages in early embryos. [93] 
scTrio-seq2 Genome remethylation in primitive endoderm cells is slower than in epiblast and trophectoderm cells. [99] 

Tumor scTrio-seq Identification of cancer cell subpopulations and cellular heterogeneity within a subpopulation. [83] 
scTrio-seq2 DNAm variation between primary and metastatic colorectal tumors reflects different sublineage composition. [111] 
scRRBS Abnormal DNAm in gliomas is associated with early genetic changes, and accumulated genetic variation is due 

to altered cellular states and environmental stress. 
[112] 

Msc-RRBS, Smart-RRBS Illustration of the lineage history of CLL and its evolution under pharmacological treatment. [59] 
MARS-seq Epigenetic memory diversifies the genetic subclonal structure of cancer cells. [114] 
scCOOL-seq Detection of enriched DNA demethylation in heterochromatin regions in pancreatic ductal adenocarcinoma 

(PDAC) and identification of two candidate biomarkers for the diagnosis of PDAC. 
[115] 

scBS-seq Classification of tumor origin using DNAm landscapes of CTCs. [117] 
scWGBS Hypomethylation of CTC clusters associated with poor prognosis in breast cancer. [118] 

Neuroscience snmC-seq Establishment of a comprehensive DNAm atlas of mammalian neurons, demonstration of the essential role of 
epigenetic diversity in neuronal development. 

[78] 

snmC-seq2 Creation of a sophisticated DNAm atlas of the mouse brain. [124] 
Aging sc-DNAm DNAm as an epigenetic clock for age estimation in mammals. [128] 

scM&T-seq Aging is associated with a global increase in transcription and methylome heterogeneity. [130] 
 
 

Application of single-cell DNA methylation 
sequencing analysis in tumors 

Extensive studies show that epigenetic abnor-
malities are closely associated with the development 
and evolution of cancer [100-102]. Genome-wide 
hypomethylation and focal hypermethylation, 
particularly at the promoters of tumor suppressor 
gene, have been implicated as hallmarks of cancer 
[103-105]. Although observations based on 'bulk' 
DNA methylation analysis are likely valid, the 
superiority of single-cell sequencing analysis for 
cancer studies is evident. First, solid tumor tissues 
contain many cell types, including cancer cells, 
fibroblasts, endothelial cells, and infiltrating immune 
cells and nerves [106]. Therefore, bulk sequencing 
may not faithfully reflect the genetic and epigenetic 
status of tumor cells. Second, different subclones may 
coexist within the same tumor, and epigenetic 
plasticity permits cancer cells to alter their cellular 
state in response to microenvironmental and 
therapeutic stimuli [107]. Both directly contribute to 
the complexity of tumor heterogeneity. Finally, the 
accessible tumor cells may be limited, such as 
circulating tumor cells (CTCs) in the peripheral blood 
of cancer patients. 

Cellular heterogeneity is closely associated with 
cancer development, evolution, and response to 
treatment. Many studies have used single-cell DNA 
methylation sequencing to investigate cellular hetero-
geneity in cancers, such as colorectal cancer, breast 
cancer, liver cancer, and chronic lymphocytic 
lymphoma (CLL) [59, 83, 108-110]. One study 
evaluates genetic, epigenetic, and transcriptional 
abnormalities in colorectal cancer using scTric-seq2 to 
analyze single cells derived from primary, lymphatic, 

and metastatic tissues [111]. The study identifies 
significant differences in overall methylation levels 
between genetic sublineages but less variation within 
a sublineage. Interestingly, the demethylation 
patterns of cancer cells are comparable across all ten 
patients [111]. An independent study investigates 914 
single-cell methylomes, 55,284 single-cell transcrip-
tomes, and bulk multi-omics sequences from 11 
glioma patients with or without isocitrate 
dehydrogenase (IDH) gene mutation [112]. The study 
suggests that aberrant methylation is associated with 
early genetic alterations and that accumulated genetic 
alterations are related to altered cellular states and 
environmental stresses. 

Understanding tumor heterogeneities and clonal 
evolutionary trajectories could help scientists 
elucidate the underlying mechanisms and develop 
specific targeted drugs. Using scTrio-seq, Hou et al. 
reported two subpopulations based on the CNV, 
methylation, and transcriptional profiles of 25 single 
cells isolated from the liver tissue of one patient with 
hepatocellular carcinoma [83]. The authors also found 
cellular heterogeneity within the subpopulations. 
Single-cell sequencing analysis not only sheds new 
light on solid tumor research but also provides 
mechanistic insight into chronic lymphocytic 
lymphoma (CLL). By applying Msc-RRBS to B cells 
from CLL patients and healthy donors, Gaiti and 
colleagues constructed the lineage tree and showed 
different branching patterns and lengths in the two 
cell populations [59]. Further analysis of the B cells 
using Smart-RRBS identified an ibrutinib-related bias 
in the methylation-based lineage tree, demonstrating 
how the therapeutic intervention affects the clonal 
evolutionary trajectory of CLL patients. Moreover, the 
upregulation of multiple Toll-like receptor (TLR) 
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signalling pathway genes in ibrutinib-treated patients 
suggests a new direction for the development of 
targeted therapy [59]. 

Single-cell multi-omics sequencing technology is 
able to identify differentially expressed and 
differentially methylated genes in colorectal cancer, 
which can be used as biomarkers to guide targeted 
therapy for patients [113]. In one single-cell 
multi-omics study, DNA methylation is linked to the 
clonal stability of colorectal cancer cells and is 
strongly associated with cancer progression [114]. By 
simultaneously profiling the methylome, chromatin 
accessibility, and transcriptome, Fan et al. showed 
that hypermethylation is common in heterochromatin 
regions in the genome of patients with pancreatic 
ductal adenocarcinoma. In contrast, hypomethylation 
is typical in euchromatin regions. The authors also 
identified two biomarkers, ZNF667 and ZNF667-AS1, 
and showed that expression of these biomarkers is 
associated with a better prognosis [115]. 

Circulating tumor cells (CTCs) are cancer cells 
shed from primary or metastatic tumors into the 
peripheral blood. CTCs are rare, and often fewer than 
ten cells can be isolated from 10 ml of peripheral 
blood [116]. However, CTCs carry intact genetic, 
epigenetic, and transcriptional characteristics of 
tumor cells, making them ideal for studying tumor 
biology and monitoring tumor development and 
evolution. It is, therefore, possible to trace the cancer 
tissue of origin. The hypothesis was tested by 
applying scBS-seq to CTCs from six cancer types, and 
the investigation revealed tumor heterogeneities and 
an evolutionary pathway during cancer metastasis. 
The tumor tissue origin was also successfully 
identified based on the methylation landscapes of 
CTCs [117]. In addition, a systemic evaluation of the 
DNA methylation patterns of single CTCs and 
clustered CTCs reveals hypomethylation of binding 
sites for stemness- and proliferation-associated 
transcription factors (TFs), particularly in clustered 
cells [118]. The study demonstrates that an FDA- 
approved compound, a Na+/K+ ATPase inhibitor, 
disrupts CTC clustering, alters DNA methylation at 
TF-binding sites, and inhibits metastasis [118]. 
Another research using targeted bisulfite sequencing 
for three-EMT (epithelial-to-mesenchymal transition) 
genes tested 159 single CTCs from breast or prostate 
cancer patients. The study concluded that the 
methylation profiles of CTCs mirror those of 
epithelial-like cells and that CTCs have different 
methylation levels [119]. 

Single-cell DNA methylation sequencing in 
neuroscience and aging 

Applications of single-cell DNA methylation 

sequencing and single-cell multi-omics sequencing 
technologies have also been extended to other 
research areas, such as neuroscience and aging. DNA 
methylation in neurons exhibits a unique feature, with 
a significant amount of methylated cytosine at CpH 
sites (H=A/T/C) in post-mitotic human and mouse 
neurons [120-122]. Notably, both CpG and non-CpG 
methylation are essential for neuronal development in 
the brain [120, 121, 123]. Single-cell methylation 
analysis of >6000 mouse and human frontal cortex 
neurons classifies these cells into 16 mouse and 21 
human subpopulations, and both CpG and non-CpG 
methylation show cell-type-oriented landscapes [78]. 
In a parallel study, Liu and coworkers generated a 
brain DNA methylation atlas using 103,982 nuclei 
from 45 mouse brain regions. Single-cell methylation 
analysis reveals 161 subpopulations with distinct 
spatial locations and projection targets [124]. The 
integration of single-cell DNA methylation and 
chromatin accessibility datasets ultimately provides 
an epigenetic atlas for interpreting gene-enhancer 
interactions and understanding the 3D structure of 
neurons throughout the mouse cerebrum [124, 125]. 

A hallmark change of aging is genome-wide 
DNA hypomethylation [126]. Accordingly, DNA 
methylation-based biomarkers have been evaluated 
for predicting age and are considered the most 
promising of six distinct age estimators [127]. 
Recently developed pan-tissue epigenetic clocks can 
accurately estimate age using virtually any tissue 
from any mammalian species, suggesting that highly 
conserved DNA methylation patterns exist across 
mammals [128]. Gaiti and collaborators created a 
molecular clock based on the single-cell methylation 
dataset of a CLL patient. The authors predicted the 
subclonal divergence in the evaluation path and 
showed that the ancestral clone had evolved 2,180 ± 
219 days, suggesting that the molecular clock could 
guide the treatment of CLL patients [59]. Another 
hallmark change is increased epigenetic or 
transcriptional heterogeneity during aging [129]. 
However, conventional bulk sequencing assays are 
unable to detect cell-to-cell variability. One study 
exploits the joint profiling of the single-cell 
transcriptome and single-cell methylome of mouse 
muscle stem cells. The assay reveals aged stem cells 
with increased transcriptional heterogeneity and 
localized DNA methylation changes, suggesting 
epigenetic drafting during aging [130]. Likewise, 
single-cell DNA methylation analysis of young and 
old mouse livers shows that mouse liver DNA 
methylation levels are highly variable, with an 
epivariation rate of 3.3%. Furthermore, DNA 
methylation heterogeneity is associated with genomic 
characteristics [131]. 
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Perspectives 
Over the last two decades, DNA methylation 

profiling technologies have changed dramatically 
from Sanger sequencing-based low-throughput to 
NGS-based high-throughput, from bulk DNA/RNA 
inputs to requiring only single cells [47]. Many 
single-cell DNA methylation sequencing technologies 
are currently available with varying coverage and 
mapping rates. However, improved CpG coverage 
often comes at the cost of reduced reproducibility. 
Different sequencing technologies can jointly provide 
comprehensive and accurate interpretations of 
genetic, epigenetic, and transcriptional changes. As 
illustrated earlier, most single-cell DNA methylation 
sequencing methods are based on bisulfite treatment, 
which causes significant DNA degradation and limits 
library complexity [132, 133]. 

Conversely, TET-assisted pyridine borane 
sequencing (TAPS) is based on TET oxidation of 5mC 
and 5hmC to 5caC, followed by pyridine borane 
reduction of 5caC to dihydrouracil. Enzyme-based 
bisulfite conversion is milder and generally does not 
cause DNA damage. TAPS can effectively identify 
modified cytosines with better mapping rates and 
uniform coverage [134]. However, the method 
requires a large amount of DNA input, and 
TAPS-based single-cell assays are not yet available as 
we draft the manuscript. In addition, most single-cell 
DNA methylation methods cannot process large 
numbers of cells, although many of them have 
improved throughput, such as sci-MET and 
Smart-RRBS [76, 80]. The development of efficient and 
high throughput assays is needed to analyze millions 
of CpG sites in hundreds or even thousands of single 
cells at a time in the future. 

Sequencing costs have fallen dramatically over 
the last two decades, but profiling genetic and 
epigenetic changes at the single-cell level remains a 
challenge for many academic laboratories. One critical 
reason is that single-cell-based assays typically 
require sequencing hundreds or even thousands of 
single cells to obtain a comprehensive population- 
level picture [59, 112, 135]. A prototype sequencer 
from Ultima Genomics (Ultima), which adopts the 
mostly natural sequencing-by-synthesis (mnSBS) 
chemistry, can sequence the human genome with 
sufficient coverage at a cost of $100 [136, 137]. The 
new sequencer significantly reduces the sequencing 
cost and sheds new light on single-cell sequencing. 
However, whether it can be used to profile the 
methylome requires further investigation. 

Single-cell DNA methylation sequencing has 
been widely used to profile rare cells and investigate 
cellular heterogeneity. CTCs preserve tumor genetic 
and epigenetic information well and are excellent 

candidates for cancer prognosis and diagnosis 
[138-140]. It is foreseeable that single-cell methylation 
sequencing and site-specific methylation assays will 
be incorporated into clinical testing. In addition to 
cancer, many publications report aberrant DNA 
methylation in other diseases, such as cardiovascular 
disease (CVD) [141, 142]. One study investigates 
whether the prevalence of CVD is associated with the 
global genomic DNA methylation levels in peripheral 
blood leukocytes (PBL) in a cohort of 286 Singaporean 
Chinese [143]. The study shows that increased DNA 
methylation is positively associated with the 
prevalence of CVD. In a recent case-control study 
involving thousands of participants, Fernandez- 
Sanles et al. identified 34 CpGs associated with acute 
myocardial infarction and four strongly correlated 
with coronary heart disease (CHD) and CVD [144]. 
However, how DNA methylation contributes to the 
development of CVD is still not fully understood 
[141]. The above single-cell-based assays will provide 
tools to dissect the molecular mechanism of CVD and 
identify biomarkers for diagnosis and prognosis of the 
disease. 

Finally, the role of DNA methylation in gene 
regulation is complex [5, 23, 145]. For example, 
increased DNA methylation at promoter regions is 
generally thought to be anti-correlated with gene 
expression [17, 54, 146]. The relationships between 
gene expression and gene body methylation appear to 
be cell type dependent, being positively correlated in 
embryonic stem cells and negatively correlated in 
neurons [8, 14, 121, 147]. Furthermore, single-cell 
multi-omics sequencing shows that only a small 
percentage of promoter methylation levels are 
negatively associated with gene expression [81, 92, 
148]. Similarly, significant correlations are only 
observed for a few gene bodies [81, 82]. The 
application of single-cell DNA methylation and 
single-cell multi-omics sequencing technologies 
across different cell types will help to elucidate the 
precise function of DNA in gene regulation in the 
coming years. 

Acknowledgments 
We thank all members of the Gu and Wang Labs 

for their comments and suggestions on the 
manuscript. Tong Zhang from Zhejiang ShengTing 
Biotech. Ltd helped with the figures. XW is supported 
by the National Natural Science Foundation of China 
(No.81900153) and the Natural Science Foundation of 
Liaoning Province (No.2022-YGJC-62). 

Author contribution 
FL drafted the manuscript. HG and XW 

reviewed and edited the draft. YW contributed to the 



Theranostics 2023, Vol. 13, Issue 8 
 

 
https://www.thno.org 

2452 

figure design. All authors have read and approved the 
manuscript. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 

16: 6-21. 
2. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative 

reversal of DNA and RNA methylation. Annu Rev Biochem. 2014; 83: 585-614. 
3. Li VS, Tang MS, Kohn H. The effect of C(5) cytosine methylation at CpG 

sequences on mitomycin-DNA bonding profiles. Bioorgan Med Chem. 2001; 9: 
863-73. 

4. Meyer KD, Jaffrey SR. Expanding the diversity of DNA base modifications 
with N-6-methyldeoxyadenosine. Genome Biol. 2016; 17: 5. 

5. Moore LD, Le T, Fan GP. DNA methylation and its basic function. 
Neuropsychopharmacology. 2013; 38: 23-38. 

6. Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome 
integrates intrinsic and environmental signals. Nat Genet. 2003; 33: 245-54. 

7. Hernando-Herraez I, Garcia-Perez R, Sharp AJ, Marques-Bonet T. DNA 
methylation: Insights into human evolution. Plos Genet. 2015; 11: e1005661. 

8. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. 
Human DNA methylomes at base resolution show widespread epigenomic 
differences. Nature. 2009; 462: 315-22. 

9. Wang Y, Leung FCC. An evaluation of new criteria for CpG islands in the 
human genome as gene markers. Bioinformatics. 2004; 20: 1170-7. 

10. Aissani B, Bernardi G. CpG islands, genes and isochores in the genomes of 
vertebrates. Gene. 1991; 106: 185-95. 

11. Takai D, Jones PA. Comprehensive analysis of CpG islands in human 
chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002; 99: 3740-5. 

12. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. 
Footprinting of mammalian promoters: use of a CpG DNA methyltransferase 
revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 
2005; 33: e176. 

13. Parry A, Rulands S, Reik W. Active turnover of DNA methylation during cell 
fate decisions. Nat Rev Genet. 2021; 22: 59-66. 

14. Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in 
mammalian development and disease. Nat Rev Mol Cell Biol. 2019; 20: 
590-607. 

15. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a 
dynamic DNA methylation landscape of the human genome. Nature. 2013; 
500: 477-81. 

16. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and 
beyond. Nat Rev Genet. 2012; 13: 484-92. 

17. Ehrlich M. DNA methylation in cancer: Too much, but also too little. 
Oncogene. 2002; 21: 5400-13. 

18. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. 
Impact of cytosine methylation on DNA binding specificities of human 
transcription factors. Science. 2017; 356: eaaj2239. 

19. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of 
human gene-body DNA methylation. Oncotarget. 2012; 3: 462-74. 

20. Holliday R, Grigg GW. DNA methylation and mutation. Mutat Res. 1993; 285: 
61-7. 

21. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial 
sequencing and analysis of the human genome. Nature. 2001; 409: 860-921. 

22. Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W, et al. Prediction of 
genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 
2017; 45: 8697-711. 

23. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat 
Rev Genet. 2002; 3: 415-28. 

24. Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in 
mouse primordial germ cells. Genome Res. 2012; 22: 633-41. 

25. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic 
reprogramming in mouse primordial germ cells. Mech Dev. 2002; 117: 15-23. 

26. Smith ZD, Meissner A. DNA methylation: Roles in mammalian development. 
Nat Rev Genet. 2013; 14: 204-20. 

27. Li L, Li L, Li QQ, Liu XX, Ma XY, Yong J, et al. Dissecting the epigenomic 
dynamics of human fetal germ cell development at single-cell resolution. Cell 
Res. 2021; 31: 463-77. 

28. Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human 
X-chromosome - evidence for X inactivation by DNA methylation. Science. 
1981; 211: 393-6. 

29. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. 
Nature. 1993; 366: 362-5. 

30. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 
5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 
2011; 333: 1303-7. 

31. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can 
convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 
2011; 333: 1300-3. 

32. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet 
proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass 
specification. Nature. 2010; 466: 1129-33. 

33. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. 
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian 
DNA by MLL partner TET1. Science. 2009; 324: 930-5. 

34. Wu H, Zhang Y. Reversing DNA methylation: Mechanisms, genomics, and 
biological functions. Cell. 2014; 156: 45-68. 

35. Li KH, Yang JX, Han XC. Lidocaine sensitizes the cytotoxicity of cisplatin in 
breast cancer cells via up-regulation of RAR beta 2 and RASSF1A 
demethylation. Int J Mol Sci. 2014; 15: 23519-36. 

36. Flotho C, Sommer S, Lubbert M. DNA-hypomethylating agents as epigenetic 
therapy before and after allogeneic hematopoietic stem cell transplantation in 
myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin 
Cancer Biol. 2018; 51: 68-79. 

37. Singer BD. A practical guide to the measurement and analysis of DNA 
methylation. Am J Respir Cell Mol Biol. 2019; 61: 417-28. 

38. Cokus SJ, Feng SH, Zhang XY, Chen ZG, Merriman B, Haudenschild CD, et al. 
Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA 
methylation patterning. Nature. 2008; 452: 215-19. 

39. Fouse SD, Nagarajan RP, Costello JF. Genome-scale DNA methylation 
analysis. Epigenomics. 2010; 2: 105-17. 

40. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, et al. 
Comparative isoschizomer profiling of cytosine methylation: The HELP assay. 
Genome Res. 2006; 16: 1046-55. 

41. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. 
Chromosome-wide and promoter-specific analyses identify sites of differential 
DNA methylation in normal and transformed human cells. Nat Genet. 2005; 
37: 853-62. 

42. Rauch TA, Zhong XY, Wu XW, Wang M, Kernstine KH, Wang ZD, et al. 
High-resolution mapping of DNA hypermethylation and hypomethylation in 
lung cancer. Proc Natl Acad Sci U S A. 2008; 105: 252-7. 

43. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced 
representation bisulfite sequencing for comparative high-resolution DNA 
methylation analysis. Nucleic Acids Res. 2005; 33: 5868-77. 

44. Smith ZD, Gu HC, Bock C, Gnirke A, Meissner A. High-throughput bisulfite 
sequencing in mammalian genomes. Methods. 2009; 48: 226-32. 

45. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong CB, Downey SL, et al. 
Comparison of sequencing-based methods to profile DNA methylation and 
identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010; 
28: 1097-105. 

46. Rothova MM, Nielsen AV, Proks M, Wong YF, Riveiro AR, 
Linneberg-Agerholm M, et al. Identification of the central intermediate in the 
extra-embryonic to embryonic endoderm transition through single-cell 
transcriptomics. Nat Cell Biol. 2022; 24: 833-44. 

47. Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: 
Technologies and biological applications. Trends Biotechnol. 2018; 36: 952-65. 

48. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. 
Technologies for single-cell isolation. Int J Mol Sci. 2015; 16: 16897-919. 

49. Zhang X, Wei X, Wei YJ, Chen ML, Wang JH. The up-to-date strategies for the 
isolation and manipulation of single cells. Talanta. 2020; 218: 121147. 

50. Muller S, Nebe-von-Caron G. Functional single-cell analyses: Flow cytometry 
and cell sorting of microbial populations and communities. FEMS Microbiol 
Rev. 2010; 34: 554-87. 

51. Shields CW, Reyes CD, Lopez GP. Microfluidic cell sorting: A review of the 
advances in the separation of cells from debulking to rare cell isolation. Lab 
Chip. 2015; 15: 1230-49. 

52. Roman GT, Chen YL, Viberg P, Culbertson AH, Culbertson CT. Single-cell 
manipulation and analysis using microfluidic devices. Anal Bioanal Chem. 
2007; 387: 9-12. 

53. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation 
patterns. Development. 2007; 134: 3959-65. 

54. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. 
Genome-scale DNA methylation maps of pluripotent and differentiated cells. 
Nature. 2008; 454: 766-70. 

55. Wang JW, Xia YD, Li LL, Gong DS, Yao Y, Luo HJ, et al. Double 
restriction-enzyme digestion improves the coverage and accuracy of 
genome-wide CpG methylation profiling by reduced representation bisulfite 
sequencing. Bmc Genomics. 2013; 14: 11. 

56. Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S. 
Mapping the zebrafish brain methylome using reduced representation 
bisulfite sequencing. Epigenetics. 2013; 8: 979-89. 

57. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes 
of mouse embryonic stem cells and early embryos analyzed using reduced 
representation bisulfite sequencing. Genome Res. 2013; 23: 2126-35. 

58. Wang KL, Li XF, Dong SS, Liang JL, Mao FB, Zeng C, et al. Q-RRBS: a 
quantitative reduced representation bisulfite sequencing method for 
single-cell methylome analyses. Epigenetics. 2015; 10: 775-83. 

59. Gaiti F, Chaligne R, Gu H, Brand RM, Kothen-Hill S, Schulman RC, et al. 
Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. 
Nature. 2019; 569: 576-80. 



Theranostics 2023, Vol. 13, Issue 8 
 

 
https://www.thno.org 

2453 

60. Ma S, Revenga MD, Sun ZX, Sun C, Murphy TW, Xie HH, et al. 
Cell-type-specific brain methylomes profiled via ultralow-input microfluidics. 
Nat Biomed Eng. 2018; 2: 183-94. 

61. Guo HS, Zhu P, Guo F, Li XL, Wu XL, Fan XY, et al. Profiling DNA methylome 
landscapes of mammalian cells with single-cell reduced-representation 
bisulfite sequencing. Nat Protoc. 2015; 10: 645-59. 

62. Charlton J, Downing TL, Smith ZD, Gu H, Clement K, Pop R, et al. Global 
delay in nascent strand DNA methylation. Nat Struct Mol Biol. 2018; 25: 
327-332. 

63. Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V, et al. 
Extended-representation bisulfite sequencing of gene regulatory elements in 
multiplexed samples and single cells. Nat Biotechnol. 2021; 39: 1086-94. 

64. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et 
al. Conserved role of intragenic DNA methylation in regulating alternative 
promoters. Nature. 2010; 466: 253-7. 

65. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, et al. 
Distinct DNA methylation patterns characterize differentiated human 
embryonic stem cells and developing human fetal liver. Genome Res. 2009; 19: 
1044-56. 

66. Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, 
Schumacher A. A high-throughput DNA methylation analysis of a single cell. 
Nucleic Acids Res. 2011; 39: e44. 

67. Cheow LF, Quake SR, Burkholder WF, Messerschmidt DM. Multiplexed 
locus-specific analysis of DNA methylation in single cells. Nat Protoc. 2015; 10: 
619-31. 

68. Han L, Wu HJ, Zhu HY, Kim KY, Marjani SL, Riester M, et al. 
Bisulfite-independent analysis of CpG island methylation enables 
genome-scale stratification of single cells. Nucleic Acids Res. 2017; 45: e77. 

69. Bianchi A, Scherer M, Zaurin R, Quililan K, Velten L, Beekman R. scTAM-seq 
enables targeted high-confidence analysis of DNA methylation in single cells. 
Genome Biol. 2022; 23: 229. 

70. Sen M, Mooijman D, Chialastri A, Boisset JC, Popovic M, Heindryckx B, et al. 
Strand-specific single-cell methylomics reveals distinct modes of DNA 
demethylation dynamics during early mammalian development. Nat 
Commun. 2021; 12: 1286. 

71. Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome 
bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 
2012; 40: e136. 

72. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peet J, et al. 
Single-cell genome-wide bisulfite sequencing for assessing epigenetic 
heterogeneity. Nat Methods. 2014; 11: 817-20. 

73. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G. Genome-wide 
base-resolution mapping of DNA methylation in single cells using single-cell 
bisulfite sequencing (scBS-seq). Nat Protoc. 2017; 12: 534-47. 

74. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J, 
et al. Single-cell DNA methylome sequencing and bioinformatic inference of 
epigenomic cell-state dynamics. Cell Reports. 2015; 10: 1386-97. 

75. Kobayashi H, Koike T, Sakashita A, Tanaka K, Kumamoto S, Kono T. 
Repetitive DNA methylome analysis by small-scale and single-cell shotgun 
bisulfite sequencing. Genes Cells. 2016; 21: 1209-22. 

76. Mulqueen RM, Pokholok D, Norberg SJ, Torkenczy KA, Fields AJ, Sun D, et al. 
Highly scalable generation of DNA methylation profiles in single cells. Nat 
Biotechnol. 2018; 36: 428-31. 

77. Nichols RV, O'Connell BL, Mulqueen RM, Thomas J, Woodfin AR, Acharya S, 
et al. High-throughput robust single-cell DNA methylation profiling with 
sciMETv2. Nat Commun. 2022; 13: 7627. 

78. Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, et al. Single-cell methylomes 
identify neuronal subtypes and regulatory elements in mammalian cortex. 
Science. 2017; 357: 600-4. 

79. Luo C, Rivkin A, Zhou J, Sandoval JP, Kurihara L, Lucero J, et al. Robust 
single-cell DNA methylome profiling with snmC-seq2. Nat Commun. 2018; 9: 
3824. 

80. Gu H, Raman AT, Wang X, Gaiti F, Chaligne R, Mohammad AW, et al. 
Smart-RRBS for single-cell methylome and transcriptome analysis. Nat Protoc. 
2021; 16: 4004-30. 

81. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel 
single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat 
Methods. 2016; 13: 229-232. 

82. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of 
transcriptome and DNA methylome from a single cell. Genome Biol. 2016; 17: 
88. 

83. Hou Y, Guo HH, Cao C, Li XL, Hu BQ, Zhu P, et al. Single-cell triple omics 
sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in 
hepatocellular carcinomas. Cell Res. 2016; 26: 304-19. 

84. Hu Y, An Q, Guo Y, Zhong J, Fan S, Rao P, et al. Simultaneous profiling of 
mRNA transcriptome and DNA methylome from a single cell. Methods Mol 
Biol. 2019; 1979: 363-77. 

85. Pott S. Simultaneous measurement of chromatin accessibility, DNA 
methylation, and nucleosome phasing in single cells. Elife. 2017; 6: 23203. 

86. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. Single-cell multi-omics sequencing 
of mouse early embryos and embryonic stem cells. Cell Res. 2017; 27: 967-88. 

87. Gu C, Liu S, Wu Q, Zhang L, Guo F. Integrative single-cell analysis of 
transcriptome, DNA methylome and chromatin accessibility in mouse 
oocytes. Cell Res. 2019; 29: 110-23. 

88. Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. Genome-wide 
mapping of nucleosome positioning and DNA methylation within individual 
DNA molecules. Genome Res. 2012; 22: 2497-506. 

89. Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, et al. 
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat 
Methods. 2016; 13: 833-6. 

90. Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, 
et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in 
preimplantation embryos. Science. 2013; 341: 1110-2. 

91. Niemoller C, Wehrle J, Riba J, Claus R, Renz N, Rhein J, et al. Bisulfite-free 
epigenomics and genomics of single cells through methylation-sensitive 
restriction. Commun Biol. 2021; 4: 153. 

92. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, 
et al. scNMT-seq enables joint profiling of chromatin accessibility DNA 
methylation and transcription in single cells. Nat Commun. 2018; 9: 781. 

93. Wang Y, Yuan P, Yan ZQ, Yang M, Huo Y, Nie YL, et al. Single-cell multiomics 
sequencing reveals the functional regulatory landscape of early embryos. Nat 
Commun. 2021; 12: 1247. 

94. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in 
single-cell transcriptomes using MATQ-seq. Nat Methods. 2017; 14: 267-70. 

95. Mehrmohamadi M, Sepehri MH, Nazer N, Norouzi MR. A comparative 
overview of epigenomic profiling methods. Front Cell Dev Biol. 2021; 9: 
714687. 

96. Guo HS, Zhu P, Yan LY, Li R, Hu BQ, Lian Y, et al. The DNA methylation 
landscape of human early embryos. Nature. 2014; 511: 606-10. 

97. Zhu P, Guo HS, Ren YX, Hou Y, Dong J, Li R, et al. Single-cell DNA 
methylome sequencing of human preimplantation embryos. Nat Genet. 2018; 
50: 12-9. 

98. Li L, Guo F, Gao Y, Ren YX, Yuan P, Yan LY, et al. Single-cell multi-omics 
sequencing of human early embryos. Nat Cell Biol. 2018; 20: 847-58. 

99. Zhou F, Wang R, Yuan P, Ren YX, Mao YU, Li R, et al. Reconstituting the 
transcriptome and DNA methylome landscapes of human implantation. 
Nature. 2019; 572: 660-4. 

100. Gan YL, Li N, Xin YC, Zou GB. TriPCE: A novel tri-clustering algorithm for 
identifying pan-cancer epigenetic patterns. Front Genet. 2020; 10: 1298. 

101. Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer 
Biol. 2022; 83: 4-14. 

102. Jeong HM, Kwon MJ, Shin YK. Overexpression of cancer-associated genes via 
epigenetic derepression mechanisms in gynecologic cancer. Front Oncol. 2014; 
4: 12. 

103. Li W, Chen BF. Aberrant DNA methylation in human cancers. J Huazhong 
Univ Sci Technolog Med Sci. 2013; 33: 798-804. 

104. Mehdipour P, Murphy T, De Carvalho DD. The role of DNA-demethylating 
agents in cancer therapy. Pharmacol Ther. 2020; 205: 107416. 

105. Wang Z, Yin J, Zhou W, Bai J, Xie Y, Xu K, et al. Complex impact of DNA 
methylation on transcriptional dysregulation across 22 human cancer types. 
Nucleic Acids Res. 2020; 48: 2287-302. 

106. Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, et al. The 
clinical role of the TME in solid cancer. Br J Cancer. 2019; 120: 45-53. 

107. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks 
of cancer. Science. 2017; 357: eaal2380. 

108. Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, et al. Comprehensive description 
of the current breast cancer microenvironment advancements via single-cell 
analysis. J Exp Clin Cancer Res. 2021; 40: 142. 

109. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al. 
Intra-tumour diversification in colorectal cancer at the single-cell level. 
Nature. 2018; 556: 457-62. 

110. Li QL, Xue X, Li WZ, Wang Q, Han L, Brunson T, et al. Heterogeneous DNA 
methylation status in same-cell subpopulations of ovarian cancer tissues. 
Tumour Biol. 2017; 39: 1010428317701650. 

111. Bian SH, Hou Y, Zhou X, Li XL, Yong J, Wang YC, et al. Single-cell multiomics 
sequencing and analyses of human colorectal cancer. Science. 2018; 362: 
1060-3. 

112. Johnson KC, Anderson KJ, Courtois ET, Gujar AD, Barthel FP, Varn FS, et al. 
Single-cell multimodal glioma analyses identify epigenetic regulators of 
cellular plasticity and environmental stress response. Nat Genet. 2021; 53: 
1456-68. 

113. Sun X, Guo Y, Zhang Y, Zhao P, Wang Z, Wei Z, et al. Colon cancer-related 
genes identification and function study based on single-cell multi-omics 
integration. Front Cell Dev Biol. 2021; 9: 789587. 

114. Meir Z, Mukamel Z, Chomsky E, Lifshitz A, Tanay A. Single-cell analysis of 
clonal maintenance of transcriptional and epigenetic states in cancer cells. Nat 
Genet. 2020; 52: 709-18. 

115. Fan X, Lu P, Wang H, Bian S, Wu X, Zhang Y, et al. Integrated single-cell 
multiomics analysis reveals novel candidate markers for prognosis in human 
pancreatic ductal adenocarcinoma. Cell Discov. 2022; 8: 13. 

116. Batth IS, Mitra A, Manier S, Ghobrial IM, Menter D, Kopetz S, et al. Circulating 
tumor markers: harmonizing the yin and yang of CTCs and ctDNA for 
precision medicine. Ann Oncol. 2017; 28: 468-77. 

117. Chen HY, Su Z, Li RY, Zhang N, Guo H, Bai F. Single-cell DNA methylome 
analysis of circulating tumor cells. Chinese J Cancer Res. 2021; 33: 391-404. 

118. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et 
al. Circulating tumor cell clustering shapes DNA methylation to enable 
metastasis seeding. Cell. 2019; 176: 98-112 e14. 



Theranostics 2023, Vol. 13, Issue 8 
 

 
https://www.thno.org 

2454 

119. Pixberg CF, Raba K, Muller F, Behrens B, Honisch E, Niederacher D, et al. 
Analysis of DNA methylation in single circulating tumor cells. Oncogene. 
2017; 36: 3223-31. 

120. Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al. Base-resolution 
analyses of sequence and parent-of-origin dependent DNA methylation in the 
mouse genome. Cell. 2012; 148: 816-31. 

121. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. 
Global epigenomic reconfiguration during mammalian brain development. 
Science. 2013; 341: 1237905. 

122. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and 
regulation of non-CpG methylation in the adult mammalian brain. Nat 
Neurosci. 2014; 17: 215-22. 

123. Cerrizuela S, Kaya O, Kremer LPM, Sarvari A, Ellinger T, Straub J, et al. 
High-throughput scNMT protocol for multiomics profiling of single cells from 
mouse brain and pancreatic organoids. STAR Protoc. 2022; 3: 101555. 

124. Liu H, Zhou J, Tian W, Luo C, Bartlett A, Aldridge A, et al. DNA methylation 
atlas of the mouse brain at single-cell resolution. Nature. 2021; 598: 120-8. 

125. Li YE, Preissl S, Hou X, Zhang Z, Zhang K, Qiu Y, et al. An atlas of gene 
regulatory elements in adult mouse cerebrum. Nature. 2021; 598: 129-36. 

126. Gonzalo S. Epigenetic alterations in aging. J Appl Physiol. 2010; 109: 586-97. 
127. Jylhava J, Pedersen NL, Hagg S. Biological age predictors. EBioMedicine. 2017; 

21: 29-36. 
128. Trapp A, Kerepesi C, Gladyshev VN. Profiling epigenetic age in single cells. 

Nat Aging. 2021; 1: 1189-201. 
129. Veitia RA, Govindaraju DR, Bottani S, Birchler JA. Aging: Somatic mutations, 

epigenetic drift and gene dosage imbalance. Trends Cell Biol. 2017; 27: 299-310. 
130. Hernando-Herraez I, Evano B, Stubbs T, Commere PH, Jan Bonder M, Clark S, 

et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell 
variability in mouse muscle stem cells. Nat Commun. 2019; 10: 4361. 

131. Gravina S, Dong X, Yu B, Vijg J. Single-cell genome-wide bisulfite sequencing 
uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol. 
2016; 17: 150. 

132. Raiber EA, Beraldi D, Martinez Cuesta S, McInroy GR, Kingsbury Z, Becq J, et 
al. Base resolution maps reveal the importance of 5-hydroxymethylcytosine in 
a human glioblastoma. NPJ Genom Med. 2017; 2: 6. 

133. Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, et al. 
Comparison of whole-genome bisulfite sequencing library preparation 
strategies identifies sources of biases affecting DNA methylation data. 
Genome Biol. 2018; 19: 33. 

134. Liu YB, Siejka-Zielinska P, Velikova G, Bi Y, Yuan F, Tomkova M, et al. 
Bisulfite-free direct detection of 5-methylcytosine and 
5-hydroxymethylcytosine at base resolution. Nat Biotechnol. 2019; 37: 424-9. 

135. Chen S, Teichmann SA. Completing the cancer jigsaw puzzle with single-cell 
multiomics. Nat Cancer. 2021; 2: 1260-2. 

136. Pennisi E. Upstart DNA sequencers could be a 'game changer'. Science. 2022; 
376: 1257-8. 

137. Simmons SK, Lithwick-Yanai G, Adiconis X, Oberstrass F, Iremadze N, 
Geiger-Schuller K, et al. Mostly natural sequencing-by-synthesis for 
scRNA-seq using Ultima sequencing. Nat Biotechnol. 2023; 41: 204-11. 

138. Ozimski LL, Gremmelspacher D, Aceto N. A fatal affair: Circulating tumor cell 
relationships that shape metastasis. iScience. 2021; 24: 103073. 

139. Kim TM, Yoo JS, Moon HW, Hur KJ, Choi JB, Hong SH, et al. Distinct 
mutation profiles between primary bladder cancer and circulating tumor cells 
warrant the use of circulating tumors cells as cellular resource for mutation 
follow-up. BMC Cancer. 2020; 20: 1203. 

140. Herath S, Rad HS, Radfar P, Ladwa R, Warkiani M, O'Byrne K, et al. The role 
of circulating biomarkers in lung cancer. Front Oncol. 2022; 11: 801269. 

141. Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P, et al. Epigenetic regulation in 
cardiovascular disease: Mechanisms and advances in clinical trials. Signal 
Transduct Target Ther. 2022; 7: 200. 

142. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in 
cardiovascular risk and disease: Methodological aspects, study design, and 
data analysis for epidemiological studies. Circ Res. 2016; 118: 119-31. 

143. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as 
a biomarker for cardiovascular disease risk. PLoS One. 2010; 5: e9692. 

144. Fernandez-Sanles A, Sayols-Baixeras S, Subirana I, Senti M, Perez-Fernandez 
S, de Castro Moura M, et al. DNA methylation biomarkers of myocardial 
infarction and cardiovascular disease. Clin Epigenetics. 2021; 13: 86. 

145. Uzun Y, Wu H, Tan K. Predictive modeling of single-cell DNA methylome 
data enhances integration with transcriptome data. Genome Res. 2021; 31: 
101-9. 

146. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, et al. 
Dissecting direct reprogramming through integrative genomic analysis. 
Nature. 2008; 454: 49-55. 

147. Lee DS, Luo C, Zhou J, Chandran S, Rivkin A, Bartlett A, et al. Simultaneous 
profiling of 3D genome structure and DNA methylation in single human cells. 
Nat Methods. 2019; 16: 999-1006. 

148. Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani CA, 
et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. 
Nature. 2019; 576: 487-91. 

 


